Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 2019;65:2–15.
Article
CAS
PubMed
Google Scholar
Mormone E, George J, Nieto N. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem Biol Interact. 2011;193(3):225–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller AM, Horiguchi N, Jeong WI, et al. Molecular mechanisms of alcoholic liver disease: innate immunity and cytokines. Alcohol Clin Exp Res. 2011;35(5):787–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domenicali M, Caraceni P, Giannone F, et al. A novel model of CCl4-induced cirrhosis with ascites in the mouse. J Hepatol. 2009;51(6):991–9.
Article
CAS
PubMed
Google Scholar
Zhang S, Chen S, Li W, et al. Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet. 2011;20(16):3176–87.
Article
CAS
PubMed
Google Scholar
Mogler C, Wieland M, Konig C, et al. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Mol Med. 2015;7(3):332–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H-S, Tong H-S, Zhao Y, et al. Differential expression pattern of exosome long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in vascular endothelial cells under heat stroke. Med Sci Monit. 2018;24:7965.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan W, Pan R, Shen X, et al. CDH11 promotes liver fibrosis via activation of hepatic stellate cells. Biochem Biophys Res Commun. 2019;508(2):543–9.
Article
CAS
PubMed
Google Scholar
Sieberer BJ, Kieft H, Franssen-Verheijen T, et al. Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space. Planta. 2009;230(6):1129–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molnar A, Haybaeck J, Lackner C, et al. The cytoskeleton in nonalcoholic steatohepatitis: 100 years old but still youthful. Expert Rev Gastroenterol Hepatol. 2011;5(2):167–77.
Article
CAS
PubMed
Google Scholar
Rymut SM, Harker A, Corey DA, et al. Reduced microtubule acetylation in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2013;305(6):L419–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han SJ, Kim JH, Kim JI, et al. Inhibition of microtubule dynamics impedes repair of kidney ischemia/reperfusion injury and increases fibrosis. Sci Rep. 2016;6:27775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parrish AR. The cytoskeleton as a novel target for treatment of renal fibrosis. Pharmacol Ther. 2016;166:1–8.
Article
CAS
PubMed
Google Scholar
Kanehira M, Katagiri T, Shimo A, et al. Oncogenic role of MPHOSPH1, a cancer-testis antigen specific to human bladder cancer. Cancer Res. 2007;67(7):3276–85.
Article
CAS
PubMed
Google Scholar
Hernandez-Ortega S, Sanchez-Botet A, Quandt E, et al. Phosphoregulation of the oncogenic protein regulator of cytokinesis 1 (PRC1) by the atypical CDK16/CCNY complex. Exp Mol Med. 2019;51(4):44.
Article
PubMed Central
CAS
Google Scholar
Zhan P, Xi GM, Liu HB, et al. Protein regulator of cytokinesis-1 expression: prognostic value in lung squamous cell carcinoma patients. J Thorac Dis. 2017;9(7):2054–60.
Article
PubMed
PubMed Central
Google Scholar
Shimo A, Nishidate T, Ohta T, et al. Elevated expression of protein regulator of cytokinesis 1, involved in the growth of breast cancer cells. Cancer Sci. 2007;98(2):174–81.
Article
CAS
PubMed
Google Scholar
Liu X, Li Y, Meng L, et al. Reducing protein regulator of cytokinesis 1 as a prospective therapy for hepatocellular carcinoma. Cell Death Dis. 2018;9(5):534.
Article
PubMed
PubMed Central
CAS
Google Scholar
Makarev E, Izumchenko E, Aihara F, et al. Common pathway signature in lung and liver fibrosis. Cell Cycle. 2016;15(13):1667–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge WS, Wang YJ, Wu JX, et al. beta-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/beta-catenin signaling inhibits hepatic stellate cell activation. Mol Med Rep. 2014;9(6):2145–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monga SP. beta-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis. Gastroenterology. 2015;148(7):1294–310.
Article
CAS
PubMed
Google Scholar
Cheng JH, She H, Han YP, et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G39–49.
Article
CAS
PubMed
Google Scholar
Bovolenta P, Esteve P, Ruiz JM, et al. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci. 2008;121(Pt 6):737–46.
Article
CAS
PubMed
Google Scholar
Chen J, Rajasekaran M, Xia H, et al. The microtubule-associated protein PRC1 promotes early recurrence of hepatocellular carcinoma in association with the Wnt/beta-catenin signalling pathway. Gut. 2016;65(9):1522–34.
