Doerfler W. Epigenetic consequences of foreign DNA insertions: de novo methylation and global alterations of methylation patterns in recipient genomes. Rev Med Virol. 2011;21(6):336–46.
Article
CAS
PubMed
Google Scholar
Tahrioui A, Duchesne R, Bouffartigues E, Rodrigues S, Maillot O, Tortuel D, et al. Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. npj Biofilms Microbiomes. 2019. https://doi.org/10.1038/s41522-019-0088-3.
Article
PubMed
PubMed Central
Google Scholar
Torti A, Lever MA, Jørgensen BB. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar Genomics. 2015;24:185–96. https://doi.org/10.1016/j.margen.2015.08.007.
Article
PubMed
Google Scholar
Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol. 2018;102(15):6343–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer. 2010;10, 878–889. https://doi.org/10.1038/nrc2961.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krump NA, You J. Molecular mechanisms of viral oncogenesis in humans HHS public access. Nat Rev Microbiol. 2018;16(11):684–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson KM, Dunning Hotopp JC. Mobile elements and viral integrations prompt considerations for bacterial DNA integration as a novel carcinogen. Cancer Lett. 2014;352(2):137–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch O, et al. Identification of doublestranded genomic dna spanning all chromosomes with mutated KRAS and P53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y. A new perspective on Darwin’s Pangenesis. Biol Rev. 2008;83(2):141–9.
Article
PubMed
Google Scholar
Griffith F. The significance of penumococcal types. J Hyg. 1966;64(2):129–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type iii. J Exp Med. 1944;79(2):137–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Correa R, Caballero Z, De León LF, Spadafora C. Extracellular vesicles could carry an evolutionary footprint in interkingdom communication. Front Cell Infect Microbiol. 2020;10(March):1–11.
Google Scholar
McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J. 2021;40(21):1–23.
Article
Google Scholar
Rodriguez BV, Kuehn MJ. Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. Sci Rep. 2020;10(1):1–22. https://doi.org/10.1038/s41598-020-75108-3.
Article
CAS
Google Scholar
Bitto NJ, Chapman R, Pidot S, Costin A, Lo C, Choi J, et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep. 2017;7(1):1–11.
Article
CAS
Google Scholar
Yaron S, Kolling GL, Simon L, Matthews KR. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol. 2000;66(10):4414–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13(10):620–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17(1):13–24. https://doi.org/10.1038/s41579-018-0112-2.
Article
CAS
PubMed
Google Scholar
Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343(6167):183–6.
Article
CAS
PubMed
Google Scholar
Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun. 2016. https://doi.org/10.1038/ncomms11078.
Article
PubMed
PubMed Central
Google Scholar
Deitsch KW, Driskill CL, Wellems TE. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 2001;29(3):850–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantel PY, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev I, et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe. 2013;13(5):521–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell. 2013;153(5):1120–33. https://doi.org/10.1016/j.cell.2013.04.029.
Article
CAS
PubMed
Google Scholar
Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles. 2021. https://doi.org/10.1002/jev2.12080.
Article
PubMed
PubMed Central
Google Scholar
Klieve AV, Yokoyama MT, Forster RJ, Ouwerkerk D, Bain PA, Mawhinney EL. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin. Appl Environ Microbiol. 2005;71(8):4248–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bäuerle T, Fischer A, Speck T, Bechinger C. Self-organization of active particles by quorum sensing rules. Nat Commun. 2018;9(1):1–8. https://doi.org/10.1038/s41467-018-05675-7.
Article
CAS
Google Scholar
Chatterjee S, Mondal A, Mitra S, Basu S. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J Antimicrob Chemother. 2017;72(8):2201–7.
Article
CAS
PubMed
Google Scholar
Dorward DW, Garon CF, Judd RC. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol. 1989;171(5):2499–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rumbo C, Fernández-Moreira E, Merino M, Poza M, Mendez JA, Soares NC, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(7):3084–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011. https://doi.org/10.1038/ncomms1180.
