LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14(5):617–29.
Article
CAS
PubMed
Google Scholar
Ghosn E, Yoshimoto M, Nakauchi H, et al. Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development. 2019;146:15.
Article
CAS
Google Scholar
Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11(1):34–46.
Article
CAS
PubMed
Google Scholar
Liu M, Silva-Sanchez A, Randall TD, et al. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol. 2020;89:6.
Google Scholar
Feeney AJ. Predominance of the prototypic T15 anti-phosphorylcholine junctional sequence in neonatal pre-B cells. J Immunol. 1991;147(12):4343–50.
CAS
PubMed
Google Scholar
Arnold LW, Pennell CA, McCray SK, et al. Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J Exp Med. 1994;179(5):1585–95.
Article
CAS
PubMed
Google Scholar
Chumley MJ, Dal Porto JM, Kawaguchi S, et al. A VH11V kappa 9 B cell antigen receptor drives generation of CD5+ B cells both in vivo and in vitro. J Immunol. 2000;164(9):4586–93.
Article
CAS
PubMed
Google Scholar
Baumgarth N, Herman OC, Jager GC, et al. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc Natl Acad Sci U S A. 1999;96(5):2250–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kroese FG, Butcher EC, Stall AM, et al. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol. 1989;1(1):75–84.
Article
CAS
PubMed
Google Scholar
O’Garra A, Chang R, Go N, et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol. 1992;22(3):711–7.
Article
CAS
PubMed
Google Scholar
Rauch PJ, Chudnovskiy A, Robbins CS, et al. Innate response activator B cells protect against microbial sepsis. Science. 2012;335(6068):597–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao J, Ma X, Gu W, et al. Novel functions of murine B1 cells: active phagocytic and microbicidal abilities. Eur J Immunol. 2012;42(4):982–92.
Article
CAS
PubMed
Google Scholar
Hardy RR, Hayakawa K. Perspectives on fetal derived CD5+ B1 B cells. Eur J Immunol. 2015;45(11):2978–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montecino-Rodriguez E, Fice M, Casero D, et al. Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. Immunity. 2016;45(3):527–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montecino-Rodriguez E, Dorshkind K. B-1 B cell development in the fetus and adult. Immunity. 2012;36(1):13–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshimoto M, Montecino-Rodriguez E, Ferkowicz MJ, et al. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci U S A. 2011;108(4):1468–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Godin IE, Garcia-Porrero JA, Coutinho A, et al. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature. 1993;364(6432):67–70.
Article
CAS
PubMed
Google Scholar
de Andres B, Gonzalo P, Minguet S, et al. The first 3 days of B-cell development in the mouse embryo. Blood. 2002;100(12):4074–81.
Article
PubMed
CAS
Google Scholar
Melchers F. Murine embryonic B lymphocyte development in the placenta. Nature. 1979;277(5693):219–21.
Article
CAS
PubMed
Google Scholar
Kantor AB, Stall AM, Adams S, et al. Differential development of progenitor activity for three B-cell lineages. Proc Natl Acad Sci U S A. 1992;89(8):3320–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solvason N, Chen X, Shu F, et al. The fetal omentum in mice and humans. A site enriched for precursors of CD5 B cells early in development. Ann N Y Acad Sci. 1992;651:10–20.
Article
CAS
PubMed
Google Scholar
Solvason N, Kearney JF. The human fetal omentum: a site of B cell generation. J Exp Med. 1992;175(2):397–404.
Article
CAS
PubMed
Google Scholar
Solvason N, Lehuen A, Kearney JF. An embryonic source of Ly1 but not conventional B cells. Int Immunol. 1991;3(6):543–50.
Article
CAS
PubMed
Google Scholar
Ghosn EE, Sadate-Ngatchou P, Yang Y, et al. Distinct progenitors for B-1 and B-2 cells are present in adult mouse spleen. Proc Natl Acad Sci U S A. 2011;108(7):2879–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montecino-Rodriguez E, Leathers H, Dorshkind K. Identification of a B-1 B cell-specified progenitor. Nat Immunol. 2006;7(3):293–301.
