Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res. 2012;177(3):229–43.
Article
CAS
PubMed
Google Scholar
Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6(9):702–13.
Article
CAS
PubMed
Google Scholar
Hall EJ, Giacca AJ. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 252–68.
Google Scholar
Fliedner TM, Graessel D, Meineke V, Dorr H. Pathological principles underlying the blood cell concentration responses used to assess the severity of effect after accidental whole-body radiation exposure: an essential basis for an evidence-based clinical triage. Exp Hematol. 2007;35(4 Suppl 1):8–16.
Article
CAS
PubMed
Google Scholar
MacNaughton WK. Review article: new insights into the pathologenesis of radiation-induced intestinal dysfunction. Aliment Pharmacol Ther. 2000;14(5):523–8.
Article
CAS
PubMed
Google Scholar
Meistrich ML, Kangasniemi M. Hormone treatment after ionizingradiation stimulates recovery of rat spermatogenesis from surviving spermatogonia. J Androl. 1997;18(1):80–7.
CAS
PubMed
Google Scholar
Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 2003;22(37):5734–54.
Article
CAS
PubMed
Google Scholar
Pena LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 2000;60(2):321–7.
CAS
PubMed
Google Scholar
Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation. Semin Radiat Oncol. 2007;17(2):81–8.
Article
PubMed
Google Scholar
Gorbunov NV, Kiang JG. Ghrelin therapy decreases incidents of intracranial hemorrhage in mice after whole-body ionizing irradiation combined with burn trauma. Int J Mol Sci. 2017;18(8):E1693.
Article
CAS
PubMed
Google Scholar
Acharya MM, Christie L-A, Lan ML, Limoli CL. Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplant. 2013;22(1):55–64.
Article
PubMed
Google Scholar
Kiang JG. Adult mesenchymal stem cells and radiation injury. Health Phys. 2016;111(2):198–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coleman CN, Stone HB, Moulder JE, Pellmar TC. Medicine. Modulation of radiation injury. Science. 2004;304(5671):693–4.
Article
CAS
PubMed
Google Scholar
Yang R, Han X, Uchiyama T, Watkins SK, Yaguchi A, Delude RL, Fink MP. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G621–9.
Article
CAS
PubMed
Google Scholar
Kiang JG, Jiao W, Cary LH, Mog SR, Elliott TB, Pellmar TC, Ledney GD. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection. Radiat Res. 2010;173(3):319–32.
Article
CAS
PubMed
Google Scholar
Somosy Z, Horvath G, Telbisz A, Rez G, Palfia Z. Morphological aspects of ionizing radiation response of small intestine. Micron. 2002;33(2):167–78.
Article
CAS
PubMed
Google Scholar
Li X, Cui W, Hull L, Smith JT, Kiang JG, Xiao M. Effects of low-to-moderate doses of gamma radiation on mouse hematopoietic system. Radiat Res. 2018;190(6):612–22.
Article
CAS
PubMed
Google Scholar
Barabanova AV. Significance of beta-radiation skin burns in Chernobyl patients for the theory and practice of radiopathology. Vojnosanit Pregl. 2006;63(5):477–80.
Article
PubMed
Google Scholar
Meineke V. The role of damage to the cutaneous system in radiation-induced multi organ failure. BJR Suppl. 2005;27:85–99.
Google Scholar
Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34(12):1508–12.
Article
CAS
PubMed
Google Scholar
Gaugler MH. A unifying system: does the vascular endothelium have a role to play in multi-organ failure following radiation exposure? In: Radiation-induced multi-organ involvement and failure: a challenge for pathogenetic, diagnostic and therapeutic approaches and research; 2005. p. 100–5.
Asano S. Multi-organ involvement: lessons from the experience of one victim of the Tokai-mura criticality accident. In: Radiation-induced multi-organ involvement and failure: a challenge for pathogenetic, diagnostic and therapeutic approaches and research; 2005. p. 1–10.