Article
PubMed
Google Scholar
Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010;117(1):1–4.
Article
CAS
PubMed
Google Scholar
Fischer S, Cornils K, Speiseder T, Badbaran A, Reimer R, Indenbirken D, et al. Indication of horizontal DNA gene transfer by extracellular vesicles. PLoS ONE. 2016;11(9):1–22.
Article
CAS
Google Scholar
Lázaro-Ibáñez E, Lässer C, Shelke GV, Crescitelli R, Jang SC, Cvjetkovic A, et al. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J Extracell Vesicles. 2019. https://doi.org/10.1080/20013078.2019.1656993.
Article
PubMed
PubMed Central
Google Scholar
Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci USA. 2017;114:E9066–75. https://doi.org/10.1073/pnas.1704862114 (Correction: Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer Proc Natl Acad Sci USA. 2017;114(47):E10255).
Article
CAS
PubMed
PubMed Central
Google Scholar
Soltész B, Urbancsek R, Pös O, Hajas O, Forgács IN, Szilágyi E, et al. Quantification of peripheral whole blood, cell-free plasma and exosome encapsulated mitochondrial DNA copy numbers in patients with atrial fibrillation. J Biotechnol. 2019;299(April):66–71. https://doi.org/10.1016/j.jbiotec.2019.04.018.
Article
CAS
PubMed
Google Scholar
Ye W, Tang X, Yang Z, Liu C, Zhang X, Jin J, et al. Plasma-derived exosomes contribute to inflammation via the TLR9-NF-κB pathway in chronic heart failure patients. Mol Immunol. 2017;87:114–21. https://doi.org/10.1016/j.molimm.2017.03.011.
Article
CAS
PubMed
Google Scholar
Cambier L, Stachelek K, Triska M, Jubran R, Huang M, Li W, et al. Extracellular vesicle-associated repetitive element DNAs as candidate osteosarcoma biomarkers. Sci Rep. 2021;11(1):1–15. https://doi.org/10.1038/s41598-020-77398-z.
Article
CAS
Google Scholar
Malkin EZ, Bratman SV. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis. 2020. https://doi.org/10.1038/s41419-020-02803-4.
Article
PubMed
PubMed Central
Google Scholar
Sharma A, Johnson A. Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol. 2020;235(3):1921–32.
Article
CAS
PubMed
Google Scholar
Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017. https://doi.org/10.1038/ncomms15287.
Article
PubMed
PubMed Central
Google Scholar
Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548(7668):466–70. https://doi.org/10.1038/nature23470.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, DeHoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5(11):1–17.
Article
Google Scholar
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020. https://doi.org/10.1126/science.aau6977.
Article
PubMed
PubMed Central
Google Scholar
Cai J, Han Y, Ren H, Chen C, He D, Zhou L, et al. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol. 2013;5(4):227–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan N, Sun Y, Fang Y, Deng J, Mu L, Xu K, et al. A universal surrogate reporter for efficient enrichment of CRISPR/Cas9-mediated homology-directed repair in mammalian cells. Mol Ther - Nucleic Acids. 2020;19(March):775–89.
Article
CAS
PubMed
Google Scholar
Ono R, Yasuhiko Y, Aisaki K, ichi, Kitajima S, Kanno J, Hirabayashi Y. Exosome-mediated horizontal gene transfer occurs in double-strand break repair during genome editing. Commun Biol. 2019. https://doi.org/10.1038/s42003-019-0300-2.
Article
PubMed
PubMed Central
Google Scholar
Bai H, Lester GMS, Petishnok LC, Dean DA. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci Rep. 2017;37(6):1–17.
Article
Google Scholar
Yum S, Li M, Chen ZJ. Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res. 2020;30(8):639–48. https://doi.org/10.1038/s41422-020-0346-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, De Ruiter PE, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh75 cells. Proc Natl Acad Sci USA. 2013;110(32):13109–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature. 2013;496(7445):367–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saari H, Turunen T, Lõhmus A, Turunen M, Jalasvuori M, Butcher SJ, et al. Extracellular vesicles provide a capsid-free vector for oncolytic adenoviral DNA delivery. J Extracell Vesicles. 2020. https://doi.org/10.1080/20013078.2020.1747206.