Article
CAS
PubMed
Google Scholar
Lalor PA, Herzenberg LA, Adams S, et al. Feedback regulation of murine Ly-1 B cell development. Eur J Immunol. 1989;19(3):507–13.
Article
CAS
PubMed
Google Scholar
Kikuchi K, Kondo M. Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. P Natl Acad Sci USA. 2006;103(47):17852–7.
Article
CAS
Google Scholar
Sawai CM, Babovic S, Upadhaya S, et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity. 2016;45(3):597–609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayakawa K, Hardy RR, Herzenberg LA, et al. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med. 1985;161(6):1554–68.
Article
CAS
PubMed
Google Scholar
Hayakawa K, Hardy RR, Stall AM, et al. Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage. Eur J Immunol. 1986;16(10):1313–6.
Article
CAS
PubMed
Google Scholar
Lalor PA, Stall AM, Adams S, et al. Permanent alteration of the murine Ly-1 B repertoire due to selective depletion of Ly-1 B cells in neonatal animals. Eur J Immunol. 1989;19(3):501–6.
Article
CAS
PubMed
Google Scholar
Stall AM, Farinas MC, Tarlinton DM, et al. Ly-1 B-cell clones similar to human chronic lymphocytic leukemias routinely develop in older normal mice and young autoimmune (New Zealand Black-related) animals. Proc Natl Acad Sci U S A. 1988;85(19):7312–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas KM, Poe JC, Steeber DA, et al. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity. 2005;23(1):7–18.
Article
CAS
PubMed
Google Scholar
Park S, Nahm MH. Older adults have a low capacity to opsonize pneumococci due to low IgM antibody response to pneumococcal vaccinations. Infect Immun. 2011;79(1):314–20.
Article
CAS
PubMed
Google Scholar
Lee-Chang C, Bodogai M, Moritoh K, et al. Accumulation of 4–1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124(9):1450–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee-Chang C, Bodogai M, Moritoh K, et al. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. J Immunol. 2016;196(8):3385–97.
Article
CAS
PubMed
Google Scholar
Bodogai M, O’Connell J, Kim K, et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci Transl Med. 2018;10:467.
Article
CAS
Google Scholar
Holodick NE, Vizconde T, Hopkins TJ, et al. Age-Related Decline in Natural IgM function: diversification and selection of the B-1a Cell Pool with Age. J Immunol. 2016;196(10):4348–57.
Article
CAS
PubMed
Google Scholar
Yang Y, Wang C, Yang Q, et al. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. Elife. 2015;4:e09083.
Article
PubMed
PubMed Central
Google Scholar
Kreslavsky T, Vilagos B, Tagoh H, et al. Essential role for the transcription factor Bhlhe41 in regulating the development, self-renewal and BCR repertoire of B-1a cells. Nat Immunol. 2017;18(4):442–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heng TS, Painter MW. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008;9(10):1091–4.
Article
CAS
PubMed
Google Scholar
Mabbott NA, Gray D. Identification of co-expressed gene signatures in mouse B1, marginal zone and B2 B-cell populations. Immunology. 2014;141(1):79–95.
Article
CAS
PubMed
Google Scholar
Nagai Y, Shimazu R, Ogata H, et al. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood. 2002;99(5):1699–705.
Article
CAS
PubMed
Google Scholar
Rodig SJ, Kutok JL, Paterson JC, et al. The pre-B-cell receptor associated protein VpreB3 is a useful diagnostic marker for identifying c-MYC translocated lymphomas. Haematologica. 2010;95(12):2056–62.
Article
PubMed
PubMed Central
Google Scholar
Mallampati S, Sun B, Lu Y, et al. Integrated genetic approaches identify the molecular mechanisms of Sox4 in early B-cell development: intricate roles for RAG1/2 and CK1epsilon. Blood. 2014;123(26):4064–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YS, Wasserman R, Hayakawa K, et al. Identification of the earliest B lineage stage in mouse bone marrow. Immunity. 1996;5(6):527–35.
