Rettig R, Ganten D, Lang RE, Unger T. The renin-angiotensin system in the central control of blood pressure. Eur Heart J. 1987;8(Suppl B):129–32. https://doi.org/10.1093/eurheartj/8.suppl_b.129.
Article
PubMed
Google Scholar
Guessoum O, de Goes Martini A, Sequeira-Lopez MLS, Gomez RA. Deciphering the identity of renin cells in health and disease. Trends Mol Med. 2021;27(3):280-292. https://doi.org/10.1016/j.molmed.2020.10.003.
Article
Google Scholar
Persson PB. Renin: origin, secretion and synthesis. J Physiol. 2003;552:667–71. https://doi.org/10.1113/jphysiol.2003.049890.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kurtz A. Renin release: sites, mechanisms, and control. Annu Rev Physiol. 2011;73:377–99. https://doi.org/10.1146/annurev-physiol-012110-142238.
Article
PubMed
CAS
Google Scholar
Persson AE, Ollerstam A, Liu R, Brown R. Mechanisms for macula densa cell release of renin. Acta Physiol Scand. 2004;181:471–4. https://doi.org/10.1111/j.1365-201X.2004.01320.x.
Article
PubMed
CAS
Google Scholar
Friis UG, Madsen K, Stubbe J, Hansen PB, Svenningsen P, Bie P, Skott O, Jensen BL. Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch. 2013;465:25–37. https://doi.org/10.1007/s00424-012-1126-7.
Article
PubMed
CAS
Google Scholar
Carey RM, McGrath HE, Pentz ES, Gomez RA, Barrett PQ. Biomechanical coupling in renin-releasing cells. J Clin Invest. 1997;100:1566–74. https://doi.org/10.1172/JCI119680.
Article
PubMed
PubMed Central
CAS
Google Scholar
Richardson J, Kotevski A, Poole K. From stretch to deflection: the importance of context in the activation of mammalian, mechanically activated ion channels. FEBS J. 2021. https://doi.org/10.1111/febs.16041.
Article
PubMed
Google Scholar
Geng J, Zhao Q, Zhang T, Xiao B. In touch with the mechanosensitive piezo channels: structure, ion permeation, and mechanotransduction. Curr Top Membr. 2017;79:159–95. https://doi.org/10.1016/bs.ctm.2016.11.006).
Article
PubMed
CAS
Google Scholar
Muhamed I, Chowdhury F, Maruthamuthu V. Biophysical tools to study cellular mechanotransduction. Bioengineering. 2017. https://doi.org/10.3390/bioengineering4010012.
Article
PubMed
PubMed Central
Google Scholar
Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ, Lotteau SJ, Bailey MA, Yuldasheva NY, Ludlow MJ, Cubbon RM, Li J, Futers TS, Morley L, Gaunt HJ, Marszalek K, Viswambharan H, Cuthbertson K, Baxter PD, Foster R, Sukumar P, Weightman A, Calaghan SC, Wheatcroft SB, Kearney MT, Beech DJ. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat Commun. 2017;8:350. https://doi.org/10.1038/s41467-017-00429-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60. https://doi.org/10.1126/science.1193270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Atcha H, Jairaman A, Holt JR, Meli VS, Nagalla RR, Veerasubramanian PK, Brumm KT, Lim HE, Othy S, Cahalan MD, Pathak MM, Liu WF. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat Commun. 2021;12:3256. https://doi.org/10.1038/s41467-021-23482-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shah V, Patel S, Shah J. Emerging role of piezo ion channels in cardiovascular development. Dev Dyn. 2021. https://doi.org/10.1002/dvdy.401.
Article
PubMed
Google Scholar
Wang Z, Chen J, Babicheva A, Jain PP, Rodriguez M, Ayon RJ, Ravellette KS, Wu L, Balistrieri F, Tang H, Wu X, Zhao T, Black SM, Desai AA, Garcia JGN, Sun X, Shyy JY, Valdez-Jasso D, Thistlethwaite PA, Makino A, Wang J, Yuan JX. Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. Am J Physiol Cell Physiol. 2021. https://doi.org/10.1152/ajpcell.00147.2021.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Wang D, Zhang C, Yang W, Li C, Gao Z, Pei K, Li Y. Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation. Hum Cell. 2021. https://doi.org/10.1007/s13577-021-00600-5.