Meineke V, Fliedner TM. Radiation-induced multi-organ and failure: challenges for radiation accident medical management and future research. In: Radiation-induced multi-organ involvement and failure: a challenge for pathogenetic, diagnostic and therapeutic approaches and research; 2005. p. 196–200.
Hirama T, Akashi M. Multi-organ Involvement in the patient who survived the Tokai-mura criticality accident. In: Radiation-induced multi-organ involvement and failure: a challenge for pathogenetic, diagnostic and therapeutic approaches and research; 2005. p. 17–20.
Bonetti PO, Lerman LO, Napoli C, Lerman A. Statin effects beyond lipid lowering—are they clinically relevant? Eur Heart J. 2003;24(3):225–48.
Article
CAS
PubMed
Google Scholar
Kiang JG, Garrison BR, Burns TM, Zhai M, Dews IC, Ney PH, Cary LH, Fukumoto R, Elliott TB, Ledney GD. Wound trauma alters ionizing radiation dose assessment. Cell Biosci. 2012;2(1):20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiang JG, Smith JT, Anderson MN, Elliott TB, Gupta P, Balakathiresan NS, Maheshwari RK, Knollmann-Ritschel B. Hemorrhage enhances cytokine, complement component 3, and caspase-3, and regulates microRNAs associated with intestinal damage after whole-body gamma-irradiation in combined injury. PLoS ONE. 2017;12(9):e0184393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swift JM, Smith JT, Kiang JG. Ciprofloxacin therapy results in mitigation of ATP loss after irradiation combined with wound trauma: preservation of pyruvate dehydrogenase and inhibition of pyruvate dehydrogenase kinase 1. Radiat Res. 2015;183(6):684–92.
Article
CAS
PubMed
Google Scholar
Kiang JG, Zhai M, Bolduc DL, Smith JT, Anderson MN, Ho C, Lin B, Jiang S. Combined therapy of pegylated G-CSF and Alxn4100TPO improves survival and mitigates acute radiation syndrome after whole-body ionizing irradiation alone and followed by wound trauma. Radiat Res. 2017;188(5):476–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ledney GD, Elliott TB. Combined injury: factors with potential to impact radiation dose assessments. Health Phys. 2010;98(2):145–52.
Article
CAS
PubMed
Google Scholar
Kiang JG, Ledney GD. Skin Injuries reduce survival and modulate corticosterone, C-reactive protein, complement component 3, IgM, and prostaglandin E2 after whole-body reactor-produced mixed field (n + -Photons) irradiation. Oxid Med Cell Longev. 2013;2013:821541.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gengozian N, Taylor T, Jameson H, Lee ET, Good RA, Epstein RB. Radiation-induced hemopoietic death in mice as a function of photon energy and dose rate. Radiat Res. 1986;105(3):320–7.
Article
CAS
PubMed
Google Scholar
Kiang JG, Smith JT, Anderson MN, Swift JM, Gupta P, Balakathiresan N, Maheshwari RK. Hemorrhage exacerbates radiation effects on survival, leukocytopenia, thrombopenia, erythropenia, bone marrow cell depletion and hematopoiesis, and inflammation-associated microRNAs expression in kidney. PLoS ONE. 2015;10(9):e0139271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lya G, Ekhtiar A, Saour G. Effects of lethal dose of c-radiation and partial body hyperthermia on Wistar rats. Int J Hyperthermia. 2015;31(5):460–3.
Article
CAS
Google Scholar
Iijima S. Pathology of atomic bomb casualties. Acta Pathol Jpn. 1982;32(Suppl. 2):237–70.
PubMed
Google Scholar
Kishi HS. Effects of the “special bomb”: recollection of a neurosurgeon in Hiroshima. Neurosurgery. 2000;47(2):441–6.
Article
CAS
PubMed
Google Scholar
Ledney GD, Elliott TB, Moore MM. Modulations of mortality by tissue trauma and sepsis in mice after radiation injury. In: Mossman KL, Mills WA, editors. The biological basis of radiation protection practice. Baltimore, MD: Williams and Wilkins; 1992. p. 202–17.
