Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–45. https://doi.org/10.1038/nrg3813.
Article
CAS
Google Scholar
Han SP, Tang YH, Smith R. Functional diversity of the hnRNPs: past, present and perspectives. Biochem J. 2010;430(3):379–92. https://doi.org/10.1042/BJ20100396.
Article
CAS
Google Scholar
Schaub MC, Lopez SR, Caputi M. Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J Biol Chem. 2007;282(18):13617–26. https://doi.org/10.1074/jbc.M700774200.
Article
CAS
Google Scholar
Van Dusen CM, Yee L, McNally LM, McNally MT. A glycine-rich domain of hnRNP H/F promotes nucleocytoplasmic shuttling and nuclear import through an interaction with transportin 1. Mol Cell Biol. 2010;30(10):2552–62. https://doi.org/10.1128/MCB.00230-09.
Article
CAS
Google Scholar
Decorsiere A, Cayrel A, Vagner S, Millevoi S. Essential role for the interaction between hnRNP H/F and a G quadruplex in maintaining p53 pre-mRNA 3’-end processing and function during DNA damage. Genes Dev. 2011;25(3):220–5. https://doi.org/10.1101/gad.607011.
Article
CAS
Google Scholar
Arhin GK, Boots M, Bagga PS, Milcarek C, Wilusz J. Downstream sequence elements with different affinities for the hnRNP H/H’ protein influence the processing efficiency of mammalian polyadenylation signals. Nucleic Acids Res. 2002;30(8):1842–50. https://doi.org/10.1093/nar/30.8.1842.
Article
CAS
Google Scholar
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res. 2003;31(5):1375–86. https://doi.org/10.1093/nar/gkg241.
Article
CAS
Google Scholar
Dumoulin B, Ufer C, Kuhn H, Sofi S. Expression regulation, protein chemistry and functional biology of the guanine-rich sequence binding factor 1 (GRSF1). J Mol Biol. 2021;433(13):166922. https://doi.org/10.1016/j.jmb.2021.166922.
Article
CAS
Google Scholar
Sofi S, Fitzgerald JC, Jahn D, Dumoulin B, Stehling S, Kuhn H, et al. Functional characterization of naturally occurring genetic variations of the human guanine-rich RNA sequence binding factor 1 (GRSF1). Biochim Biophys Acta Gen Subj. 2018;1862(4):866–76. https://doi.org/10.1016/j.bbagen.2017.12.008.
Article
CAS
Google Scholar
Sofi S, Stehling S, Niewienda A, Janek K, Kuhn H, Ufer C. Functional characterization of isolated RNA-binding domains of the GRSF1 protein. Biochim Biophys Acta Gen Subj. 2018;1862(4):946–57. https://doi.org/10.1016/j.bbagen.2017.12.009.
Article
CAS
Google Scholar
Jourdain AA, Koppen M, Wydro M, Rodley CD, Lightowlers RN, Chrzanowska-Lightowlers ZM, et al. GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab. 2013;17(3):399–410. https://doi.org/10.1016/j.cmet.2013.02.005.
Article
CAS
Google Scholar
Antonicka H, Sasarman F, Nishimura T, Paupe V, Shoubridge EA. The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab. 2013;17(3):386–98. https://doi.org/10.1016/j.cmet.2013.02.006.
Article
CAS
Google Scholar
Dumoulin B, Ufer C, Stehling S, Heydeck D, Kuhn H, Sofi S. Identification of the COMM-domain containing protein 1 as specific binding partner for the guanine-rich RNA sequence binding factor 1. Biochim Biophys Acta Gen Subj. 2020;1864(11):129678. https://doi.org/10.1016/j.bbagen.2020.129678.
Article
CAS
Google Scholar
Ufer C. The biology of the RNA binding protein guanine-rich sequence binding factor 1. Curr Protein Pept Sci. 2012;13(4):347–57.
Article
CAS
Google Scholar
Kielkopf CL, Lucke S, Green MR. U2AF homology motifs: protein recognition in the RRM world. Genes Dev. 2004;18(13):1513–26. https://doi.org/10.1101/gad.1206204.
Article
CAS
Google Scholar
Qian Z, Wilusz J. GRSF-1: a poly(A)+ mRNA binding protein which interacts with a conserved G-rich element. Nucleic Acids Res. 1994;22(12):2334–43. https://doi.org/10.1093/nar/22.12.2334.
