Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62.
Article
CAS
Google Scholar
Oryan A, Eslaminejad MB, Kamali A, Hosseini S, Moshiri A, Baharvand H. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat. Cell Tissue Res. 2018;374:63–81.
Article
CAS
Google Scholar
Reumann MK, Linnemann C, Aspera-Werz RH, Arnold S, Held M, Seeliger C, Nussler AK, Ehnert S. Donor site location is critical for proliferation, stem cell capacity, and osteogenic differentiation of adipose mesenchymal stem/stromal cells: implications for bone tissue engineering. Int J Mol Sci. 2018;19:E1868.
Article
Google Scholar
Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F, Prokesch A, Paar C, Scheideler M, Windhager R, Preisegger KH, Trajanoski Z. Large-scale gene expression profiling of bone marrow-derived human mesenchymal stem cells (hMSCs) during in vitro osteoblast differentiation. Bone. 2006;39:S27.
Article
Google Scholar
Li XH, Yu XY, Deng CY, Lin QX, Shan ZX, Yang M, Lin SG. Differentiation of human bone marrow mesenchymal stem cells into cardiac phenotype in cardiomyocytes microenvironment. Acta Pharmacol Sin. 2006;27:236.
CAS
Google Scholar
Zanini C, Bruno S, Mandili G, Baci D, Cerutti F, Cenacchi G, Izzi L, Camussi G, Forni M. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. Plos ONE. 2011;6:e28175.
Article
CAS
Google Scholar
Madonna R, De Caterina R, Willerson JT, Geng YJ. Adult mesenchymal stem cells derived from adipose tissue highly express telomerase and spontaneously differentiate into contractile cardiomyocytes and mature endothelial cells. Diabetologia. 2004;47:A423.
Article
Google Scholar
Kaiser S, Hackanson B, Follo M, Geiger K, Guo YL, Engelhardt M, Kapp U. Mesenchymal stem cells can be isolated from the CD34 positive fraction of human bone marrow cells. Blood. 2001;98:83a–4a.
Google Scholar
Shen CY, Li L, Feng T, Li JR, Yu MX, Lu Q, Li H. Dental pulp stem cells derived conditioned medium promotes angiogenesis in hindlimb ischemia. Tissue Eng Regenerative Med. 2015;12:59–68.
Article
CAS
Google Scholar
Igura K, Watanabe N, Nagamura-Inoue T, Takahashi K, Iwamoto U, Takada K, Mitsuru A, Takahashi TA. Human placenta-derived mesenchymal stem cells differentiate into neural cells. Blood. 2002;100:517a.
Article
Google Scholar
Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem. 2001;82:583–90.
Article
CAS
Google Scholar
Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem. 2000;79:557–65.
Article
CAS
Google Scholar
Tamagawa T, Oi S, Ishiwatai I, Ishikawa H, Nakamura Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell. 2007;20:77–84.
Article
Google Scholar
Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 2004;22:617–24.
Article
Google Scholar
Ciuca DR, Soritau O, Susman S, Pop VI, Mihu CM. Isolation and characterization of chorionic mesenchymal stem cells from the placenta. Rom J Morphol Embryol. 2011;52:803–8.
Google Scholar
Macias MI, Grande J, Moreno A, Dominguez I, Bornstein R, Flores AI. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol. 2010;203:495.e9–23.
Article
Google Scholar
Tsuji H, Miyoshi S, Ikegami Y, Hida N, Asada H, Togashi I, Suzuki J, Satake M, Nakamizo H, Tanaka M, et al. Xenografted Human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res. 2010;106:1613–23.
Article
CAS
Google Scholar
Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25:1384–92.
Article
CAS
Google Scholar
Miao ZN, Sun HL, Xue YF. Isolation and characterization of human chorionic membranes mesenchymal stem cells and their neural differentiation. Tissue Eng Regenerative Med. 2017;14:143–51.
Article
CAS
Google Scholar
Bravo B, Gallego MI, Flores AI, Bornstein R, Puente-Bedia A, Hernandez J, de la Torre P, Garcia-Zaragoza E, Perez-Tavarez R, Grande J, et al. Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis. Stem Cell Res Ther. 2016;7:43.
Article
Google Scholar
Gao JZ, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 2001;7:363–71.
Article
CAS
Google Scholar
Tortelli F, Tasso R, Loiacono F, Cancedda R. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials. 2010;31:242–9.
Article
CAS
Google Scholar
Zhang ZY, Teoh SH, Choolani M, Chan J. Development of human fetal mesenchymal stem cell mediated tissue engineering bone grafts. In: Daniel E, editor. Tissue Engineering. InTech; 2010. p .1–29.
Lin HY, Tsai CC, Chen LL, Chiou SH, Wang YJ, Hung SC. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK. J Biomed Sci. 2010;17:56.
Article
Google Scholar
Chen T, Zhou Y, Tan WS. Effects of low temperature and lactate on osteogenic differentiation of human amniotic mesenchymal stem cells. Biotechnol Bioprocess Eng. 2009;14:708–15.
Article
CAS
Google Scholar
Wang LM, Dormer NH, Bonewald LF, Detamore MS. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng Part A. 2010;16:1937–48.
Article
CAS
Google Scholar
Choi YS, Park YB, Ha CW, Kim JA, Heo JC, Han WJ, Oh SY, Choi SJ. Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta. Plos ONE. 2017;12:e0172642.
Article
Google Scholar
Toupadakis CA, Wong A, Genetos DC, Cheung WK, Borjesson DL, Ferraro GL, Galuppo LD, Leach JK, Owens SD, Yellowley CE. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am J Vet Res. 2010;71:1237–45.
Article
Google Scholar
De Bari C, Dell’Accio F, Vanlauwe J, Eyckmans J, Khan YM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitzalis C, Luyten FP. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 2006;54:1209–21.
Article
Google Scholar
Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem. 2004;93:1210–30.
Article
CAS
Google Scholar
Piccinato CA, Sertie AL, Torres N, Ferretti M, Antonioli E. High OCT4 and low p16(INK4A) expressions determine in vitro lifespan of mesenchymal stem cells. Stem Cells Int. 2015;2015:369828.
Article
Google Scholar
Klees RF, Salasznyk RM, Ward DF, Crone DE, Williams WA, Harris MP, Boskey A, Quaranta V, Plopper GE. Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Exp Cell Res. 2008;314:763–73.
Article
CAS
Google Scholar
Thibault MM, Hoemann CD, Buschmann MD. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev. 2007;16:489–502.
Article
CAS
Google Scholar
Tsuchiya K, Chen GP, Ushida T, Matsuno T, Tateishi T. Effects of cell adhesion molecules on adhesion of chondrocytes, ligament cells and mesenchymal stem cells. Mater Sci Eng C Biomimetic Supramol Syst. 2001;17:79–82.
Article
Google Scholar
Vohra S, Hennessy KM, Sawyer AA, Zhuo Y, Bellis SL. Comparison of mesenchymal stem cell and osteosarcoma cell adhesion to hydroxyapatite. J Mater Sci Mater Med. 2008;19:3567–74.
Article
CAS
Google Scholar