Gan L, Wei Z, Yang Z, Li F, Wang Z. Updated mechanisms of GCN5-the monkey king of the plant kingdom in plant development and resistance to abiotic stresses. Cells. 2021. https://doi.org/10.3390/cells10050979.
Article
PubMed Central
PubMed
Google Scholar
Geng YK, Zhang PX, Liu Q, Wei ZW, Riaz A, Chachar S, et al. Rice homolog of Sin3-associated polypeptide 30, OsSFL1, mediates histone deacetylation to regulate flowering time during short days. Plant Biotechnol J. 2020;18(2):325–7. https://doi.org/10.1111/pbi.13235.
Article
PubMed
Google Scholar
Hu Y, Lu Y, Zhao Y, Zhou DX. Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress. Front Plant Sci. 2019;10:1236. https://doi.org/10.3389/fpls.2019.01236.
Article
PubMed Central
PubMed
Google Scholar
Huang F, Yuan WY, Tian S, Zheng QJ, He YH. SIN3 LIKE genes mediate long-day induction of flowering but inhibit the floral transition in short days through histone deacetylation in Arabidopsis. Plant J. 2019;100(1):101–13. https://doi.org/10.1111/tpj.14430.
Article
CAS
PubMed
Google Scholar
Kirfel P, Skaljac M, Grotmann J, Kessel T, Seip M, Michaelis K, et al. Inhibition of histone acetylation and deacetylation enzymes affects longevity, development, and fecundity in the pea aphid (Acyrthosiphon pisum). Arch Insect Biochem. 2020. https://doi.org/10.1002/arch.21614.
Article
Google Scholar
Kumar V, Singh B, Singh SK, Rai KM, Singh SP, Sable A, et al. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum. Plant J. 2018;95(6):1069–83. https://doi.org/10.1111/tpj.14011.
Article
CAS
PubMed
Google Scholar
Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001;1(3):194–202. https://doi.org/10.1038/35106079.
Article
CAS
PubMed
Google Scholar
Ng HH. Bird A Histone deacetylases: silencers for hire. Trends Biochem Sci. 2000;25(3):121–6. https://doi.org/10.1016/s0968-0004(00)01551-6.
Article
CAS
PubMed
Google Scholar
Wang Z, Cao H, Chen F, Liu Y. The roles of histone acetylation in seed performance and plant development. Plant Physiol Biochem. 2014;84:125–33. https://doi.org/10.1016/j.plaphy.2014.09.010.
Article
CAS
PubMed
Google Scholar
Johnson CA, Turner BM. Histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol. 1999;10(2):179–88. https://doi.org/10.1006/scdb.1999.0299.
Article
CAS
PubMed
Google Scholar
Kolle D, Brosch G, Lechner T, Pipal A, Helliger W, Taplick J, et al. Different types of maize histone deacetylases are distinguished by a highly complex substrate and site specificity. Biochemistry. 1999;38(21):6769–73. https://doi.org/10.1021/Bi982702v.
Article
CAS
PubMed
Google Scholar
Lechner T, Lusser A, Pipal A, Brosch G, Loidl A, Goralik-Schramel M, et al. RPD3-type histone deacetylases in maize embryos. Biochemistry. 2000;39(7):1683–92. https://doi.org/10.1021/bi9918184.
Article
CAS
PubMed
Google Scholar
Lusser A, Brosch G, Loidl A, Haas H, Loidl P. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science. 1997;277(5322):88–91. https://doi.org/10.1126/science.277.5322.88.
Article
CAS
PubMed
Google Scholar
Wu KQ, Tian LN, Malik K, Brown D, Miki B. Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. Plant J. 2000;22(1):19–27. https://doi.org/10.1046/j.1365-313x.2000.00711.x.
Article
CAS
PubMed
Google Scholar
An XL, Wei ZK, Ran BT, Tian H, Gu HY, Liu Y, et al. Histone deacetylase inhibitor trichostatin A suppresses cell proliferation and induces apoptosis by regulating the PI3K/AKT signalling pathway in gastric cancer cells. Anti-Cancer Agent Me. 2020;20(17):2114–24. https://doi.org/10.2174/1871520620666200627204857.
