Ray Dorsey E. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.
Article
Google Scholar
Spillantini MG, Goedert M. Neurodegeneration and the ordered assembly of a-synuclein. Cell Tissue Res. 2018;373:137–48.
Article
CAS
PubMed
Google Scholar
Bloem B, Okun M, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–303.
Article
CAS
PubMed
Google Scholar
Shao Y, Le W. Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol Neurodegener. 2019;14:3.
Article
PubMed
PubMed Central
Google Scholar
Abdullah R, Basak I, Patil K, Alves G, Larsen J, Moller S. Parkinson’s disease and age: the obvious but largely unexplored link. Exp Gerontol. 2015;63:33–8.
Article
CAS
Google Scholar
Davies K, Bohic S, Carmona A, Ortega R, Cottam V, Hare D, Finberg J, Reyes D, Halliday G, Mercer J. Double Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging. 2014;35:858–66.
Article
CAS
PubMed
Google Scholar
Esteves A, Swerdlow R, Cardoso S. LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Exp Neurol. 2014;261:206–16.
Article
CAS
PubMed
Google Scholar
Santini E, Heiman M, Greengard P, Valjent E, Fisone G. Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal. 2009;2:ra3.
Article
Google Scholar
Nyström T, Yang J, Molin M. Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes Dev. 2012;26:2001–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shao Y, Le W. Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol Neurodegeneration. 2019;14:3.
Article
Google Scholar
Kondoh H, Kameda M, Yanagida M. Whole blood metabolomics in aging research. Int J Mol Sci. 2021;22:175.
Article
CAS
Google Scholar
Hallett P, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease. J Neuroinflammation. 2019;16:153.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sinclair E. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Comm. 2021;12:1592.
Article
CAS
Google Scholar
Mattsson N. CSF biomarkers in neurodegenerative diseases. Clin Chem Lab Med. 2011;49:345–52.
Article
CAS
PubMed
Google Scholar
Engelborghs S, Marescau B, De Deyn P. Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson’s disease. Neurochem Res. 2003;28:1145–50.
Article
CAS
PubMed
Google Scholar
Hong Z. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain. 2010;133:713–26.
Article
PubMed
PubMed Central
Google Scholar
Postuma R, Berg D, Stern M. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.
Article
PubMed
Google Scholar
Goetz C, Tilley B, Shaftman S. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.
Article
PubMed
Google Scholar
Galindo-Prieto B, Eriksson L, Trygg J. Variable influence on projection (VIP) for OPLS models and its applicability in multivariate time series analysis. Chemom Intell Lab Syst. 2015;146:297–304.
Article
CAS
Google Scholar
Lee L, Liong C, Jemain A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst. 2018;143:3526–39.
Article
CAS
PubMed
Google Scholar
Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemom. 2002;16:119–28.
Article
CAS
Google Scholar
Triba M, Le Moyec L, Amathieu R, Goossens C, Bouchemal N, Nahon P, Rutledgee D, Savarina P. PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol BioSyst. 2015;11:13–9.
Article
CAS
PubMed
Google Scholar
Huang L, Fuchins H, Kawahara N, Narukawa Y, Hada N, Kiuchi F. Application of a new method, orthogonal projection to latent structure (OPLS) combined with principal component analysis (PCA), to screening of prostaglandin E2 production inhibitory flavonoids in Scutellaria Root. J Nat Med. 2016;70:731–9.
Article
CAS
PubMed
Google Scholar
Gao X, Starmer J, Martin E. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol. 2008;32:361–9.
Article
PubMed
Google Scholar
Orlhac F, Soussan M, Maisonobe J-A, Garcia C, Vanderlinden B, Buvat I. Tumor texture analysis in 18f-fdg pet: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.
Article
CAS
PubMed
Google Scholar
Johnson R, Nelson G, Troyer J, Lautenberger J, Kessing B, Wrinkler C, OBrien S. Accounting for multiple comparisons in a genome-wide association study (gwas). BMC Genom. 2010;11:724.
Article
Google Scholar
Kolossvary M, Karady J, Szilveszter B. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circulation. 2017;12:10.