Article
PubMed
PubMed Central
Google Scholar
Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C. Cancer: evolution within a lifetime. Annu Rev Genet. 2014;48(August):215–36.
Article
CAS
PubMed
Google Scholar
McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27(1):15–26. https://doi.org/10.1016/j.ccell.2014.12.001.
Article
CAS
PubMed
Google Scholar
Nowak MA, Michor F, Iwasa Y. The linear process of somatic evolution. Proc Natl Acad Sci USA. 2003;100(25):14966–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Podlaha O, Riester M, De S, Michor F. Evolution of the cancer genome. Trends Genet. 2012;28(4):155–63. https://doi.org/10.1016/j.tig.2012.01.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu CI, Wang HY, Ling S, Lu X. The ecology and evolution of cancer: the ultra-microevolutionary process. Annu Rev Genet. 2016;50(September):347–69.
Article
CAS
PubMed
Google Scholar
Yates LR, Campbell PJ. Evolution of the cancer genome. Nat Rev Genet. 2012;13(11):795–806. https://doi.org/10.1038/nrg3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;340(6127):1546–58.
Article
Google Scholar
Nam AS, Chaligne R, Landau DA. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet. 2021;22(1):3–18. https://doi.org/10.1038/s41576-020-0265-5.
Article
CAS
PubMed
Google Scholar
Brown TM, Fee E. Rudolf Carl Virchow: medical scientist, social reformer, role model. Am J Public Health. 2006;96(12):2104–5.
Article
PubMed
PubMed Central
Google Scholar
Tabassum DP, Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer. 2015;15(8):473–83. https://doi.org/10.1038/nrc3971.
Article
CAS
PubMed
Google Scholar
Garcia S, Der E, Putterman C. Single cell RNA sequencing in human disease: renal, pancreatic, and viral diseases. In: Yu B, Zhang J, Zeng Y, Li L, Wang X, editors. Single-cell sequencing and methylation: methods and clinical applications. Singapore: Springer Singapore; 2020. p. 195–202. https://doi.org/10.1007/978-981-15-4494-1_16.
Chapter
Google Scholar
Pedersen MW, Overballe-Petersen S, Ermini L, Der Sarkissian C, Haile J, Hellstrom M, et al. Ancient and modern environmental DNA. Philos Trans R Soc B Biol Sci. 2015. https://doi.org/10.1098/rstb.2013.0383.
Article
Google Scholar
Bálint M, Pfenninger M, Grossart HP, Taberlet P, Vellend M, Leibold MA, et al. Environmental DNA time series in ecology. Trends Ecol Evol. 2018;33(12):945–57. https://doi.org/10.1016/j.tree.2018.09.003.
Article
PubMed
Google Scholar
Carraro L, Mächler E, Wüthrich R, Altermatt F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat Commun. 2020;11(1):1–12. https://doi.org/10.1038/s41467-020-17337-8.
Article
CAS
Google Scholar
Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol. 2017;26(21):5872–95.
Article
PubMed
Google Scholar
Capo E, Domaizon I, Maier D, Debroas D, Bigler C. To what extent is the DNA of microbial eukaryotes modified during burying into lake sediments? A repeat-coring approach on annually laminated sediments. J Paleolimnol. 2017;58(4):479–95.
Article
Google Scholar
Ruppert KM, Kline RJ, Rahman MS. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv. 2019;17: e00547. https://doi.org/10.1016/j.gecco.2019.e00547.
Article
Google Scholar
Pedersen MW, Ruter A, Schweger C, Friebe H, Staff RA, Kjeldsen KK, et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature. 2016;537(7618):45–9. https://doi.org/10.1038/nature19085.
Article
CAS
PubMed
Google Scholar
Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37. https://doi.org/10.1038/nrc3066.