Article
PubMed
PubMed Central
Google Scholar
Zhang K, Liu X, Wang L, Liu Z, Yi Q, Geng B, Chen X, Yu D, Xia Y. The mechanosensory and mechanotransductive processes mediated by ion channels and the impact on bone metabolism: a systematic review. Arch Biochem Biophys. 2021;711:109020. https://doi.org/10.1016/j.abb.2021.109020.
Article
PubMed
CAS
Google Scholar
Iring A, Jin YJ, Albarran-Juarez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Kunne C, Sokol AM, Gunther S, Martinez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129:2775–91. https://doi.org/10.1172/JCI123825.
Article
PubMed
PubMed Central
Google Scholar
Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, Liberles SD, Patapoutian A. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science. 2018;362:464–7. https://doi.org/10.1126/science.aau6324.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seghers F, Yerna X, Zanou N, Devuyst O, Vennekens R, Nilius B, Gailly P. TRPV4 participates in pressure-induced inhibition of renin secretion by juxtaglomerular cells. J Physiol. 2016;594:7327–40. https://doi.org/10.1113/JP273595.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hocherl K, Dreher F, Vitzthum H, Kohler J, Kurtz A. Cyclosporine A suppresses cyclooxygenase-2 expression in the rat kidney. J Am Soc Nephrol. 2002;13:2427–36. https://doi.org/10.1097/01.asn.0000031702.86799.b9.
Article
PubMed
Google Scholar
Madsen K, Friis UG, Gooch JL, Hansen PB, Holmgaard L, Skott O, Jensen BL. Inhibition of calcineurin phosphatase promotes exocytosis of renin from juxtaglomerular cells. Kidney Int. 2010;77:110–7. https://doi.org/10.1038/ki.2009.418.
Article
PubMed
CAS
Google Scholar
Harris RC. COX-2 and the kidney. J Cardiovasc Pharmacol. 2006;47(Suppl 1):S37-42. https://doi.org/10.1097/00005344-200605001-00007.
Article
PubMed
CAS
Google Scholar
Kistler T, Ambuhl PM. Renal safety of combined cyclooxygenase 2 (COX-2) inhibitor and angiotensin II receptor blocker administration in mild volume depletion. Swiss Med Wkly. 2001;131:193–8. https://doi.org/10.4414/smw.2001.09680.
Article
PubMed
CAS
Google Scholar
Robertson RP. The COX-2/PGE2/EP3/Gi/o/cAMP/GSIS pathway in the islet: the beat goes on. Diabetes. 2017;66:1464–6. https://doi.org/10.2337/dbi17-0017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jia Z, Zhang Y, Ding G, Heiney KM, Huang S, Zhang A. Role of COX-2/mPGES-1/prostaglandin E2 cascade in kidney injury. Mediators Inflamm. 2015;2015:147894. https://doi.org/10.1155/2015/147894.
Article
PubMed
PubMed Central
CAS
Google Scholar
Breyer MD, Breyer RM. G Protein-coupled prostanoid receptors and the kidney. Ann Rev Physiol. 2001;63:579–605. https://doi.org/10.1146/annurev.physiol.63.1.579.
Article
CAS
Google Scholar
Nasrallah R, Hassouneh R, Hebert RL. Chronic kidney disease: targeting prostaglandin E2 receptors. Am J Physiol Renal Physiol. 2014;307:F243-250. https://doi.org/10.1152/ajprenal.00224.2014.
Article
PubMed
CAS
Google Scholar
Lai EY, Wang Y, Persson AE, Manning RD Jr, Liu R. Pressure induces intracellular calcium changes in juxtaglomerular cells in perfused afferent arterioles. Hypertens Res. 2011;34:942–8. https://doi.org/10.1038/hr.2011.65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yarishkin O, Phuong TTT, Baumann JM, De Ieso ML, Vazquez-Chona F, Rudzitis CN, Sundberg C, Lakk M, Stamer WD, Krizaj D. Piezo1 channels mediate trabecular meshwork mechanotransduction and promote aqueous fluid outflow. J Physiol. 2021;599:571–92. https://doi.org/10.1113/JP281011.
