Stochholm K, Juul S, Juel K, Naeraa RW, Gravholt CH. Prevalence, incidence, diagnostic delay, and mortality in turner syndrome. J Clin Endocrinol Metab. 2006;91(10):3897–902.
Article
CAS
PubMed
Google Scholar
Gravholt CH, Viuff MH, Brun S, Stochholm K, Andersen NH. Turner syndrome: mechanisms and management. Nat Rev Endocrinol. 2019;15(10):601–14.
Article
PubMed
Google Scholar
Aly J, Kruszka P. Novel insights in turner syndrome. Curr Opin Pediatr. 2022;34(4):447–60.
Article
CAS
PubMed
Google Scholar
Hook EB, Warburton D. The distribution of chromosomal genotypes associated with Turner’s syndrome: livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. Hum Genet. 1983;64(1):24–7.
Article
CAS
PubMed
Google Scholar
Hassold TJ. Chromosome abnormalities in human reproductive wastage. Trends Genet. 1986;2:105–10.
Article
Google Scholar
Nielsen J, Stradiot M. Transcultural study of turner’s syndrome. Clin Genet. 1987;32(4):260–70.
Article
CAS
PubMed
Google Scholar
Ross J, Zinn A, McCauley E. Neurodevelopmental and psychosocial aspects of Turner syndrome. Ment Retard Dev Disabil Res Rev. 2000;6(2):135–41.
Article
CAS
PubMed
Google Scholar
Hall JG, Gilchrist DM. Turner syndrome and its variants. Pediatr Clin North Am. 1990;37(6):1421–40.
Article
CAS
PubMed
Google Scholar
Thunström S, Krantz E, Thunström E, Hanson C, Bryman I, Landin-Wilhelmsen K. Incidence of aortic dissection in turner syndrome. Circulation. 2019;139(24):2802–4.
Article
PubMed
Google Scholar
Morris LA, Tishelman AC, Kremen J, Ross RA. Depression in turner syndrome: a systematic review. Arch Sex Behav. 2020;49(2):769–86.
Article
PubMed
Google Scholar
Gravholt CH, Andersen NH, Conway GS, Dekkers OM, Geffner ME, Klein KO, Lin AE, Mauras N, Quigley CA, Rubin K, et al. Clinical practice guidelines for the care of girls and women with turner syndrome: proceedings from the 2016 cincinnati international turner syndrome meeting. Eur J Endocrinol. 2017;177(3):G1–70.
Article
CAS
PubMed
Google Scholar
Björlin Avdic H, Butwicka A, Nordenström A, Almqvist C, Nordenskjöld A, Engberg H, Frisén L. Neurodevelopmental and psychiatric disorders in females with turner syndrome: a population-based study. J Neurodev Disord. 2021;13(1):51.
Article
PubMed
PubMed Central
Google Scholar
Cardoso G, Daly R, Haq NA, Hanton L, Rubinow DR, Bondy CA, Schmidt P. Current and lifetime psychiatric illness in women with turner syndrome. Gynecol Endocrinol. 2004;19(6):313–9.
Article
PubMed
Google Scholar
Kruszka P, Addissie YA, Tekendo-Ngongang C, Jones KL, Savage SK, Gupta N, Sirisena ND, Dissanayake VHW, Paththinige CS, Aravena T, et al. Turner syndrome in diverse populations. Am J Med Genet A. 2020;182(2):303–13.
Article
PubMed
Google Scholar
Money J, Alexander D. Turner’s syndrome: further demonstration of the presence of specific cognitional deficiencies. J Med Genet. 1966;3(1):47–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaffer JW. A specific cognitive deficit observed in gonadal aplasia (Turner’s syndrome). J Clin Psychol. 1962;18:403–6.
Article
CAS
PubMed
Google Scholar
WHO, Risk reduction of cognitive decline and dementia: WHO guidelines. Geneva: World Health Organization 2019.
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.
Article
PubMed
PubMed Central
Google Scholar
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease Nat Rev Dis Primers. 2015;1(1):15056.
Article
PubMed
Google Scholar
Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: what’s the difference? J Parkinsons Dis. 2019;9(3):501–15.
Article
PubMed
PubMed Central
Google Scholar
Schneider RB, Iourinets J, Richard IH. Parkinson’s disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag. 2017;7(6):365–76.
Article
PubMed
Google Scholar
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7): a028035.
Article
PubMed
PubMed Central
Google Scholar
Kochi C, Longui CA, Lemos-Marini SH, Guerra-Junior G, Melo MB, Calliari LE, Monte O. The influence of parental origin of X chromosome genes on the stature of patients with 45 X Turner syndrome. Genet Mol Res. 2007;6(1):1–7.
CAS
PubMed
Google Scholar
Mathur A, Stekol L, Schatz D, MacLaren NK, Scott ML, Lippe B. The parental origin of the single X chromosome in turner syndrome: lack of correlation with parental age or clinical phenotype. Am J Hum Genet. 1991;48(4):682–6.
