Skip to main content
Fig. 1 | Cell & Bioscience

Fig. 1

From: DNA in extracellular vesicles: from evolution to its current application in health and disease

Fig. 1

Extracellular vesicles release is a highly organized and conserved phenomenon. b Cells release a wide range of extracellular vesicles, including large EVs like microvesicles and apoptotic bodies, small EVs known as exosomes, and small particles (< 50 nm) recently named exomeres. a Up to date biogenesis pathways of small EVs: 1 tetraspanin-enriched microdomains; 2 Sendycan-syntenin-ALIX: The cytosolic adaptor syntenin reacts with sendycan through its PDZ domains and with ALIX via three LYPXnL motifs. In turn, ALIX binds to ESCRT-III, which promotes intraluminal vesicle budding. ESCRT-0 and ESCRT-I recruit the small EVs cargo, while Rab27 helps the multi-vesicular body (MVB) fusion with the cell membrane; 3 MVB could be directed to lysosomes for degradation with the help of RAB7, RAB5, and the autophagy-related protein LC3. As a new ESCRT-independent pathway for small EVs biogenesis, RAB31 has been found to recruit GTPase-activating protein (TBC1D2B) that inactivates RAB7 and thereby favors EVs content secretion rather than the degradation in lysosomes. 4 Sphingomyelinase catalyzes the conversion of sphingomyelin to ceramide and phosphorylcholine. Ceramide enriched endosomes tend to form inward buds ending in ILV formation

Back to article page