Google Scholar
Perneger T. What’s wrong with Bonferroni adjustments. Biomed J. 1998;316:1236.
CAS
Google Scholar
Bonferroni C. Teoria statistica delle classi e calcolo delle probabilita. ubblicazioni dell Istituto Superiore di Scienze Economiche e Commerciali di Firenze. 1936;8:3–62.
Google Scholar
Li S. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9: e1003123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moisan F. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87:952–7.
Article
PubMed
Google Scholar
Saiki S, Hatano T, Fujimaki M, Ishikawa K, Mori A, Oji Y, Okuzumi A, Fukuhara T, Koinuma T, Imamichi Y, Nagumo M, Furuya N, Nojiri S, Amo T, Yamashiro K, Hattori N. Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci Rep. 2017;7(1):7328.
Article
PubMed
PubMed Central
CAS
Google Scholar
Szu-Ju C, Ching-Hua K, Han-Chun K, Chieh-Chang C, Wei-Kai W, Jyh-Ming L, Ming-Shiang W, Chin-Hsien L. The gut metabolite trimethylamine N-oxide is associated with Parkinson’s disease severity and progression. Mov Disord. 2020;35(11):2115.
Article
CAS
Google Scholar
Mally J, Szalai G, Stone T. Changes in the concentration of amino acids in serum and cerebrospinal fluid of patients with Parkinson’s disease. J Neurol Sci. 1997;151(2):159–62.
Article
CAS
PubMed
Google Scholar
Iwasaki Y, Ikeda K, Shiojima T, Kinoshita M. Increased plasma concentrations of aspartate, glutamate and glycine in Parkinson’s disease. Neurosci Lett. 1992;145(2):175–7.
Article
CAS
PubMed
Google Scholar
Jiménez-Jiménez F, Molina J, Vargas C, Gómez P, Navarro J, Benito-Leon J. Neurotransmitter amino acids in cerebrospinal fluid of patients with Parkinson’s disease. J Neurol Sci. 1996;141(1):39–44.
Article
PubMed
Google Scholar
Figura M, Kuśmierska K, Bucior E, Szlufik S, Koziorowski D, Jamrozik Z, Janik P. Serum amino acid profile in patients with Parkinson’s disease. PLoS ONE. 2018;13(1): e0191670.
Article
PubMed
PubMed Central
CAS
Google Scholar
Makletsova M, Syatkin S, Poleshchuk V, Urazgildeeva G, Chigaleychik L, Sungrapova C, Illarioshkin S. Parkinson’s disease: their role in oxidative stress induction and protein aggregation. J Neurol Res. 2019;9:1.
Article
Google Scholar
Plotegher N, Bubacco L, Greggio E, Civiero L. Ceramides in Parkinson’s disease: from recent evidence to new hypotheses. Front Neurosci. 2019;13:330.
Article
PubMed
PubMed Central
Google Scholar
Li T, Tang W, Zhang L. Monte Carlo cross-validation analysis screens pathway cross-talk associated with Parkinson’s disease. Neurol Sci. 2016;37:1327–33.
Article
PubMed
Google Scholar
Xicoy H, Wieringa B, Martens G. The role of lipids in Parkinson’s disease. Cells. 2019;8(1):27.
Article
CAS
PubMed Central
Google Scholar
Fanning S, Selkoe D, Dettmer U. Parkinson’s disease: proteinopathy or lipidopathy? NPJ Parkinson’s Dis. 2020;3:1–9.
Google Scholar
Fernández-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaría E. Alteration in the cerebrospinal fluid lipidome in Parkinson’s disease: a post-mortem pilot study. Biomedicines. 2021;9(5):491.
Article
PubMed
PubMed Central
CAS
Google Scholar
Graham SF, Rey NL, Yilmaz A, Kumar P, Madaj Z, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, Steiner J, Ma J, Brundin P. Biochemical profiling of the brain and blood metabolome in a mouse model of prodromal Parkinson’s disease reveals dis. J Proteome Res. 2018;17:2460–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carballo-Carbajal I, Laguna A, Romero-Giménez J. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis. Nature Commun. 2019;10:973.
Article
CAS
Google Scholar
Michel V, Yuan Z, Ramsubir S, Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med. 2006;231(5):490–504.