Article
CAS
PubMed
Google Scholar
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20(8):1057–67. https://doi.org/10.1080/15384047.2019.1598759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mouliere F, Robert B, Peyrotte E, Del Rio M, Ychou M, Molina F, et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0023418.
Article
PubMed
PubMed Central
Google Scholar
Zill OA, Greene C, Sebisanovic D, Siew LM, Leng J, Vu M, et al. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov. 2015;5(10):1040–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.
CAS
PubMed
Google Scholar
NLM. MDM2 inhibitor AMG-232 (KRT-232) and radiation therapy in treating patients with soft tissue sarcoma. 2020. https://clinicaltrials.gov/ct2/show/NCT03217266#wrapper. Accessed 20 Dec 2021.
NLM. Contents of circulating extracellular vesicles: biomarkers in colorectal cancer patients (ExoColon). 2020. https://clinicaltrials.gov/ct2/show/NCT04523389?term=extracellular+vesicles+DNA&cond=cancer&draw=2&rank=3. Accessed 20 Dec 2021.
NLM. Detection of either the EML4-ALK gene rearrangements or the T790M EGFR mutation in the plasma of advanced NSCLC patients. 2020. https://clinicaltrials.gov/ct2/show/NCT03236675. Accessed 20 Dec 2021.
NLM. Olmutinib trial in T790M (+) NSCLC patients detected by liquid biopsy using BALF extracellular vesicular DNA. 2020. https://clinicaltrials.gov/ct2/show/study/NCT03228277. Accessed 20 Dec 2021.
Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, Hole P, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomed Nanotechnol Biol Med. 2011;7(6):780–8. https://doi.org/10.1016/j.nano.2011.04.003.
Article
CAS
Google Scholar
Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 2011;87(1):146–50. https://doi.org/10.1016/j.colsurfb.2011.05.013.
Article
CAS
PubMed
Google Scholar
van der Pol E, Coumans FAW, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182–92.
Article
PubMed
Google Scholar
Pedini P, Graiet H, Laget L, Filosa L, Chatron J, Cherouat N, et al. Qualitative and quantitative comparison of cell-free DNA and cell-free fetal DNA isolation by four (semi-)automated extraction methods: impact in two clinical applications: chimerism quantification and noninvasive prenatal diagnosis. J Transl Med. 2021;19(1):1–11. https://doi.org/10.1186/s12967-020-02671-8.
Article
CAS
Google Scholar
Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182(4):1044-1061.e18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunz F, Kontopoulou E, Reinhardt K, Soldierer M, Strachan S, Reinhardt D, et al. Detection of AML-specific mutations in pediatric patient plasma using extracellular vesicle–derived RNA. Ann Hematol. 2019;98(3):595–603. https://doi.org/10.1007/s00277-019-03608-y.
Article
CAS
PubMed
Google Scholar
Jablonska J, Pietrowska M, Ludwig S, Lang S, Thakur BK. Challenges in the isolation and proteomic analysis of cancer exosomes-implications for translational research. Proteomes. 2019;7(2):22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenific CM, Zhang H, Lyden D. An exosome pathway without an ESCRT. Cell Res. 2020. https://doi.org/10.1038/s41422-020-00418-0.
Article
PubMed Central
Google Scholar
Matsui T, Osaki F, Hiragi S, Sakamaki Y, Fukuda M. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 2021;22(5):1–11.
Article
Google Scholar
Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, et al. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 2020. https://doi.org/10.1038/s41422-020-00409-1.
Article
PubMed
PubMed Central
Google Scholar
Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V, et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol. 2017;28(4):741–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang S, Che SPY, Kurywchak P, Tavormina JL, Gansmo LB, de Sampaio PC, et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther. 2017;18(3):158–65. https://doi.org/10.1080/15384047.2017.1281499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamyabi N, Abbasgholizadeh R, Maitra A, Ardekani A, Biswal SL, Grande-Allen KJ. Isolation and mutational assessment of pancreatic cancer extracellular vesicles using a microfluidic platform. Biomed Microdevices. 2020. https://doi.org/10.1007/s10544-020-00483-7.