Article
CAS
Google Scholar
Konig SL, Evans AC, Huppert JL. Seven essential questions on G-quadruplexes. Biomol Concepts. 2010;1(2):197–213. https://doi.org/10.1515/bmc.2010.011.
Article
CAS
Google Scholar
Millevoi S, Moine H, Vagner S. G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA. 2012;3(4):495–507. https://doi.org/10.1002/wrna.1113.
Article
CAS
Google Scholar
Nieradka A, Ufer C, Thiadens K, Grech G, Horos R, van Coevorden-Hameete M, et al. Grsf1-induced translation of the SNARE protein Use1 is required for expansion of the erythroid compartment. PLoS ONE. 2014;9(9):e104631. https://doi.org/10.1371/journal.pone.0104631.
Article
CAS
Google Scholar
Ufer C, Wang CC, Fahling M, Schiebel H, Thiele BJ, Billett EE, et al. Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev. 2008;22(13):1838–50. https://doi.org/10.1101/gad.466308.
Article
CAS
Google Scholar
Kash JC, Cunningham DM, Smit MW, Park Y, Fritz D, Wilusz J, et al. Selective translation of eukaryotic mRNAs: functional molecular analysis of GRSF-1, a positive regulator of influenza virus protein synthesis. J Virol. 2002;76(20):10417–26. https://doi.org/10.1128/jvi.76.20.10417-10426.2002.
Article
CAS
Google Scholar
Herdy B, Mayer C, Varshney D, Marsico G, Murat P, Taylor C, et al. Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res. 2018;46(21):11592–604. https://doi.org/10.1093/nar/gky861.
Article
CAS
Google Scholar
Pietras Z, Wojcik MA, Borowski LS, Szewczyk M, Kulinski TM, Cysewski D, et al. Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria. Nat Commun. 2018;9(1):2558. https://doi.org/10.1038/s41467-018-05007-9.
Article
CAS
Google Scholar
Noh JH, Kim KM, Pandey PR, Noren Hooten N, Munk R, Kundu G, et al. Loss of RNA-binding protein GRSF1 activates mTOR to elicit a proinflammatory transcriptional program. Nucleic Acids Res. 2019;47(5):2472–86. https://doi.org/10.1093/nar/gkz082.
Article
CAS
Google Scholar
Driscoll RK, Krasniewski LK, Cockey SG, Yang JH, Piao Y, Lehrmann E, et al. GRSF1 deficiency in skeletal muscle reduces endurance in aged mice. Aging. 2021;13(11):14557–70. https://doi.org/10.18632/aging.203151.
Article
CAS
Google Scholar
Song G, Wang R, Guo J, Liu X, Wang F, Qi Y, et al. miR-346 and miR-138 competitively regulate hTERT in GRSF1- and AGO2-dependent manners, respectively. Sci Rep. 2015;5:15793. https://doi.org/10.1038/srep15793.
Article
CAS
Google Scholar
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–19. https://doi.org/10.1038/nprot.2016.136.
Article
CAS
Google Scholar
Computing R. R: a language and environment for statistical computing. Vienna: R Core Team; 2013.
Google Scholar
Team R. RStudio: integrated development environment for R. 2016. Boston: RStudio Inc; 2016. p. 626.
Google Scholar
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141.
Article
CAS
Google Scholar
Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51–74. https://doi.org/10.1146/annurev.biochem.76.050106.093909.
Article
CAS
Google Scholar
Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res. 2016;44(16):7511–26. https://doi.org/10.1093/nar/gkw551.
Article
Google Scholar
Colgan DF, Manley JL. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 1997;11(21):2755–66. https://doi.org/10.1101/gad.11.21.2755.
Article
CAS
Google Scholar
Tomaselli S, Locatelli F, Gallo A. The RNA editing enzymes ADARs: mechanism of action and human disease. Cell Tissue Res. 2014;356(3):527–32. https://doi.org/10.1007/s00441-014-1863-3.
Article
CAS
Google Scholar
Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15(2):108–21. https://doi.org/10.1038/nrm3742.
Article
CAS
Google Scholar
Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, et al. Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999;285(5432):1393–6. https://doi.org/10.1126/science.285.5432.1393.
Article
CAS
Google Scholar
Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–303. https://doi.org/10.1016/j.bbagen.2012.11.020.