Google Scholar
Ma Q, Cai JL, Pan XJ, Du L, Yang XY, Liu YX, Zhang QL, Cui YF. Effects of neuro-immuno-modulation on healing of wound combined with local radiation injury in rats. Chin J Traumatol. 2017;20(5):270–4.
Article
PubMed
PubMed Central
Google Scholar
Alpen EL, Sheline GE. The combined effects of thermal burns and whole body X irradiation on survival time and mortality. Ann Surg. 1954;140(1):113–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacob A, Shah KG, Wu R, Wang P. Ghrelin as a novel therapy for radiation combined injury. Mol Med. 2010;16(3–4):137–43.
CAS
PubMed
PubMed Central
Google Scholar
Shah KG, Wu R, Jacob A, Blau SA, Ji Y, Dong W, Marini CP, Ravikumar TS, Coppa GF, Wang P. Human ghrelin ameliorates organ injury and improves survival after radiation injury combined with severe sepsis. Mol Med. 2009;15(11–12):407–14.
CAS
PubMed
PubMed Central
Google Scholar
Valeriote FA, Baker DG. The combined effects of thermal trauma and x-ray radiation on early mortality. Radiat Res. 1964;22:693–702.
Article
CAS
PubMed
Google Scholar
Korlof B. Infection of burns, I. A bacteriological and clinical study of 99 cases. II. Animal experiments: burns and total body x-ray radiation. Acta Chir Scand. 1956;Suppl209:1–144.
Google Scholar
Brooks JW, Evans EI, Ham WT Jr, Reid JD. The influence of external body radiation on mortality from thermal burns. Ann Surg. 1952;136(3):533–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reid JD, Brooks JW, Ham WT, Evans EI. The influence of X-radiation on mortality following thermal flash burns: the site of tissue injury as a factor determining the type of invading bacteria. Ann Surg. 1955;142(5):844–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ledney GD, Stewart DA, Exum ED, Sheehy PA. Skin wound-enhanced survival and myelocytopoiesis in mice after whole-body ionizing radiation. Acta Radiol Oncol. 1981;20(1):29–38.
Article
CAS
PubMed
Google Scholar
Koenig KL, Goans RE, Hatchett RJ, Mettler FA Jr, Schumacher TA, Noji EK, Jarrett DG. Medical treatment of radiological casualties: current concepts. Ann Emerg Med. 2005;45(6):643–52.
Article
PubMed
Google Scholar
Lausevic Z, Lausevic M, Trbojevic-Stankovic J, Krstic S, Stojimovic B. Predicting multiple organ failure in patients with severe trauma. Can J Surg. 2008;51(2):97–102.
PubMed
PubMed Central
Google Scholar
Zou Z, Sun H, Su Y, Cheng T, Luo C. Progress in research on radiation combined injury in China. Radiat Res. 2008;169(6):722–9.
Article
CAS
PubMed
Google Scholar
Ledney GD, Exum ED, Sheehy PA. Survival enhanced by skin-wound trauma in mice exposed to 60Co radiation. Experientia. 1981;37(2):193–4.
Article
CAS
PubMed
Google Scholar
Ledney GD, Exum ED, Stewart DA, Gelston HM Jr, Weinberg SR. Survival and hematopoietic recovery in mice after wound trauma and whole-body irradiation. Exp Hematol. 1982;10(Suppl 12):263–78.
Google Scholar
Dynlacht JR, Garrett J, Joel R, Lane K, Mendonca MS, Orschell CM. Further characterization of the mitigation of radiation lethality by protective wounding. Radiat Res. 2017;187(6):732–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiang JG, Smith JT, Agravante NG. Geldanamycin analog 17-DMAG inhibits iNOS and caspases in gamma irradiated human T cells. Radiat Res. 2009;172(3):321–30.
Article
CAS
PubMed
Google Scholar
Gorbunov NV, Kiang JG. Up-regulation of autophagy in the small intestine Paneth cell in response to total body γ-irradiation. J Pathol. 2009;219(2):242–52.