Article
PubMed
CAS
Google Scholar
Mazzuoli-Weber G, Kugler EM, Buhler CI, Kreutz F, Demir IE, Ceyhan OG, Zeller F, Schemann M. Piezo proteins: incidence and abundance in the enteric nervous system. Is there a link with mechanosensitivity? Cell Tissue Res. 2019;375:605–18. https://doi.org/10.1007/s00441-018-2926-7.
Article
PubMed
CAS
Google Scholar
Guo J, Gu D, Zhao T, Zhao Z, Xiong Y, Sun M, Xin C, Zhang Y, Pei L, Sun J. Trends in Piezo channel research over the past decade: a bibliometric analysis. Front Pharmacol. 2021;12:668714. https://doi.org/10.3389/fphar.2021.668714.
Article
PubMed
PubMed Central
CAS
Google Scholar
Allison SJ. Hypertension: mechanosensation by PIEZO1 in blood pressure control. Nat Rev Nephrol. 2017;13:3. https://doi.org/10.1038/nrneph.2016.165.
Article
PubMed
CAS
Google Scholar
Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527–36. https://doi.org/10.1172/JCI87343.
Article
PubMed
PubMed Central
Google Scholar
Svetina S, Kebe TS, Bozic B. A model of Piezo1-based regulation of red blood cell volume. Biophys J. 2019;116:151–64. https://doi.org/10.1016/j.bpj.2018.11.3130.
Article
PubMed
CAS
Google Scholar
Cinar E, Zhou S, DeCourcey J, Wang Y, Waugh RE, Wan J. Piezo1 regulates mechanotransductive release of ATP from human RBCs. Proc Natl Acad Sci USA. 2015;112:11783–8. https://doi.org/10.1073/pnas.1507309112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM, Kleyman TR, Ricke WA, Carattino MD, Apodaca G. Expression and distribution of PIEZO1 in the mouse urinary tract. Am J Physiol Renal Physiol. 2019;317:F303–21. https://doi.org/10.1152/ajprenal.00214.2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, Tauc M, Duranton C, Paulais M, Teulon J, Honore E, Patel A. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep. 2013;14:1143–8. https://doi.org/10.1038/embor.2013.170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, Jiang F, Li J, Liu C, Zhong G, Cao D, Jin X, Zhao D, Gao X, Liu Z, Xiao B, Li Y. The mechanosensitive Piezo1 channel is required for bone formation. Elife. 2019. https://doi.org/10.7554/eLife.47454.
Article
PubMed
PubMed Central
Google Scholar
Xu X, Liu S, Liu H, Ru K, Jia Y, Wu Z, Liang S, Khan Z, Chen Z, Qian A, Hu L. Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22126429.
Article
PubMed
PubMed Central
Google Scholar
Bagur R, Hajnoczky G. Intracellular Ca(2+) sensing: its role in calcium homeostasis and signaling. Mol Cell. 2017;66:780–8. https://doi.org/10.1016/j.molcel.2017.05.028.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beierwaltes WH. The role of calcium in the regulation of renin secretion. Am J Physiol Renal Physiol. 2010;298:F1–11. https://doi.org/10.1152/ajprenal.00143.2009.
Article
PubMed
CAS
Google Scholar
Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103:525–35. https://doi.org/10.1016/s0092-8674(00)00143-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baratchi S, Almazi JG, Darby W, Tovar-Lopez FJ, Mitchell A, McIntyre P. Shear stress mediates exocytosis of functional TRPV4 channels in endothelial cells. Cell Mol Life Sci. 2016;73:649–66. https://doi.org/10.1007/s00018-015-2018-8.