CAS
PubMed
PubMed Central
Google Scholar
Lepage JF, Hong DS, Mazaika PK, Raman M, Sheau K, Marzelli MJ, Hallmayer J, Reiss AL. Genomic imprinting effects of the X chromosome on brain morphology. J Neurosci. 2013;33(19):8567–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loesch DZ, Bui QM, Kelso W, Huggins RM, Slater H, Warne G, Bergman PB, Rodda C, Mitchell RJ, Prior M. Effect of Turner’s syndrome and X-linked imprinting on cognitive status: analysis based on pedigree data. Brain Dev. 2005;27(7):494–503.
Article
PubMed
Google Scholar
Skuse DH, James RS, Bishop DV, Coppin B, Dalton P, Aamodt-Leeper G, Bacarese-Hamilton M, Creswell C, McGurk R, Jacobs PA. Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature. 1997;387(6634):705–8.
Article
CAS
PubMed
Google Scholar
Russell HF, Wallis D, Mazzocco MMM, Moshang T, Zackai E, Zinn AR, Ross JL, Muenke M. Increased prevalence of ADHD in turner syndrome with no evidence of imprinting effects. J Pediatr Psychol. 2006;31(9):945–55.
Article
PubMed
Google Scholar
Lepage JF, Hong DS, Hallmayer J, Reiss AL. Genomic imprinting effects on cognitive and social abilities in prepubertal girls with Turner syndrome. J Clin Endocrinol Metab. 2012;97(3):E460-464.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zvetkova I, Apedaile A, Ramsahoye B, Mermoud JE, Crompton LA, John R, Feil R, Brockdorff N. Global hypomethylation of the genome in XX embryonic stem cells. Nat Genet. 2005;37(11):1274–9.
Article
CAS
PubMed
Google Scholar
Rao E, Weiss B, Fukami M, Rump A, Niesler B, Mertz A, Muroya K, Binder G, Kirsch S, Winkelmann M, et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet. 1997;16(1):54–63.
Article
CAS
PubMed
Google Scholar
Trolle C, Nielsen MM, Skakkebæk A, Lamy P, Vang S, Hedegaard J, Nordentoft I, Ørntoft TF, Pedersen JS, Gravholt CH. Widespread DNA hypomethylation and differential gene expression in Turner syndrome. Sci Rep. 2016;6:34220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poeta L, Padula A, Attianese B, Valentino M, Verrillo L, Filosa S, Shoubridge C, Barra A, Schwartz CE, Christensen J, et al. Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders. Hum Mol Genet. 2019;28(24):4089–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scandaglia M, Lopez-Atalaya JP, Medrano-Fernandez A, Lopez-Cascales MT, Del Blanco B, Lipinski M, Benito E, Olivares R, Iwase S, Shi Y, et al. Loss of Kdm5c causes spurious transcription and prevents the fine-tuning of activity-regulated enhancers in neurons. Cell Rep. 2017;21(1):47–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zinn AR, Roeltgen D, Stefanatos G, Ramos P, Elder FF, Kushner H, Kowal K, Ross JL. A Turner syndrome neurocognitive phenotype maps to Xp22.3. Behav Brain Funct. 2007;3:24.
Article
PubMed
PubMed Central
Google Scholar
Weismann A. The germ-plasma: theory of heredity. New York: Scribner’s Sons; 1893.
Book
Google Scholar
Cheng HH, Shang DT, Zhou RJ. Germline stem cells in human. Signal Transduct Target Ther. 2022;7:345.
Article
PubMed
PubMed Central
Google Scholar
Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160(1–2):253–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosuru R, Chrzanowska M. Integration of Rap1 and calcium signaling. Int J Mol Sci. 2020;21(5):1616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang YR, Kang DS, Lee C, Seok H, Follo MY, Cocco L, Suh PG. Primary phospholipase C and brain disorders. Adv Biol Regul. 2016;61:80–5.
Article
CAS
PubMed
Google Scholar
Morozov A, Muzzio IA, Bourtchouladze R, Van-Strien N, Lapidus K, Yin D, Winder DG, Adams JP, Sweatt JD, Kandel ER. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron. 2003;39(2):309–25.
Article
CAS
PubMed
Google Scholar
Jaśkiewicz A, Pająk B, Orzechowski A. The many faces of Rap1 GTPase. Int J Mol Sci. 2018;19(10):2848.
Article
PubMed
PubMed Central
Google Scholar
Volk L, Chiu SL, Sharma K, Huganir RL. Glutamate synapses in human cognitive disorders. Annu Rev Neurosci. 2015;38:127–49.
Article
CAS
PubMed
Google Scholar
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.
Article
PubMed
Google Scholar
Bloem BR, Okun MS, Klein C. Parkinson’s disease. The Lancet. 2021;397(10291):2284–303.