Article
CAS
PubMed
Google Scholar
Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev. 2007;6(8):622–80.
Google Scholar
Kiang JG, Tsen KT. Biology of hypoxia. Chin J Physiol. 2006;49(5):223–33.
CAS
PubMed
Google Scholar
Hayashi T, Morishita Y, Kudo Y, Kusunoki Y, Hayashi I, Kasagi F, Hakoda M, Kyoizumi S, Nakachi K. Long-term effects of radiation dose on inflammatory markers in atomic bomb survivors. Am J Med. 2005;118(1):83–6.
Article
PubMed
Google Scholar
Peterson VM, Adamovicz JJ, Elliott TB, Moore MM, Madonna GS, Jackson WE III, Ledney GD, Gause WC. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers. J Immunol. 1994;153(5):2321–30.
CAS
PubMed
Google Scholar
Singh VK, Grace MB, Jacobsen KO, Chang CM, Parekh VI, Inal CE, Shafran RL, Whitnall AD, Kao TC, Jackson WE III, Whitnall MH. Administration of 5-androstenediol to mice: pharmacokinetics and cytokine gene expression. Exp Mol Pathol. 2008;84(2):178–88.
Article
CAS
PubMed
Google Scholar
Gourmelon P, Marquette C, Agay D, Mathieu J, Clarencon D. Involvement of the central nervous system in radiation-induced multi-organ dysfunction and/or failure. Br Inst Radiol. 2005;27(suppl):62–8.
Article
Google Scholar
Dlaska M, Weiss G. Central role of transcription factor NF-IL6 for cytokines and iron-mediated regulation of murine inducible nitric oxide synthase expression. J Immunol. 1999;162(10):6171–7.
CAS
PubMed
Google Scholar
Han X, Fink MP, Delude RL. Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock. 2003;19(3):229–37.
Article
CAS
PubMed
Google Scholar
Mazzon E, De Sarro A, Caputi AP, Cuzzocrea S. Role of tight junction derangement in the endothelial dysfunction elicited by exogenous and endogenous peroxynitrite and poly(ADP-ribose) synthetase. Shock. 2002;18(5):434–9.
Article
PubMed
Google Scholar
Pogozelski WK, Xapsos MA, Blakely WF. Quantitative assessment of the contribution of clustered damage to DNA double-strand breaks induced by 60Co gamma rays and fission neutrons. Radiat Res. 1999;151(4):442–8.
Article
CAS
PubMed
Google Scholar
Burma S, Chen BP, Chen DJ. Role of non-homologous and end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst.). 2006;5(9–10):1042–8.
Article
CAS
Google Scholar
Olive PL. Impact of the comet assay in radiobiology. Mutat Res. 2007;681(1):3–23.
Google Scholar
Kuhne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Lobrich M. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res. 2004;64(2):500–8.
Article
PubMed
Google Scholar
Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Kremler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Lobrich M. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell. 2004;16(5):715–24.
Article
CAS
PubMed
Google Scholar
Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 2000;275(13):9390–5.
Article
CAS
PubMed
Google Scholar
Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med. 2006;7(3):165–72.
Article
PubMed
Google Scholar
Scherthan H, Hieber L, Braselmann H, Meineke V, Zitzelsberger H. Accumulation of DSBs in gamma-H2AX domain fuel chromosomal aberration. Biochem Biophys Res Commun. 2008;371(4):694–7.
Article
CAS
PubMed
Google Scholar
Kiang JG, Fukumoto R. Ciprofloxacin increases survival after ionizing irradiation combined injury: gamma-H2AX formation, cytokine/chemokine, and red blood cells. Health Phys. 2014;106(6):720–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moroni M, Maeda D, Whitnall MH, Bonner WM, Redon CE. Evaluation of the gamma-H2AX assay for radiation biodosimetry in a swine model. Int J Mol Sci. 2013;14(7):14119–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM. Q(γ-H2AX), an analysis method for partial-body radiation exposure using γ-H2AX in nonhuman primate lymphocytes. Radiat Meas. 2011;46(9):877–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. H2AX: the histone guardian of the genome. DNA Repair (Amst). 2004;3(8–9):959–67.
