Eichenwald EC, Watterberg KL, Aucott S, Benitz WE, Cummings JJ, et al. Apnea of prematurity. Pediatrics. 2016;137(1):e20153757.
Article
Google Scholar
Zhao J, Gonzalez F, Mu D. Apnea of prematurity: from cause to treatment. Eur J Pediatr. 2011;170(9):1097–105.
Article
PubMed
PubMed Central
Google Scholar
Abu-Shaweesh JM, Martin RJ. Neonatal apnea: what’s new? Pediatr Pulmonol. 2008;43(10):937–44.
Article
PubMed
Google Scholar
Kakita H, Hussein MH, Yamada Y, Henmi H, Kato S, Kobayashi S, et al. High postnatal oxidative stress in neonatal cystic periventricular leukomalacia. Brain Develop. 2009;31(9):641–8.
Article
Google Scholar
Huang J, Zhang L, Kang B, Zhu T, Li Y, Zhao F, et al. Association between perinatal hypoxic-ischemia and periventricular leukomalacia in preterm infants: a systematic review and meta-analysis. PLoS ONE. 2017;12(9):e0184993.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington KJ. Apnea is associated with neurodevelopmental impairment in very low birth weight infants. J Perinatol. 2004;24(12):763–8.
Article
PubMed
Google Scholar
Pillekamp F, Hermann C, Keller T, von Gontard A, Kribs A, Roth B. Factors influencing apnea and bradycardia of prematurity—implications for neurodevelopment. Neonatology. 2007;91(3):155–61.
Article
CAS
PubMed
Google Scholar
Cai J, Tuong CM, Gozal D. A neonatal mouse model of intermittent hypoxia associated with features of apnea in premature infants. Respir Physiol Neurobiol. 2011;178(2):210–7.
Article
PubMed
PubMed Central
Google Scholar
Oorschot DE, Voss L, Covey MV, Goddard L, Huang W, Birchall P, et al. Spectrum of short- and long-term brain pathology and long-term behavioral deficits in male repeated hypoxic rats closely resembling human extreme prematurity. J Neurosci. 2013;33(29):11863–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goussakov I, Synowiec S, Yarnykh V, Drobyshevsky A. Immediate and delayed decrease of long term potentiation and memory deficits after neonatal intermittent hypoxia. Int j dev neurosci. 2019;74(1):27–37.
Article
PubMed
PubMed Central
Google Scholar
Cai J, Tuong CM, Zhang Y, Shields CB, Guo G, Fu H, et al. Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation: Intermittent hypoxia and white matter in the neonatal period. J Pathol. 2012;226(3):495–508.
Article
CAS
PubMed
Google Scholar
Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.
Article
PubMed
PubMed Central
Google Scholar
Rahimi-Balaei M, Bergen H, Kong J, Marzban H. Neuronal migration during development of the cerebellum. Front Cell Neurosci. 2018;12:484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrosini L. The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol. 1998;56(2):191–210.
Article
CAS
PubMed
Google Scholar
Lavond DG. Role of the nuclei in eyeblink conditioning. Annals NY Acad Sci. 2002;978:93–105.
Article
Google Scholar
Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–8.
Article
PubMed
Google Scholar
Sathyanesan A, Kundu S, Abbah J, Gallo V. Neonatal brain injury causes cerebellar learning deficits and Purkinje cell dysfunction. Nat Commun. 2018;9(1):3235.
Article
PubMed
PubMed Central
CAS
Google Scholar
Biran V, Heine VM, Verney C, Sheldon RA, Spadafora R, Vexler ZS, et al. Cerebellar abnormalities following hypoxia alone compared to hypoxic–ischemic forebrain injury in the developing rat brain. Neurobiol Dis. 2011;41(1):138–46.
Article
PubMed
Google Scholar
Chiu SC, Huang SY, Tsai YC, Chen SP, Pang CY, Lien CF, et al. Poly (ADP-ribose) polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells. J Biomed Sci. 2012;19(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rochefort C, Arabo A, André M, Poucet B, Save E, Rondi-Reig L. Cerebellum shapes hippocampal spatial code. Science. 2011;334(6054):385–9.
Article
CAS
PubMed
Google Scholar
Srinivasan L, Allsop J, Counsell SJ, Boardman JP, Edwards AD, Rutherford M. Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol. 2006;27(3):573–9.