Article
CAS
PubMed
Google Scholar
Elpek GO. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J Gastroenterol. 2014;20(23):7260–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu F, Shi X, Zhang R, et al. Regulation of proliferation and cell cycle by protein regulator of cytokinesis 1 in oral squamous cell carcinoma. Cell Death Dis. 2018;9(5):564.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhijian Y, Hui L, Weiming Y, et al. Role of the aspartate transaminase and platelet ratio index in assessing hepatic fibrosis and liver inflammation in adolescent patients with HBeAg-positive chronic hepatitis B. Gastroenterol Res Pract. 2015;2015:906026.
Article
PubMed
PubMed Central
Google Scholar
Khoo EY, Stevenson MC, Leverton E, et al. Elevation of alanine transaminase and markers of liver fibrosis after a mixed meal challenge in individuals with type 2 diabetes. Dig Dis Sci. 2012;57(11):3017–25.
Article
CAS
PubMed
Google Scholar
Hooshmand B, Khatib R, Hamza A, et al. Fusobacterium nucleatum: a cause of subacute liver abscesses with extensive fibrosis crossing the diaphragm, mimicking actinomycosis. Germs. 2019;9(2):102–5.
Article
PubMed
PubMed Central
Google Scholar
Lee HS, Shun CT, Chiou LL, et al. Hydroxyproline content of needle biopsies as an objective measure of liver fibrosis: emphasis on sampling variability. J Gastroenterol Hepatol. 2005;20(7):1109–14.
Article
CAS
PubMed
Google Scholar
Liu XY, Liu RX, Hou F, et al. Fibronectin expression is critical for liver fibrogenesis in vivo and in vitro. Mol Med Rep. 2016;14(4):3669–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs BC, Wang H, Yang Y, et al. Molecular MRI of collagen to diagnose and stage liver fibrosis. J Hepatol. 2013;59(5):992–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung C, Iwakiri Y. Activated hepatic stellate cells: negative regulators of hepatocyte proliferation in liver diseases. Hepatology. 2012;56(1):389–91.
Article
PubMed
Google Scholar
Ma L, Yang X, Wei R, et al. MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis. 2018;9(7):718.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bu FT, Chen Y, Yu HX, et al. SENP2 alleviates CCl4-induced liver fibrosis by promoting activated hepatic stellate cell apoptosis and reversion. Toxicol Lett. 2018;289:86–98.
Article
CAS
PubMed
Google Scholar
Ding Q, Xie XL, Wang MM, et al. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis. Exp Mol Med. 2019;51(1):6.
Article
PubMed Central
CAS
Google Scholar
Guo Y, Xiao L, Sun L, et al. Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol Res. 2012;61(4):337–46.
CAS
PubMed
Google Scholar
Chen Y, Choi SS, Michelotti GA, et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology. 2012;143(5):1319–29 e11.
Article
CAS
Google Scholar
Shen X, Peng Y, Li H. The injury-related activation of hedgehog signaling pathway modulates the repair-associated inflammation in liver fibrosis. Front Immunol. 2017;8:1450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chatterjee S, Sil PC. Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol Res. 2019;142:251–61.
Article
CAS
PubMed
Google Scholar
Yang SH, Andl T, Grachtchouk V, et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta3-catenin signaling. Nat Genet. 2008;40(9):1130–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeda O, Kondo M, Fujita T, et al. Enhancement of GLI1-transcriptional activity by beta-catenin in human cancer cells. Oncol Rep. 2006;16(1):91–6.
CAS
PubMed
Google Scholar
Chen X, Shi C, Cao H, et al. The hedgehog and Wnt/beta-catenin system machinery mediate myofibroblast differentiation of LR-MSCs in pulmonary fibrogenesis. Cell Death Dis. 2018;9(6):639.
Article
PubMed
PubMed Central
CAS
Google Scholar
Das S, Harris LG, Metge BJ, et al. The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin. J Biol Chem. 2009;284(34):22888–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leung TM, Wang X, Kitamura N, et al. Osteopontin delays resolution of liver fibrosis. Lab Invest. 2013;93(10):1082–9.
Article
CAS
PubMed
Google Scholar
Syn WK, Choi SS, Liaskou E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53(1):106–15.
Article
CAS
PubMed
Google Scholar
Wang J, Chu ES, Chen HY, et al. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget. 2015;6(9):7325–38.
PubMed
Google Scholar
Chang W, Yang M, Song L, et al. Isolation and culture of hepatic stellate cells from mouse liver. Acta Biochim Biophys Sin (Shanghai). 2014;46(4):291–8.
Article
CAS
Google Scholar