Article
CAS
Google Scholar
Sarkar R, Banerjee S, Amin SA, Adhikari N, Jha T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: a review. Eur J Med Chem. 2020. https://doi.org/10.1016/j.ejmech.2020.112171.
Article
PubMed
Google Scholar
Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discovery. 2006;5(9):769–84. https://doi.org/10.1038/nrd2133.
Article
CAS
PubMed
Google Scholar
Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. J Cell Biochem. 2005;96(2):293–304. https://doi.org/10.1002/jcb.20532.
Article
CAS
PubMed
Google Scholar
Miller TA, Witter DJ, Belvedere S. Histone deacetylase inhibitors. J Med Chem. 2003;46(24):5097–116. https://doi.org/10.1021/jm0303094.
Article
CAS
PubMed
Google Scholar
Rasheed WK, Johnstone RW, Prince HM. Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig Drugs. 2007;16(5):659–78. https://doi.org/10.1517/13543784.16.5.659.
Article
CAS
PubMed
Google Scholar
Belvedere S, Witter DJ, Yan J, Secrist JP, Richon V, Miller TA. Aminosuberoyl hydroxamic acids (ASHAs): a potent new class of HDAC inhibitors. Bioorg Med Chem Lett. 2007;17(14):3969–71. https://doi.org/10.1016/j.bmcl.2007.04.089.
Article
CAS
PubMed
Google Scholar
Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J. 2016;52(1):1–11. https://doi.org/10.4068/cmj.2016.52.1.1.
Article
CAS
PubMed Central
PubMed
Google Scholar
Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9. https://doi.org/10.1182/blood-2006-06-025999.
Article
CAS
PubMed Central
PubMed
Google Scholar
Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA. 1998;95(6):3003–7. https://doi.org/10.1073/pnas.95.6.3003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5(10):981–9. https://doi.org/10.1158/1541-7786.MCR-07-0324.
Article
CAS
PubMed
Google Scholar
Kaushik D, Vashistha V, Isharwal S, Sediqe SA, Lin MF. Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials. Ther Adv Urol. 2015;7(6):388–95. https://doi.org/10.1177/1756287215597637.
Article
CAS
PubMed Central
PubMed
Google Scholar
Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25(1):84–90. https://doi.org/10.1038/nbt1272.
Article
CAS
PubMed
Google Scholar
Wang Z, Cao H, Sun Y, Li X, Chen F, Carles A, et al. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. Plant Cell. 2013;25(1):149–66. https://doi.org/10.1105/tpc.112.108191.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang HD, Guo F, Qi PP, Huang YZ, Xie YY, Xu L, et al. OsHDA710-mediated histone deacetylation regulates callus formation of rice mature embryo. Plant Cell Physiol. 2020;61(9):1646–60. https://doi.org/10.1093/pcp/pcaa086.
Article
CAS
PubMed
Google Scholar
Santos RB, Pires AS, Abranches R. Addition of a histone deacetylase inhibitor increases recombinant protein expression in plant cell cultures. Free Radical Bio Med. 2018;120:S135–S135. https://doi.org/10.1016/j.freeradbiomed.2018.04.444.
Article
Google Scholar
Zhu LY, Zhu YR, Dai DJ, Wang X, Jin HC. Epigenetic regulation of alternative splicing. Am J Cancer Res. 2018;8(12):2346–58.
CAS
PubMed Central
PubMed
Google Scholar
Hu H, He X, Tu L, Zhu L, Zhu S, Ge Z, et al. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J. 2016;88(6):921–35. https://doi.org/10.1111/tpj.13273.
Article
CAS
PubMed
Google Scholar
Li Y, Tu L, Ye Z, Wang M, Gao W, Zhang X. A cotton fiber-preferential promoter, PGbEXPA2, is regulated by GA and ABA in Arabidopsis. Plant Cell Rep. 2015;34(9):1539–49. https://doi.org/10.1007/s00299-015-1805-x.
Article
CAS
PubMed
Google Scholar
Wang YH, Liu JJ, Chen BL, Zhou ZG. Physiological mechanisms of growth regulators 6-BA and ABA in mitigating low temperature stress of cotton fiber development. J Appl Ecol. 2011;22(5):1233–9.