CAS
PubMed
PubMed Central
Google Scholar
Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT, van der Grond J, Walther FJ, van Wezel-Meijler G. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology. 2009;252(1):190–9.
Article
PubMed
Google Scholar
Farahani R, Kanaan A, Gavrialov O, Brunnert S, Douglas RM, Morcillo P, et al. Differential effects of chronic intermittent and chronic constant hypoxia on postnatal growth and development. Pediatr Pulmonol. 2008;43(1):20–8.
Article
PubMed
Google Scholar
Pozo ME, Cave A, Köroğlu ÖA, Litvin DG, Martin RJ, Di Fiore J, et al. Effect of postnatal intermittent hypoxia on growth and cardiovascular regulation of rat pups. Neonatology. 2012;102(2):107–13.
Article
CAS
PubMed
Google Scholar
Morken TS, Nyman AKG, Sandvig I, Torp SH, Skranes J, Goa PE, et al. Brain development after neonatal intermittent hyperoxia-hypoxia in the rat studied by longitudinal MRI and immunohistochemistry. PLoS ONE. 2013;8(12):e84109.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kheirandish L, Gozal D, Pequignot JM, Pequignot J, Row BW. Intermittent hypoxia during development induces long-term alterations in spatial working memory, monoamines, and dendritic branching in rat frontal cortex. Pediatr Res. 2005;58(3):594–9.
Article
PubMed
Google Scholar
Darnall RA, Chen X, Nemani KV, Sirieix CM, Gimi B, Knoblach S, et al. Early postnatal exposure to intermittent hypoxia in rodents is proinflammatory, impairs white matter integrity, and alters brain metabolism. Pediatr Res. 2017;82(1):164–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R. New Insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal. 2014;20(11):1723–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nedden S, Tomaselli B, Baier-Bitterlich G. HIF-1 alpha is an essential effector for purine nucleoside-mediated neuroprotection against hypoxia in PC12 cells and primary cerebellar granule neurons. J Neurochem. 2008;105(5):1901–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wahl DR, Dresser J, Wilder-Romans K, Parsels JD, Zhao SG, Davis M, et al. Glioblastoma therapy can be augmented by targeting IDH1-mediated NADPH biosynthesis. Can Res. 2017;77(4):960–70.
Article
CAS
Google Scholar
Bourens M, Fontanesi F, Soto IC, Liu J, Barrientos A. Redox and reactive oxygen species regulation of mitochondrial cytochrome c oxidase biogenesis. Antioxid Redox Signal. 2013;19(16):1940–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scaramuzzino L, Lucchino V, Scalise S, Lo Conte M, Zannino C, Sacco A, et al. Uncovering the metabolic and stress responses of human embryonic stem cells to FTH1 gene silencing. Cells. 2021;10(9):2431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Curristin SM, Cao A, Stewart WB, Zhang H, Madri JA, Morrow JS, et al. Disrupted synaptic development in the hypoxic newborn brain. Proc Natl Acad Sci USA. 2002;99(24):15729–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Chen Y, Yu S, Li L, Zhao X, Li Q, et al. Neuroprotective effects of sulfiredoxin-1 during cerebral ischemia/reperfusion oxidative stress injury in rats. Brain Res Bull. 2017;132:99–108.
Article
CAS
PubMed
Google Scholar
Coimbra-Costa D, Alva N, Duran M, Carbonell T, Rama R. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol. 2017;12:216–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease: dual localization of glutathione transferase. FEBS J. 2011;278(22):4243–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv Y, Lin Z, Li D, Han S, Zhang N, Zhang H, Li J. cPKC beta II is significant to hypoxic preconditioning in mice cerebrum. Front Biosci. 2020;25(4):683–98.
Article
CAS
Google Scholar
Zaghloul N, Patel H, Codipilly C, Marambaud P, Dewey S, Frattini S, et al. Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia. PLoS ONE. 2014;9(9):e108168.
Article
PubMed
PubMed Central
CAS
Google Scholar
Machcinska S, Walendzik K, Kopcewicz M, Wisniewska J, Rokka A, Pääkkönen M, et al. Hypoxia reveals a new function of Foxn1 in the keratinocyte antioxidant defense system. The FASEB J. 2022. https://doi.org/10.1096/fj.202200249RR.