Article
CAS
Google Scholar
Hashizume O, Ohnishi S, Mito T, Shimizu A, Ishikawa K, Nakada K, Soda M, Mano H, Togayachi S, Miyoshi H, Okita K, Hayashi J. Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Sci Rep. 2015;5:10434.
Article
PubMed
PubMed Central
Google Scholar
Canfield C-A, Bradshaw P. Amino acids in the regulation of aging and aging-related diseases. Transl Med Aging. 2019;3:70–89.
Article
Google Scholar
Qu Q, Chen X, Sun S. Serine and Metabolism regulation: a novel mechanism in antitumor immunity and senescence. Aging. 2020;11:1640–53.
Google Scholar
Paglia G. Unbiased metabolomic investigation of Alzheimer’s disease brain points to dysregulation of mitochondrial aspartate metabolism. J Proteome Res. 2016;15:608–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi L, Shi S, Wazng Y, Huang W, Xia Z-A, Xing Z, Peng W, Wang Z. Serum metabolic profiling reveals altered metabolic pathways in patients with post-traumatic cognitive impairments. Sci Rep. 2016;6:21320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Chen H, Iqbal J, Liu X, Zhang H, Xiao S, Jin N, Yao F, Shen L. Targeted metabolomics study of early pathological features in hippocamus of trile transgenic Alzheimer’s disease male mice. J Neurosci Res. 2021;99:927–46.
Article
CAS
PubMed
Google Scholar
Carnevale D. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun. 2016;7:13035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunsberger H, Greenwood B, Tolstikov V, Narain N, Kiebish M, Denny CA. Divergence in the metabolome between natural aging and Alzheimer’s disease. Sci Rep. 2020;10:12171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyurina Y, Polimova A, Maciel E, Tyurin V, Kapralova V, Winnica D, Vikulina A, Domingues M, McCoy J, Sanders L. LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: implication for mitochondrial dysfunctio. Free Radic Res. 2015;49:681–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barros A, Crispim R, Cavalcanti J, Souza R, Lemos J, Cristino G, Bezerra M, Pinheiro T, de Vasconcelos S, Macedo D, Viana G, Aguiar G. Impact of the chronic omega-3 fatty acids supplementation in hemiparkinsonis. Basic Clin Pharmacol Toxicol. 2017;120:523–31.
Article
CAS
PubMed
Google Scholar
Johnson A, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019;18(6): e13048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawton K, Berger A, Mitchell M, Milgram K, Evans A, Guo L. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008;9:383–97.
Article
CAS
PubMed
Google Scholar
Suao Y, Li T, Liu Z, Wang X, Xu X, Li S, Xu G, Le W. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol Neurodegener. 2021;16:4.
Article
CAS
Google Scholar
Torok N, Tanaka M, Vecsei L. Searching for peripheral biomarkers in neurodegenerative diseases: the tryptophan-kynurenine metabolic pathway. Int J Mol Sci. 2020;21:9338.
Article
PubMed Central
CAS
Google Scholar
Venkatesan D, Iver M, Naravanasamv A, Siva K, Vellingiri B. Kynurenine pathway in Parkinson’s disease—an update. eNeurological Sci. 2020;21:100270.
Article
Google Scholar
Cervenka I, Agudelo L, Ruas J, Kynurenines J. Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794.
Article
PubMed
CAS
Google Scholar
Chang K, Cheng M, Tang H, Huang C, Wu Y, Chen C. Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s disease. Mol Neurobiol. 2018;55:6319–28.
Article
CAS
PubMed
Google Scholar
Xie K, Qin Q, Log Z, Yang Y, Peng C, Xi C, Li L, Wu Z, Daria V, Zhao Y, Wang F, Wang M. High-throughput metabolomics for discovering potential biomarkers and identifying metabolic mechanisms in aging and Alzheimer’s disease. Front Cell Dev Biol. 2021;9:335.
Google Scholar
Sorgdrager-Freek JH, Naudé Petrus JW, Kema Ido P, Nollen EA, Deyn Peter PD. Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Front Immunol. 2019;10:2565.
Article
CAS
Google Scholar