CAS
Google Scholar
Kim HJ, Triplett BA. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001;127(4):1361–6. https://doi.org/10.1104/pp.010724.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang Z, Yang Z, Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol J. 2019;17(9):1706–22. https://doi.org/10.1111/pbi.13167.
Article
CAS
PubMed Central
PubMed
Google Scholar
Singh PK, Gao W, Liao P, Li Y, Xu FC, Ma XN, et al. Comparative acetylome analysis of wild-type and fuzzless-lintless mutant ovules of upland cotton (Gossypium hirsutum Cv. Xu142) unveils differential protein acetylation may regulate fiber development. Plant Physiol Biochem. 2020;150:56–70. https://doi.org/10.1016/j.plaphy.2020.02.031.
Article
CAS
PubMed
Google Scholar
Imran M, Shafiq S, Farooq MA, Naeem MK, Widemann E, Bakhsh A, et al. Comparative genome-wide analysis and expression profiling of histone acetyltransferase (HAT) gene family in response to hormonal applications, metal and abiotic stresses in cotton. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20215311.
Article
PubMed Central
PubMed
Google Scholar
Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321(5891):956–60. https://doi.org/10.1126/science.1160342.
Article
CAS
PubMed
Google Scholar
Wang BB, Brendel V. Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA. 2006;103(18):7175–80. https://doi.org/10.1073/pnas.0602039103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6. https://doi.org/10.1038/nature07509.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ner-Gaon H, Halachmi R, Savaldi-Goldstein S, Rubin E, Ophir R, Fluhr R. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J. 2004;39(6):877–85. https://doi.org/10.1111/j.1365-313X.2004.02172.x.
Article
CAS
PubMed
Google Scholar
Yang W, Yoon J, Choi H, Fan Y, Chen R, An G. Transcriptome analysis of nitrogen-starvation-responsive genes in rice. BMC Plant Biol. 2015;15:31. https://doi.org/10.1186/s12870-015-0425-5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Deschamps C, Simon JE. Phenylpropanoid biosynthesis in leaves and glandular trichomes of basil (Ocimum basilicum L.). Methods Mol Biol. 2010;643:263–73. https://doi.org/10.1007/978-1-60761-723-5_18.
Article
CAS
PubMed
Google Scholar
Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3(1):2–20. https://doi.org/10.1093/mp/ssp106.
Article
CAS
PubMed
Google Scholar
Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell. 2007;19(11):3692–704. https://doi.org/10.1105/tpc.107.054437.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang XC, Li Q, Jin X, Xiao GH, Liu GJ, Liu NJ, et al. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. J Proteomics. 2015;114:16–27. https://doi.org/10.1016/j.jprot.2014.10.022.
Article
CAS
PubMed
Google Scholar
Tan JF, Tu LL, Deng FL, Hu HY, Nie YC, Zhang XL. A Genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol. 2013;162(1):86–95. https://doi.org/10.1104/pp.112.212142.
Article
CAS
PubMed Central
PubMed
Google Scholar
Meister A. Glutathione metabolism. Methods Enzymol. 1995;251:3–7. https://doi.org/10.1016/0076-6879(95)51106-7.
Article
CAS
PubMed
Google Scholar
Schoenberg MH, Buchler M, Pietrzyk C, Uhl W, Birk D, Eisele S, et al. Lipid peroxidation and glutathione metabolism in chronic pancreatitis. Pancreas. 1995;10(1):36–43. https://doi.org/10.1097/00006676-199501000-00005.
Article
CAS
PubMed
Google Scholar
Crawhall JC, Purkiss P, Stanbury JB. Metabolism of sulfur-containing amino acids in a patient excreting -mercaptolactate-cysteine disulfide. Biochem Med. 1973;7(1):103–11. https://doi.org/10.1016/0006-2944(73)90105-1.
Article
CAS
PubMed
Google Scholar
Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004;24:539–77. https://doi.org/10.1146/annurev.nutr.24.012003.132418.