Article
PubMed
CAS
Google Scholar
Yoneda M, Suzuki H, Hatano N, Nakano S, Muraki Y, Miyazawa K, Goto S, Muraki K. PIEZO1 and TRPV4, which are distinct mechano-sensors in the osteoblastic MC3T3-E1 cells modify cell-proliferation. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20194960.
Article
PubMed
PubMed Central
Google Scholar
Swain SM, Liddle RA. Piezo1 acts upstream of TRPV4 to induce pathological changes in endothelial cells due to shear stress. J Biol Chem. 2021;296:100171. https://doi.org/10.1074/jbc.RA120.015059.
Article
PubMed
CAS
Google Scholar
Grunberger C, Obermayer B, Klar J, Kurtz A, Schweda F. The calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6. Circ Res. 2006;99:1197–206. https://doi.org/10.1161/01.RES.0000251057.35537.d3.
Article
PubMed
CAS
Google Scholar
Neuman JC, Schaid MD, Brill AL, Fenske RJ, Kibbe CR, Fontaine DA, Sdao SM, Brar HK, Connors KM, Wienkes HN, Eliceiri KW, Merrins MJ, Davis DB, Kimple ME. Enriching islet phospholipids with eicosapentaenoic acid reduces prostaglandin E2 signaling and enhances diabetic beta-cell function. Diabetes. 2017;66:1572–85. https://doi.org/10.2337/db16-1362.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Yuan Z, Wang B, Li B, Lv H, He J, Huang Y, Cui Z, Ma Q, Li T, Fu Y, Tan X, Liu Y, Wang S, Wang C, Kong W, Zhu Y. COMP (Cartilage Oligomeric Matrix Protein), a Novel PIEZO1 Regulator That Controls Blood Pressure. Hypertension. 2022;79:549–61. https://doi.org/10.1161/HYPERTENSIONAHA.121.17972.
Article
PubMed
CAS
Google Scholar
Lipkowitz MS, Hanss B, Tulchin N, Wilson PD, Langer JC, Ross MD, Kurtzman GJ, Klotman PE, Klotman ME. Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors. J Am Soc Nephrol. 1999;10:1908–15. https://doi.org/10.1681/ASN.V1091908.
Article
PubMed
CAS
Google Scholar
Qi YF, Li QH, Shenoy V, Zingler M, Jun JY, Verma A, Katovich MJ, Raizada MK. Comparison of the transduction efficiency of tyrosine-mutant adeno-associated virus serotype vectors in kidney. Clin Exp Pharmacol Physiol. 2013;40:53–5. https://doi.org/10.1111/1440-1681.12037.
Article
PubMed
PubMed Central
CAS
Google Scholar
Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, He X, Wei G, Liao W, Liao Y, Zhong L, Bin J. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine. 2020;57:102832. https://doi.org/10.1016/j.ebiom.2020.102832.
Article
PubMed
PubMed Central
Google Scholar
Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlen M, Nielsen J. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 2012;40:10084–97. https://doi.org/10.1093/nar/gks804.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kurtz A, della Bruna RD. Determinants of renin secretion and renin synthesis in isolated mouse juxtaglomerular cells. Kidney Int Suppl. 1991;32:13–5.
Google Scholar
Liu X, Hao B, Ma A, He J, Liu X, Chen J. The expression of NOX4 in smooth muscles of small airway correlates with the disease severity of COPD. Biomed Res Int. 2016;2016:2891810. https://doi.org/10.1155/2016/2891810.
Article
PubMed
PubMed Central
CAS
Google Scholar
Swift AJ, Rajaram S, Condliffe R, Capener D, Hurdman J, Elliot CA, Wild JM, Kiely DG. Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the ASPIRE registry. J Cardiovasc Magn Reson. 2012;14:40. https://doi.org/10.1186/1532-429X-14-40.
Article
PubMed
PubMed Central
Google Scholar
Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 2014;70:46–58. https://doi.org/10.1016/j.ymeth.2014.08.016.
Article
PubMed
CAS
Google Scholar
Toth ZE, Mezey E. Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J Histochem Cytochem. 2007;55:545–54. https://doi.org/10.1369/jhc.6A7134.2007.
Article
PubMed
CAS
Google Scholar