Article
CAS
PubMed
Google Scholar
Hayakawa K, Tarlinton D, Hardy RR. Absence of MHC class II expression distinguishes fetal from adult B lymphopoiesis in mice. J Immunol. 1994;152(10):4801–7.
CAS
PubMed
Google Scholar
Lam KP, Stall AM. Major histocompatibility complex class II expression distinguishes two distinct B cell developmental pathways during ontogeny. J Exp Med. 1994;180(2):507–16.
Article
CAS
PubMed
Google Scholar
Tung JW, Mrazek MD, Yang Y, et al. Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc Natl Acad Sci U S A. 2006;103(16):6293–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621.
Article
CAS
PubMed
Google Scholar
Yu Y, Wang J, Khaled W, et al. Bcl11a is essential for lymphoid development and negatively regulates p53. J Exp Med. 2012;209(13):2467–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Setty M, Kiseliovas V, Levine J, et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol. 2019;37(4):451–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Ness BG, Weigert M, Coleclough C, et al. Transcription of the unrearranged mouse C kappa locus: sequence of the initiation region and comparison of activity with a rearranged V kappa-C kappa gene. Cell. 1981;27(3 Pt 2):593–602.
Article
PubMed
Google Scholar
Wong JB, Hewitt SL, Heltemes-Harris LM, et al. B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nat Commun. 2019;10(1):4768.
Article
PubMed
PubMed Central
CAS
Google Scholar
Briles DE, Forman C, Hudak S, et al. Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J Exp Med. 1982;156(4):1177–85.
Article
CAS
PubMed
Google Scholar
Kyaw T, Tay C, Krishnamurthi S, et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ Res. 2011;109(8):830–40.
Article
CAS
PubMed
Google Scholar
Rosenfeld SM, Perry HM, Gonen A, et al. B-1b Cells Secrete Atheroprotective IgM and Attenuate Atherosclerosis. Circ Res. 2015;117(3):e28-39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498–503.
CAS
PubMed
Google Scholar
Klement K, Melle C, Murzik U, et al. Accumulation of annexin A5 at the nuclear envelope is a biomarker of cellular aging. Mech Ageing Dev. 2012;133(7):508–22.
Article
CAS
PubMed
Google Scholar
Saitou M, Lizardo DY, Taskent RO, et al. An evolutionary transcriptomics approach links CD36 to membrane remodeling in replicative senescence. Mol Omics. 2018;14(4):237–46.
Article
CAS
PubMed
Google Scholar
Moolmuang B, Tainsky MA. CREG1 enhances p16(INK4a) -induced cellular senescence. Cell Cycle. 2011;10(3):518–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Yang W, Li X, et al. Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains. Oncotarget. 2016;7(8):8466–80.
Article
PubMed
Google Scholar
Goldstein LD, Chen YJ, Wu J, et al. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun Biol. 2019;2:304.
Article
PubMed
PubMed Central
Google Scholar
Kreslavsky T, Wong JB, Fischer M, et al. Control of B-1a cell development by instructive BCR signaling. Curr Opin Immunol. 2018;51:24–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Clarke SH. Positive selection focuses the VH12 B-cell repertoire towards a single B1 specificity with survival function. Immunol Rev. 2004;197:51–9.
Article
CAS
PubMed
Google Scholar
Ghosn EE, Yang Y, Tung J, et al. CD11b expression distinguishes sequential stages of peritoneal B-1 development. Proc Natl Acad Sci U S A. 2008;105(13):5195–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi YS, Dieter JA, Rothaeusler K, et al. B-1 cells in the bone marrow are a significant source of natural IgM. Eur J Immunol. 2012;42(1):120–9.
Article
CAS
PubMed
Google Scholar
Honjo K, Won WJ, King RG, et al. Fc Receptor-Like 6 (FCRL6) Discloses Progenitor B Cell Heterogeneity That Correlates With Pre-BCR Dependent and Independent Pathways of Natural Antibody Selection. Front Immunol. 2020;11:89.
Article
CAS
Google Scholar
Lin WC, Desiderio S. V(D)J recombination and the cell cycle. Immunol Today. 1995;16(6):279–89.