Article
PubMed
Google Scholar
Castillo J, Bernard V, San Lucas FA, Allenson K, Capello M, Kim DU, et al. Surfaceome profiling enables isolation of cancerspecific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann Oncol. 2018;29(1):223–9.
Article
CAS
PubMed
Google Scholar
Wang ZY, Wang RX, Ding XQ, Zhang X, Pan XR, Tong JH. A protocol for cancer-related mutation detection on exosomal DNA in clinical application. Front Oncol. 2020;10(September):1–10.
Google Scholar
García-Romero N, Carrión-Navarro J, Esteban-Rubio S, Lázaro-Ibáñez E, Peris-Celda M, Alonso MM, et al. DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget. 2017;8(1):1416–28.
Article
PubMed
Google Scholar
Vaidya M, Bacchus M, Sugaya K. Differential sequences of exosomal NANOG DNA as a potential diagnostic cancer marker. PLoS ONE. 2018;13(5):1–13.
Article
Google Scholar
Kontopoulou E, Strachan S, Reinhardt K, Kunz F, Walter C, Walkenfort B, et al. Evaluation of dsDNA from extracellular vesicles (EVs) in pediatric AML diagnostics. Ann Hematol. 2020;99(3):459–75.
Article
CAS
PubMed
Google Scholar
Lee DH, Yoon H, Park S, Kim JS, Ahn YH, Kwon K, et al. Urinary exosomal and cell-free DNA detects somatic mutation and copy number alteration in urothelial carcinoma of bladder. Sci Rep. 2018;8(1):4–10. https://doi.org/10.1038/s41598-018-32900-6.
Article
CAS
Google Scholar
Lee JS, Hur JY, Kim IA, Kim HJ, Choi CM, Lee JC, et al. Liquid biopsy using the supernatant of a pleural effusion for EGFR genotyping in pulmonary adenocarcinoma patients: a comparison between cell-free DNA and extracellular vesicle-derived DNA. BMC Cancer. 2018;18(1):1–8.
Article
CAS
Google Scholar
Qu X, Li Q, Yang J, Zhao H, Wang F, Zhang F, et al. Double-stranded DNA in exosomes of malignant pleural effusions as a novel DNA source for EGFR mutation detection in lung adenocarcinoma. Front Oncol. 2019;9(SEP):1–8.
Google Scholar
Song Z, Cai Z, Yan J, Shao YW, Zhang Y. Liquid biopsies using pleural effusion-derived exosomal DNA in advanced lung adenocarcinoma. Transl Lung Cancer Res. 2019;8(4):392–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Li Y, Guan X, Zhao J, Shen L, Liu J. Exosomal double-stranded DNA as a biomarker for the diagnosis and preoperative assessment of pheochromocytoma and paraganglioma. Mol Cancer. 2018;17(1):1–6.
Article
Google Scholar
Keserű JS, Soltész B, Lukács J, Márton É, Szilágyi-Bónizs M, Penyige A, et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol. 2019;298(April):76–81. https://doi.org/10.1016/j.jbiotec.2019.04.015.
Article
CAS
PubMed
Google Scholar
Cho SM, Shin S, Kim Y, Song W, Hong SG, Jeong SH, et al. A novel approach for tuberculosis diagnosis using exosomal DNA and droplet digital PCR. Clin Microbiol Infect. 2020;26(7):942.e1-942.e5. https://doi.org/10.1016/j.cmi.2019.11.012.
Article
CAS
Google Scholar
Zhang W, Lu S, Pu D, Zhang H, Yang L, Zeng P, et al. Detection of fetal trisomy and single gene disease by massively parallel sequencing of extracellular vesicle DNA in maternal plasma: a proof-of-concept validation. BMC Med Genomics. 2019;12(1):1–11.
Article
Google Scholar
Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic—implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18(5):297–312. https://doi.org/10.1038/s41571-020-00457-x.
Article
PubMed
Google Scholar