Article
CAS
PubMed
Google Scholar
Thomas SA, Catty P, Hazemann JL, Michaud-Soret I, Gaillard JF. The role of cysteine and sulfide in the interplay between microbial Hg(ii) uptake and sulfur metabolism. Metallomics. 2019;11(7):1219–29. https://doi.org/10.1039/c9mt00077a.
Article
CAS
PubMed
Google Scholar
Friedl MA, Schmoll M, Kubicek CP, Druzhinina IS. Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology. 2008;154(Pt 4):1229–41. https://doi.org/10.1099/mic.0.2007/014175-0.
Article
CAS
PubMed
Google Scholar
Singh AK, Elvitigala T, Bhattacharyya-Pakrasi M, Aurora R, Ghosh B, Pakrasi HB. Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. Plant Physiol. 2008;148(1):467–78. https://doi.org/10.1104/pp.108.123489.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vargas WA, Pontis HG, Salerno GL. New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta. 2008;227(4):795–807. https://doi.org/10.1007/s00425-007-0657-1.
Article
CAS
PubMed
Google Scholar
Kim HJ, Hinchliffe DJ, Triplett BA, Chen ZJ, Stelly DM, Yeater KM, et al. Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS ONE. 2015;10(4): e0125046. https://doi.org/10.1371/journal.pone.0125046.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zeng J, Zhang M, Hou L, Bai W, Yan X, Hou N, et al. Cytokinin inhibits cotton fiber initiation via disrupting PIN3a-mediated IAA asymmetric accumulation in ovule epidermis. J Exp Bot. 2019;70:13. https://doi.org/10.1093/jxb/erz162.
Article
CAS
Google Scholar
Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, et al. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol. 2005;46(8):1384–91. https://doi.org/10.1093/pcp/pci150.
Article
CAS
PubMed
Google Scholar
Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol. 2011;29(5):453–8. https://doi.org/10.1038/nbt.1843.
Article
CAS
PubMed
Google Scholar
Wang Z, Chen FY, Li XY, Cao H, Ding M, Zhang C, et al. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat Commun. 2016;7:13412. https://doi.org/10.1038/ncomms13412.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yuan LB, Chen X, Chen HH, Wu KQ, Huang SZ. Histone deacetylases HDA6 and HDA9 coordinately regulate valve cell elongation through affecting auxin signaling in Arabidopsis. Biochem Bioph Res Co. 2019;508(3):695–700. https://doi.org/10.1016/j.bbrc.2018.11.082.
Article
CAS
Google Scholar
Benhamed M, Bertrand C, Servet C, Zhou DX. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell. 2006;18(11):2893–903. https://doi.org/10.1105/tpc.106.043489.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shen Y, Lei T, Cui X, Liu X, Zhou S, Zheng Y, et al. Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature. Plant J. 2019;100(5):991–1006. https://doi.org/10.1111/tpj.14492.
Article
CAS
PubMed
Google Scholar
Zhang M, Zeng JY, Long H, Xiao YH, Yan XY, Pei Y. Auxin regulates cotton fiber initiation via GhPIN-mediated auxin transport. Plant Cell Physiol. 2017;58(2):385–97. https://doi.org/10.1093/pcp/pcw203.
Article
CAS
PubMed
Google Scholar
Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, et al. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol. 2014;203(2):437–48. https://doi.org/10.1111/nph.12824.
Article
CAS
PubMed
Google Scholar
Beasley CA, Ting IP. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovuleS. Am J Bot. 1974;61(2):188–94. https://doi.org/10.1002/j.1537-2197.1974.tb06045.x.
Article
CAS
Google Scholar
Yu J, Jung S, Cheng CH, Ficklin SP, Lee T, Zheng P, et al. CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res. 2014;42(Database issue):D1229-1236. https://doi.org/10.1093/nar/gkt1064.
Article
CAS
PubMed
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32. https://doi.org/10.1093/nar/gky995.
Article
CAS
PubMed
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14.
Article
CAS
PubMed Central
PubMed
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mao XZ, Cai T, Olyarchuk JG, Wei LP. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–93. https://doi.org/10.1093/bioinformatics/bti430.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36(Database issue):D480-484. https://doi.org/10.1093/nar/gkm882.
Article
CAS
PubMed
Google Scholar