Article
CAS
PubMed
Google Scholar
Hardy RR, Li YS, Allman D, et al. B-cell commitment, development and selection. Immunol Rev. 2000;175:23–32.
Article
CAS
PubMed
Google Scholar
Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell. 2002;109(Suppl):S45-55.
Article
CAS
PubMed
Google Scholar
Beaudin AE, Boyer SW, Perez-Cunningham J, et al. A Transient developmental hematopoietic stem cell gives rise to innate-like B and T Cells. Cell Stem Cell. 2016;19(6):768–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tung JW, Herzenberg LA. Unraveling B-1 progenitors. Curr Opin Immunol. 2007;19(2):150–5.
Article
CAS
PubMed
Google Scholar
Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2(72):re3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277(51):49982–8.
Article
CAS
PubMed
Google Scholar
Moore KJ, El Khoury J, Medeiros LA, et al. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. J Biol Chem. 2002;277(49):47373–9.
Article
CAS
PubMed
Google Scholar
Wilkinson K, Boyd JD, Glicksman M, et al. A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. J Biol Chem. 2011;286(40):34914–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 2000;105(8):1049–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goudriaan JR, Dahlmans VE, Teusink B, et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J Lipid Res. 2003;44(12):2270–7.
Article
CAS
PubMed
Google Scholar
Hajri T, Han XX, Bonen A, et al. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest. 2002;109(10):1381–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Khoury JB, Moore KJ, Means TK, et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med. 2003;197(12):1657–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ferrando AA, Lopez-Otin C. Clonal evolution in leukemia. Nat Med. 2017;23(10):1135–45.
Article
CAS
PubMed
Google Scholar
Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayakawa K, Formica AM, Brill-Dashoff J, et al. Early generated B1 B cells with restricted BCRs become chronic lymphocytic leukemia with continued c-Myc and low Bmf expression. J Exp Med. 2016;213(13):3007–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayakawa K, Formica AM, Colombo MJ, et al. Loss of a chromosomal region with synteny to human 13q14 occurs in mouse chronic lymphocytic leukemia that originates from early-generated B-1 B cells. Leukemia. 2016;30(7):1510–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Upadhye A, Srikakulapu P, Gonen A, et al. Diversification and CXCR4-dependent establishment of the bone marrow b-1a cell pool governs atheroprotective igm production linked to human coronary atherosclerosis. Circ Res. 2019;125(10):e55–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prohaska TA, Que X, Diehl CJ, et al. Massively Parallel Sequencing of Peritoneal and Splenic B Cell Repertoires Highlights Unique Properties of B-1 Cell Antibodies. J Immunol. 2018;200(5):1702–17.
CAS
PubMed
Google Scholar
Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Visual Exp. 2010;3:5.
Google Scholar
Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst. 2019;8(4):281.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15.
Article
PubMed
PubMed Central
Google Scholar
Waskom ML. seaborn: statistical data visualization. The journal of open source sofrware. 2021;6(60):1–4.
Google Scholar
Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2018;7:56.
Google Scholar
Blondel VD, Guillaume JL, Lambiotte R, et al. Fast unfolding of communities in large networks. J Stat Mech-Theory Exp. 2008;34:615.
Google Scholar
Miao Z, Moreno P, Huang N, et al. Putative cell type discovery from single-cell gene expression data. Nat Methods. 2020;17(6):621–8.
Article
CAS
PubMed
Google Scholar
Finak G, McDavid A, Yajima M, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:56.
Article
CAS
Google Scholar
Haghverdi L, Buttner M, Wolf FA, et al. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016;13(10):845–8.
Article
CAS
PubMed
Google Scholar
Wolf FA, Hamey FK, Plass M, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20(1):59.
Article
PubMed
PubMed Central
Google Scholar
Team I. immunarch: An R Package for Painless Analysis of Large-Scale immune Repertoire Data. Zenodo. 2019.
Yang Y, Li X, Ma Z, et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 2021;12(1):525.
Article
CAS
PubMed
PubMed Central
Google Scholar