Article
PubMed
Google Scholar
Connolly DJA, Widjaja E, Griffiths PD. Involvement of the anterior lobe of the cerebellar vermis in perinatal profound hypoxia. AJNR Am J Neuroradiol. 2007;28(1):16–9.
CAS
PubMed
PubMed Central
Google Scholar
Biran V, Verney C, Ferriero DM. Perinatal cerebellar injury in human and animal models. Neurol Res Int. 2012;2012:1–9.
Article
Google Scholar
Sudarov A, Joyner AL. Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev. 2007;2(1):26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beekhof GC, Osório C, White JJ, van Zoomeren S, van der Stok H, Xiong B, et al. Differential spatiotemporal development of Purkinje cell populations and cerebellum-dependent sensorimotor behaviors. eLife. 2021;10:e63668.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoodley CJ, Schmahmann JD. Functional topography of the human cerebellum. The Cerebellum: from embryology to diagnostic investigations. Amsterdam: Elsevier; 2018. p. 59–70.
Book
Google Scholar
Rochefort C, Lefort J, Rondi-Reig L. The cerebellum: a new key structure in the navigation system. Front Neural Circuits. 2013. https://doi.org/10.3389/fncir.2013.00035.
Article
PubMed
PubMed Central
Google Scholar
Yu W, Krook-Magnuson E. Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci. 2015;22:9.
Google Scholar
Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron. 2007;54(6):973–85.
Article
CAS
PubMed
Google Scholar
Hernández RG, De Zeeuw CI, Zhang R, Yakusheva TA, Blazquez PM. Translation information processing is regulated by protein kinase C-dependent mechanism in Purkinje cells in murine posterior vermis. Proc Natl Acad Sci USA. 2020;117(29):17348–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kano M, Watanabe T, Uesaka N, Watanabe M. Multiple phases of climbing fiber synapse elimination in the developing cerebellum. Cerebellum. 2018;17(6):722–34.
Article
PubMed
Google Scholar
Park H, Yamamoto Y, Tanaka-Yamamoto K. Refinement of cerebellar network organization by extracellular signaling during development. Neuroscience. 2021;462:44–55.
Article
CAS
PubMed
Google Scholar
Kalinovsky A, Boukhtouche F, Blazeski R, Bornmann C, Suzuki N, Mason CA, et al. Development of axon-target specificity of ponto-cerebellar afferents. PLoS Biol. 2011;9(2):e1001013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Mason CA. Developmental regulation of mossy fiber afferent interactions with target granule cells. Dev Biol. 1998;195(1):75–87.
Article
CAS
PubMed
Google Scholar
Hall AC, Lucas FR, Salinas PC. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell. 2000;100(5):525–35.
Article
CAS
PubMed
Google Scholar
Juliano C, Sosunov S, Niatsetskaya Z, Isler JA, Utkina-Sosunova I, Jang I, et al. Mild intermittent hypoxemia in neonatal mice causes permanent neurofunctional deficit and white matter hypomyelination. Exp Neurol. 2015;264:33–42.
Article
CAS
PubMed
Google Scholar
Hamza MM, Rey SA, Hilber P, Arabo A, Collin T, Vaudry D, et al. Early disruption of extracellular pleiotrophin distribution alters cerebellar neuronal circuit development and function. Mol Neurobiol. 2016;53(8):5203–16.
Article
CAS
PubMed
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.
Article
CAS
PubMed
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria; 2022. https://www.R-project.org/. Accessed Apr 2022.
Brooks ME, Kristensen K, Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal. 2017;9(2):378.
Article
Google Scholar
Hartig F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. 2022. https://CRAN.R-project.org/package=DHARMa.. Accessed Apr 2022.
Lüdecke D, Ben-Shachar M, Patil I, Waggoner P, Makowski D. Performance: an R package for assessment, comparison and testing of statistical models. JOSS. 2021;6(60):3139.
Article
Google Scholar
Lenth RV. emmeans: Estimated marginal means, aka least-squares means [Internet]. 2022. https://CRAN.R-project.org/package=emmeans.. Accessed Apr 2022.
Zimmerman KD, Espeland MA, Langefeld CD. A practical solution to pseudoreplication bias in single-cell studies. Nat Commun. 2021;12(1):738.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paxinos G, Franklin KBJ, Franklin KBJ. The mouse brain in stereotaxic coordinates. 2nd ed. San Diego: Academic Press; 2001.
Google Scholar