Article
CAS
Google Scholar
Garret M, Du Z, Chazalon M, Cho YH, Baufreton J. Alteration of GABAergic neurotransmission in Huntington’s disease. CNS Neurosci Ther. 2018;24(4):292–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H. Implications of GABAergic Neurotransmission in Alzheimer’s disease. Front Aging Neurosci. 2016;8:31.
Article
PubMed
PubMed Central
Google Scholar
Lozovaya N, Ben-Ari Y, Hammond C. Striatal dual cholinergic /GABAergic transmission in Parkinson disease: friends or foes? Cell Stress. 2018;2(6):147–9.
Article
PubMed
PubMed Central
Google Scholar
Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2(8000):1403.
Article
CAS
PubMed
Google Scholar
Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science. 1983;219(4589):1184–90.
Article
CAS
PubMed
Google Scholar
Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage focus on cytochrome c oxidase. Free Radic Res. 2012;46(11):1313–26.
Article
CAS
PubMed
Google Scholar
Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest. 2004;114(1):121–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez MJ, Vergara-Pulgar K, Jara C, Cabezas-Opazo F, Quintanilla RA. Caspase-cleaved tau impairs mitochondrial dynamics in Alzheimer’s disease. Mol Neurobiol. 2018;55(2):1004–18.
Article
PubMed
Google Scholar
Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci Transl Med. 2011;3(77):77sr71.
Article
Google Scholar
Kong FJ, Ma LL, Guo JJ, Xu LH, Li Y, Qu S. Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci. 2018;132(1):111–25.
Article
CAS
Google Scholar
Zhang Y, Chen Z, Wang F, Sun H, Zhu X, Ding J, Zhang T. Nde1 is a Rab9 effector for loading late endosomes to cytoplasmic dynein motor complex. Structure. 2022;30(3):386-395.e385.
Article
CAS
PubMed
Google Scholar
Ganley IG, Carroll K, Bittova L, Pfeffer S. Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Mol Biol Cell. 2004;15(12):5420–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armstrong CM, Liu C, Liu L, Yang JC, Lou W, Zhao R, Ning S. Steroid sulfatase stimulates intracrine androgen synthesis and is a therapeutic target for advanced prostate cancer. Clin Cancer Res. 2020;26(22):6064–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein C, Hille A, Seidel J, Rijnbout S, Waheed A, Schmidt B, Geuze H, von Figura K. Cloning and expression of human steroid-sulfatase membrane topology, glycosylation, and subcellular distribution in BHK-21 cells. J Biol Chem. 1989;264(23):13865–72.
Article
CAS
PubMed
Google Scholar
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA. Metachromatic leukodystrophy: diagnosis, modeling, and treatment approaches. Front Med. 2020;7: 576221.
Article
Google Scholar
Lin Y, Fan L, Zhang R, Pan H, Li Y. ARSD is responsible for carcinoma and amyloidosis of breast epithelial cells. Eur J Cell Biol. 2022;101(2): 151199.
Article
CAS
PubMed
Google Scholar
McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25(1):24–34.
Article
CAS
PubMed
Google Scholar
Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, et al. Huntington disease. Nat Rev Dis Primers. 2015;1:15005.
Article
PubMed
Google Scholar
Kim SH, Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G. The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with down syndrome and Alzheimer’s disease. Life Sci. 2001;68(24):2741–50.
Article
CAS
PubMed
Google Scholar
Schapira AH. Mitochondrial complex I deficiency in Parkinson’s disease. Adv Neurol. 1993;60:288–91.
CAS
PubMed
Google Scholar
Javadov S, Jang S, Chapa-Dubocq XR, Khuchua Z, Camara AK. Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role. J Mol Med. 2021;99(1):57–73.
Article
CAS
PubMed
Google Scholar
Lopez-Fabuel I, Le Douce J, Logan A, James AM, Bonvento G, Murphy MP, Almeida A, Bolaños JP. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci U S A. 2016;113(46):13063–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev. 2022;77: 101619.
Article
CAS
PubMed
Google Scholar
Du F, Yu Q, Kanaan NM, Yan SS. Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer’s disease. Hum Mol Genet. 2022;31(15):2498–507.
Article
PubMed
Google Scholar
Reina S, Nibali SC, Tomasello MF, Magrì A, Messina A, De Pinto V. Voltage dependent anion channel 3 (VDAC3) protects mitochondria from oxidative stress. Redox Biol. 2022;51: 102264.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Wang X, Fan W, Zhao P, Chan YC, Chen S, Zhang S, Guo X, Zhang Y, Li Y, et al. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes. Hum Mol Genet. 2012;21(1):32–45.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
Google Scholar
da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
PubMed
Google Scholar
Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists. Nucleic Acids Res. 2022;50(W1):W216-221.
Article
PubMed
PubMed Central
Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotech. 2011;29(1):24–6.
Article
CAS
Google Scholar