Article
CAS
PubMed
Google Scholar
Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci (USA). 2003;100(9):5057–62.
Article
CAS
Google Scholar
Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst). 2004;3(8–9):889–900.
Article
CAS
PubMed
Google Scholar
Habraken Y, Piette J. NF-kappaB activation by double-strand breaks. Biochem Pharmacol. 2006;72(9):1132–41.
Article
CAS
PubMed
Google Scholar
Janssens S, Tschopp J. Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ. 2006;13(5):773–84.
Article
CAS
PubMed
Google Scholar
Kiang JG. Overview of biological effects of ionizing radiation combined injury. NATO 2012;STO-MP-HFM-223 5-1-17.
Epperly MW, Sikora CA, DeFilippi SJ, Gretton JA, Zhan Q, Kufe DW, Greenberger JS. Managanese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat Res. 2002;157(5):568–77.
Article
CAS
PubMed
Google Scholar
Hayashi T, Hayashi I, Shinohara T, Morishita Y, Nagamura H, Kusunoki Y, Kyoizumi S, Seyama T, Nakachi K. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH. Mutat Res. 2004;556(1–2):83–91.
Article
CAS
PubMed
Google Scholar
Dent P, Reardon DB, Park JS, Bowers G, Logsdon C, Valerie K, Schmidt-Ullrich R. Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell. 1999;10(8):2493–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A. Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem. 2007;282(29):21206–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Astsaturov I, Cohen RB, Harari P. Targeting epidermal growth factor receptor signaling in the treatment of head and neck cancer. Expert Rev Anticancer Ther. 2006;6(9):1179–93.
Article
CAS
PubMed
Google Scholar
Lee ER, Kim JY, Kang YJ, Kim BW, Choi HY, Jeong MY, Cho SG. Interplay between PI3 K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochim Biophys Acta. 2006;1763(9):958–68.
Article
CAS
PubMed
Google Scholar
Kim BJ, Ryu SW, Song BJ. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. 2006;281(30):21256–65.
Article
CAS
PubMed
Google Scholar
Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol. 2004;36:2405–19.
Article
CAS
PubMed
Google Scholar
Fengsrud M, Sneve ML, Overbye A, Seglen PO. Structural aspects of mammalian autophagy. In: Klionsky DJ, editor. autophagy. Georgetown: Landes Bioscience; 2004. p. 11–25.
Google Scholar
Kundu M, Thompson CB. Autopagy: basic principles and relevance to disease. Annu Rev Pathol Mecha Dis. 2008;3:247–55.
Google Scholar
Schmidt D, Munz C. Innate and adaptive immunity through autophagy. Immunity. 2007;27:11–21.
Article
CAS
Google Scholar
Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.
Article
CAS
PubMed
Google Scholar
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(2):5720–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2001;2(3):211–6.
Article
CAS
PubMed
Google Scholar
Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–34.
Article
CAS
PubMed
Google Scholar
Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61(2):439–44.
CAS
PubMed
Google Scholar
Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36(12):2503–18.
Article
CAS
PubMed
Google Scholar
Packey CD, Ciorba MA. Microbial influences on the small intestinal response to radiation injury. Curr Opin Gastroenterol. 2010;26(2):88–94.
Article
PubMed
PubMed Central
Google Scholar
Stryer L. Biochemistry. New York: W.H. Freeman; 1980.
Google Scholar
Gorbunov NV, Elliott TB, McDaniel DP, Zhai M, Liao P-J, Kiang JG. Mitophagy and mitochondrial remodeling in mouse mesenchymal stromal cells following a challenge with Staphylococcus epidermidis. J Cell Mol Med. 2015;19(5):1133–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji LL. Redox signaling in skeletal muscle: role of aging and exercise. Adv Physiol Educ. 2015;39(4):352–9.