Article
CAS
Google Scholar
Borchert A, Schnurr K, Thiele BJ, Kuhn H. Cloning of the mouse phospholipid hydroperoxide glutathione peroxidase gene. FEBS Lett. 1999;446(2–3):223–7.
Article
CAS
Google Scholar
Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta. 1985;839(1):62–70. https://doi.org/10.1016/0304-4165(85)90182-5.
Article
CAS
Google Scholar
Gibson K, Halliday JL, Kirby DM, Yaplito-Lee J, Thorburn DR, Boneh A. Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics. 2008;122(5):1003–8. https://doi.org/10.1542/peds.2007-3502.
Article
Google Scholar
Sonam K, Bindu PS, Bharath MMS, Govindaraj P, Gayathri N, Arvinda HR, et al. Mitochondrial oxidative phosphorylation disorders in children: phenotypic, genotypic and biochemical correlations in 85 patients from South India. Mitochondrion. 2017;32:42–9. https://doi.org/10.1016/j.mito.2016.11.002.
Article
CAS
Google Scholar
Lin X, Wells DE, Kimberling WJ, Kumar S. Human NDUFB9 gene: genomic organization and a possible candidate gene associated with deafness disorder mapped to chromosome 8q13. Hum Hered. 1999;49(2):75–80. https://doi.org/10.1159/000022848.
Article
CAS
Google Scholar
Bandara AB, Drake JC, James CC, Smyth JW, Brown DA. Complex I protein NDUFS2 is vital for growth, ROS generation, membrane integrity, apoptosis, and mitochondrial energetics. Mitochondrion. 2021;58:160–8. https://doi.org/10.1016/j.mito.2021.03.003.
Article
CAS
Google Scholar
Kirby DM, Salemi R, Sugiana C, Ohtake A, Parry L, Bell KM, et al. NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J Clin Invest. 2004;114(6):837–45. https://doi.org/10.1172/JCI20683.
Article
CAS
Google Scholar
Talla V, Koilkonda R, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, et al. Complex I subunit gene therapy with NDUFA6 ameliorates neurodegeneration in EAE. Invest Ophthalmol Vis Sci. 2015;56(2):1129–40. https://doi.org/10.1167/iovs.14-15950.
Article
CAS
Google Scholar
Ni Y, Hagras MA, Konstantopoulou V, Mayr JA, Stuchebrukhov AA, Meierhofer D. Mutations in NDUFS1 cause metabolic reprogramming and disruption of the electron transfer. Cells. 2019. https://doi.org/10.3390/cells8101149.
Article
Google Scholar
Hoefs SJ, van Spronsen FJ, Lenssen EW, Nijtmans LG, Rodenburg RJ, Smeitink JA, et al. NDUFA10 mutations cause complex I deficiency in a patient with Leigh disease. Eur J Hum Genet. 2011;19(3):270–4. https://doi.org/10.1038/ejhg.2010.204.
Article
Google Scholar
Yatsuka Y, Kishita Y, Formosa LE, Shimura M, Nozaki F, Fujii T, et al. A homozygous variant in NDUFA8 is associated with developmental delay, microcephaly, and epilepsy due to mitochondrial complex I deficiency. Clin Genet. 2020;98(2):155–65. https://doi.org/10.1111/cge.13773.
Article
CAS
Google Scholar
Benit P, Beugnot R, Chretien D, Giurgea I, De Lonlay-Debeney P, Issartel JP, et al. Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat. 2003;21(6):582–6. https://doi.org/10.1002/humu.10225.
Article
CAS
Google Scholar
Lamont RE, Beaulieu CL, Bernier FP, Sparkes R, Innes AM, Jackel-Cram C, et al. A novel NDUFS4 frameshift mutation causes Leigh disease in the Hutterite population. Am J Med Genet A. 2017;173(3):596–600. https://doi.org/10.1002/ajmg.a.37983.
Article
CAS
Google Scholar
Friederich MW, Erdogan AJ, Coughlin CR 2nd, Elos MT, Jiang H, O’Rourke CP, et al. Mutations in the accessory subunit NDUFB10 result in isolated complex I deficiency and illustrate the critical role of intermembrane space import for complex I holoenzyme assembly. Hum Mol Genet. 2017;26(4):702–16. https://doi.org/10.1093/hmg/ddw431.
