Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.
CAS
PubMed
Google Scholar
Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteom. 2009;6(3):267–83. https://doi.org/10.1586/epr.09.17.
Article
CAS
Google Scholar
Vidal M, Sainte-Marie J, Philippot JR, Bienvenue A. Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. J Cell Physiol. 1989;140(3):455–62. https://doi.org/10.1002/jcp.1041400308.
Article
CAS
PubMed
Google Scholar
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. https://doi.org/10.1038/ncb1596.
Article
CAS
PubMed
Google Scholar
Waldenstrom A, Genneback N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE. 2012;7(4):e34653. https://doi.org/10.1371/journal.pone.0034653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81. https://doi.org/10.1016/j.semcdb.2015.02.009.
Article
CAS
PubMed
Google Scholar
Gangoda L, Boukouris S, Liem M, Kalra H, Mathivanan S. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics. 2015;15(2–3):260–71. https://doi.org/10.1002/pmic.201400234.
Article
CAS
PubMed
Google Scholar
Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282. https://doi.org/10.1038/ncomms1285.
Article
CAS
PubMed
Google Scholar
Lasser C, O’Neil SE, Shelke GV, Sihlbom C, Hansson SF, Gho YS, Lundback B, Lotvall J. Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation. J Transl Med. 2016;14(1):181. https://doi.org/10.1186/s12967-016-0927-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez-Calero L, Martin-Lorenzo M, Alvarez-Llamas G. Exosomes: a potential key target in cardio-renal syndrome. Front Immunol. 2014;5:465. https://doi.org/10.3389/fimmu.2014.00465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kishore R, Garikipati VN, Gumpert A. Tiny shuttles for information transfer: exosomes in cardiac health and disease. J Cardiovasc Transl Res. 2016;9(3):169–75. https://doi.org/10.1007/s12265-016-9682-4.
Article
PubMed
PubMed Central
Google Scholar
Howitt J, Hill AF. Exosomes in the pathology of neurodegenerative diseases. J Biol Chem. 2016;291(52):26589–97. https://doi.org/10.1074/jbc.R116.757955.
Article
CAS
PubMed
PubMed Central
Google Scholar
Record M, Poirot M, Silvente-Poirot S. Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie. 2014;96:67–74. https://doi.org/10.1016/j.biochi.2013.06.016.
Article
CAS
PubMed
Google Scholar
Salem KZ, Moschetta M, Sacco A, Imberti L, Rossi G, Ghobrial IM, Manier S, Roccaro AM. Exosomes in tumor angiogenesis. Methods Mol Biol (Clifton, NJ). 2016;1464:25–34. https://doi.org/10.1007/978-1-4939-3999-2_3.
Article
CAS
Google Scholar
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:41–51. https://doi.org/10.1016/j.semcdb.2015.02.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Dev Cell. 2011;20(1):131–9. https://doi.org/10.1016/j.devcel.2010.12.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Record M. Intercellular communication by exosomes in placenta: a possible role in cell fusion? Placenta. 2014;35(5):297–302. https://doi.org/10.1016/j.placenta.2014.02.009.
Article
CAS
PubMed
Google Scholar
Yellon DM, Davidson SM. Exosomes: nanoparticles involved in cardioprotection? Circ Res. 2014;114(2):325–32. https://doi.org/10.1161/circresaha.113.300636.
Article
CAS
PubMed
Google Scholar
Bobrie A, Colombo M, Raposo G, Thery C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic (Copenhagen, Denmark). 2011;12(12):1659–68. https://doi.org/10.1111/j.1600-0854.2011.01225.x.
Article
CAS
Google Scholar
Zakharova L, Svetlova M, Fomina AF. T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol. 2007;212(1):174–81. https://doi.org/10.1002/jcp.21013.
Article
CAS
PubMed
Google Scholar
Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21(1):77–91. https://doi.org/10.1016/j.devcel.2011.05.015.
Article
CAS
PubMed
Google Scholar
Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34(19):2398–407. https://doi.org/10.15252/embj.201592484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C, Sanchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:3–13. https://doi.org/10.1016/j.semcancer.2014.04.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Airola MV, Hannun YA. Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol. 2013;215:57–76. https://doi.org/10.1007/978-3-7091-1368-4_3.
Article
CAS
Google Scholar
Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res. 2014;54:53–67. https://doi.org/10.1016/j.plipres.2014.01.004.