Article
PubMed
Google Scholar
Comelli M, Di Pancrazio F, Mavelli I. Apoptosis is induced by decline of mitochondrial ATP synthesis in erythroleukemia cells. Free Radic Biol Med. 2003;34(9):1190–9.
Article
CAS
PubMed
Google Scholar
Kiang JG, Bowman PD, Lu X, Li Y, Ding XZ, Zhao B, et al. Geldanamycin prevents hemorrhage-induced ATP loss by overexpressing inducible HSP70 and activating pyruvate dehydrogenase. Am J Physiol Gastrointest Liver Physiol. 2006;291(1):G117–27.
Article
CAS
PubMed
Google Scholar
Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185(8):1481–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemasters JJV. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol. 1999;276(1 Pt 1):G1–6.
CAS
PubMed
Google Scholar
Lieberthal W, Menza SA, Levine JS. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol. 1998;274(2 Pt 2):F315–27.
CAS
PubMed
Google Scholar
Wiegele G, Brandis M, Zimmerhackl LB. Apoptosis and necrosis during ischaemia in renal tubular cells (LLC-PK1 and MDCK). Nephrol Dial Transplant. 1998;13(5):1158–67.
Article
CAS
PubMed
Google Scholar
Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145–51.
Article
PubMed
Google Scholar
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.
Article
CAS
PubMed
Google Scholar
Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002;1576(1–2):1–14.
CAS
PubMed
Google Scholar
Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann NY Acad Sci. 2008;1147:321–34.
Article
CAS
PubMed
Google Scholar
Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T. The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab. 2010;298(4):E799–806.
Article
CAS
PubMed
Google Scholar
Bürkle A, Brabeck C, Diefenbach J, Beneke S. The emerging role of poly(ADP-ribose) polymerase-1 in longevity. Int J Biochem Cell Biol. 2005;37(5):1043–53.
Article
CAS
PubMed
Google Scholar
https://www.empr.com/news/myelosuppression-radiation-bone-marrow-syndrome-leukine-sargramostim/article/754914/.
Farese AM, Cohen MV, Katz BP, Smith CP, Gibbs A, Cohen DM, MacVittie TJ. Filgrastim improves survival in lethally irradiated nonhuman primates. Radiat Res. 2013;179(1):89–100.
Article
CAS
PubMed
Google Scholar
Hankey KG, Farese AM, Blaauw EC, Gibbs AM, Smith CP, Katz BP, Tong Y, Prado KL, MacVittie TJ. Pegfilgrastim improves survival of lethally irradiated nonhuman primates. Radiat Res. 2015;183(6):643–55.
Article
CAS
PubMed
Google Scholar
Kiang JG, Zhai M, Liao PJ, Bolduc DL, Elliott TB, Gorbunov NV. Pegylated G-CSF inhibits blood cell depletion, increases platelets, blocks splenomegaly, and improves survival after whole-body ionizing irradiation but not after irradiation combined with burn. Oxid Med Cell Longev. 2014;2014:481392.
PubMed
PubMed Central
Google Scholar
Baxter H, Drummond JA, Stephens-Newsham LG, Randall RG. Studies on acute total body ionizing radiation in animals. I. Effect of streptomycin following exposure to a thermal burn and ionizing radiation. Plast Reconstr Surg. 1953;12(6):439–45.
Article
CAS
Google Scholar
DiCarlo AL, Hatchett RJ, Kaminski JM, Ledney GD, Pellmar TC, Okunieff P, Ramakrishnan N. Medical countermeasures for radiation combined injury: radiation with burn, blast, trauma and/or sepsis. Report of an NIAID Workshop, March 26–27, 2007. Radiat Res. 2008;169(6):712–21.
Lu J, Shi Z, Su Y, Cheng T, Du Z. Effect of cervical sympathetic ganglia block on the mortality of mice with combined radiation and burn injury and its possible mechanism. Chin J Clin Rehabil. 2006;10:177–80.