Article
CAS
Google Scholar
Ortigoza-Escobar JD, Oyarzabal A, Montero R, Artuch R, Jou C, Jimenez C, et al. Ndufs4 related Leigh syndrome: a case report and review of the literature. Mitochondrion. 2016;28:73–8. https://doi.org/10.1016/j.mito.2016.04.001.
Article
CAS
Google Scholar
Papa S, Petruzzella V, Scacco S, Sardanelli AM, Iuso A, Panelli D, et al. Pathogenetic mechanisms in hereditary dysfunctions of complex I of the respiratory chain in neurological diseases. Biochim Biophys Acta. 2009;1787(5):502–17. https://doi.org/10.1016/j.bbabio.2008.12.018.
Article
CAS
Google Scholar
Martin MA, Blazquez A, Gutierrez-Solana LG, Fernandez-Moreira D, Briones P, Andreu AL, et al. Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene. Arch Neurol. 2005;62(4):659–61. https://doi.org/10.1001/archneur.62.4.659.
Article
Google Scholar
Leshinsky-Silver E, Lebre AS, Minai L, Saada A, Steffann J, Cohen S, et al. NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Mol Genet Metab. 2009;97(3):185–9. https://doi.org/10.1016/j.ymgme.2009.03.002.
Article
CAS
Google Scholar
Leong DW, Komen JC, Hewitt CA, Arnaud E, McKenzie M, Phipson B, et al. Proteomic and metabolomic analyses of mitochondrial complex I-deficient mouse model generated by spontaneous B2 short interspersed nuclear element (SINE) insertion into NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) gene. J Biol Chem. 2012;287(24):20652–63. https://doi.org/10.1074/jbc.M111.327601.
Article
CAS
Google Scholar
van de Wal MAE, Adjobo-Hermans MJW, Keijer J, Schirris TJJ, Homberg JR, Wieckowski MR, et al. Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. Brain. 2022;145(1):45–63. https://doi.org/10.1093/brain/awab426.
Article
Google Scholar
Grillo AS, Bitto A, Kaeberlein M. The NDUFS4 knockout mouse: a dual threat model of childhood mitochondrial disease and normative aging. Methods Mol Biol. 2021;2277:143–55. https://doi.org/10.1007/978-1-0716-1270-5_10.
Article
CAS
Google Scholar
Flohe L, Toppo S, Cozza G, Ursini F. A comparison of thiol peroxidase mechanisms. Antioxid Redox Signal. 2011;15(3):763–80. https://doi.org/10.1089/ars.2010.3397.
Article
CAS
Google Scholar
Borchert A, Kalms J, Roth SR, Rademacher M, Schmidt A, Holzhutter HG, et al. Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(9):1095–107. https://doi.org/10.1016/j.bbalip.2018.06.006.
Article
CAS
Google Scholar
Schnurr K, Belkner J, Ursini F, Schewe T, Kuhn H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J Biol Chem. 1996;271(9):4653–8.
Article
CAS
Google Scholar
Borchert A, Wang CC, Ufer C, Schiebel H, Savaskan NE, Kuhn H. The role of phospholipid hydroperoxide glutathione peroxidase isoforms in murine embryogenesis. J Biol Chem. 2006;281(28):19655–64. https://doi.org/10.1074/jbc.M601195200.
Article
CAS
Google Scholar
Park YW, Wilusz J, Katze MG. Regulation of eukaryotic protein synthesis: selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1. Proc Natl Acad Sci USA. 1999;96(12):6694–9. https://doi.org/10.1073/pnas.96.12.6694.
Article
CAS
Google Scholar
Wang X, Diao C, Yang X, Yang Z, Liu M, Li X, et al. ICP4-induced miR-101 attenuates HSV-1 replication. Sci Rep. 2016;6:23205. https://doi.org/10.1038/srep23205.
Article
CAS
Google Scholar
Jablonski JA, Caputi M. Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. J Virol. 2009;83(2):981–92. https://doi.org/10.1128/JVI.01801-08.
Article
CAS
Google Scholar
Yang Z, Sun Q, Guo J, Wang S, Song G, Liu W, et al. GRSF1-mediated MIR-G-1 promotes malignant behavior and nuclear autophagy by directly upregulating TMED5 and LMNB1 in cervical cancer cells. Autophagy. 2019;15(4):668–85. https://doi.org/10.1080/15548627.2018.1539590.
Article
CAS
Google Scholar