Google Scholar
Kiang JG, Zhai M, Liao PJ, Elliott TB, Gorbunov NV. Ghrelin therapy improves survival after whole-body ionizing irradiation or combined with burn or wound: amelioration of leukocytopenia, thrombocytopenia, splenomegaly, and bone marrow injury. Oxid Med Cell Longev. 2014;2014:215858.
PubMed
PubMed Central
Google Scholar
Kiang JG, Anderson MN, Smith JT. Ghrelin therapy mitigates bone marrow injury and splenocytopenia by sustaining circulating G-CSF and KC increases after irradiation combined with wound. Cell Biosci. 2018;8:27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiang JG, Zhai M, Liao PJ, Ho C, Gorbunov NV, Elliott TB. Thrombopoietin receptor agonist mitigates hematopoietic radiation syndrome and improves survival after whole-body ionizing irradiation followed by wound trauma. Mediators Inflamm. 2017;2017:7582079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukumoto R, Cary LH, Gorbunov NV, Lombardini ED, Elliott TB, Kiang JG. Ciprofloxacin modulates cytokine/chemokine profile in serum, improves bone marrow repopulation, and limits apoptosis and autophagy in ileum after whole body ionizing irradiation combined with skin-wound trauma. PLoS ONE. 2013;8(3):e58389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukumoto R, Burns TM, Kiang JG. Ciprofloxacin enhances stress erythropoiesis in spleen and increases survival after whole-body irradiation combined with skin-wound trauma. PLoS ONE. 2014;9(2):e90448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar KS, Kiang JG, Whitnall MH, Hauer-Jensen, M. Perspectives in radiological and nuclear countermeasures. In: Medical consequences of radiological and nuclear weapons. Fort Detrick: Office of the surgeon general, Borden Institute; 2012. p. 239–66.
Ha CT, Li XH, Fu D, Moroni M, Fisher C, Arnott R, Srinivasan V, Xiao M. Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP). PLoS ONE. 2014;9(10):e109249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiang JG, Smith JT, Hegge SR, Ossetrova NI. Circulating cytokine/chemokine concentrations respond to ionizing radiation doses but not radiation dose rates: granulocyte-colony stimulating factor and interleukin-18. Radiat Res. 2018;189(6):634–43.
Article
CAS
PubMed
Google Scholar
Xiao M, Bolduc DL, Li X, Cui W, Hieber KP, Bünger R, Ossetrova NI. Urine interleukin-18 (IL-18) as a biomarker of total-body irradiation: a preliminary study in nonhuman primates. Radiat Res. 2017;188(3):325–34.
Article
CAS
PubMed
Google Scholar
Hegge SR, King GL. Radiation dose-rate effects on select biomarkers in a mouse total-body irradiation model. Radiate App. 2017;2:158–63.
Google Scholar
Jones JW, Bennett A, Carter CL, Tudor G, Hankey KG, Farese AM, Booth C, MacVittie TJ, Kane MA. Citrulline as a biomarker in the non-human primate total- and partial-body irradiation models: correlation of circulating citrulline to acute and prolonged gastrointestinal injury. Health Phys. 2015;109(5):440–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li XH, Ha CT, Fu D, Xiao M. Micro-RNA30c negatively regulates REDD1 expression in human hematopoietic and osteoblast cells after gamma-irradiation. PLoS ONE. 2012;7(11):e48700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menon N, Rogers CJ, Lukaszewicz AI, Axtelle J, Yadav M, Song F, Chakravarti A, Jacob NK. Detection of acute radiation sickness: a feasibility study in non-human primates circulating miRNAs for triage in radiological events. PLoS ONE. 2016;11(12):e0167333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493–507.
Article
CAS
PubMed
Google Scholar
Luckett LW, Vesper BE. Radiological considerations in medical operations. In: Walker RI, Cerveny TJ, editors. Medical consequences of nuclear warfare, part 1, vol. 2. Falls Church: TMM publications; 1989. p. 227–44.
Google Scholar