Article
CAS
PubMed
Google Scholar
Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, Lopez-Martin S, Ursa A, Sanchez-Madrid F, Vazquez J, Yanez-Mo M. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem. 2013;288(17):11649–61. https://doi.org/10.1074/jbc.M112.445304.
Article
CAS
PubMed
PubMed Central
Google Scholar
van den Boorn JG, Dassler J, Coch C, Schlee M, Hartmann G. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev. 2013;65(3):331–5. https://doi.org/10.1016/j.addr.2012.06.011.
Article
CAS
PubMed
Google Scholar
Muller G, Jung C, Wied S, Biemer-Daub G, Frick W. Transfer of the glycosylphosphatidylinositol-anchored 5′-nucleotidase CD73 from adiposomes into rat adipocytes stimulates lipid synthesis. Br J Pharmacol. 2010;160(4):878–91. https://doi.org/10.1111/j.1476-5381.2010.00724.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol (Baltimore, Md: 1950). 2001;166(12):7309–18.
Article
CAS
Google Scholar
Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241–4. https://doi.org/10.1093/nar/gkr828.
Article
CAS
PubMed
Google Scholar
Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC, Park KS, Choi EJ, Kim KP, Desiderio DM, Kim YK, Lotvall J, Hwang D, Gho YS. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013. https://doi.org/10.3402/jev.v2i0.20384.
Article
PubMed
PubMed Central
Google Scholar
Vlassov AV, Magdaleno S, Setterquist R. Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochem Biophys Acta. 1820;7:940–8. https://doi.org/10.1016/j.bbagen.2012.03.017.
Article
CAS
Google Scholar
Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom. 2013;14:319. https://doi.org/10.1186/1471-2164-14-319.
Article
CAS
Google Scholar
Waldenstrom A, Ronquist G. Role of exosomes in myocardial remodeling. Circ Res. 2014;114(2):315–24. https://doi.org/10.1161/CIRCRESAHA.114.300584.
Article
CAS
PubMed
Google Scholar
Hewson C, Capraro D, Burdach J, Whitaker N, Morris KV. Extracellular vesicle associated long non-coding RNAs functionally enhance cell viability. Non-coding RNA Res. 2016;1(1):3–11. https://doi.org/10.1016/j.ncrna.2016.06.001.
Article
Google Scholar
Kogure T, Yan IK, Lin WL, Patel T. Extracellular Vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer. 2013;4(7–8):261–72. https://doi.org/10.1177/1947601913499020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, De Leo G, Alessandro R. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155. https://doi.org/10.1186/s12943-015-0426-x.
Article
PubMed
PubMed Central
Google Scholar
Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L, Zheng G, Li P, Li C, Wang C. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 2016;7(51):85551–63. https://doi.org/10.18632/oncotarget.13465.
Article
PubMed
PubMed Central
Google Scholar
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, Wang X, Wang Y, Xu ZY, Gao L, Yang Q, Xu B, Li YM, Fang ZY, Xu ZP, Bao Y, Wu DS, Miao X, Sun HY, Sun YH, Wang HY, Wang LH. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29(5):653–68. https://doi.org/10.1016/j.ccell.2016.03.004.
Article
CAS
PubMed
Google Scholar
Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med. 2015;15(1):121–6. https://doi.org/10.1007/s10238-013-0271-4.
Article
CAS
PubMed
Google Scholar
Gezer U, Ozgur E, Cetinkaya M, Isin M, Dalay N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int. 2014;38(9):1076–9. https://doi.org/10.1002/cbin.10301.
Article
CAS
PubMed
Google Scholar
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–4. https://doi.org/10.1038/cr.2015.82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai X, Chen C, Yang Q, Xue J, Chen X, Sun B, Luo F, Liu X, Xiao T, Xu H, Sun Q, Zhang A, Liu Q. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis. 2018;9(5):454. https://doi.org/10.1038/s41419-018-0485-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S, Poirot M, Record M. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010;51(8):2105–20. https://doi.org/10.1194/jlr.M003657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, Wahli W, Noy N. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol. 2002;22(14):5114–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kedjouar B, de Medina P, Oulad-Abdelghani M, Payre B, Silvente-Poirot S, Favre G, Faye JC, Poirot M. Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem. 2004;279(32):34048–61. https://doi.org/10.1074/jbc.M405230200.
Article
CAS
PubMed
Google Scholar
de Medina P, Paillasse MR, Segala G, Khallouki F, Brillouet S, Dalenc F, Courbon F, Record M, Poirot M, Silvente-Poirot S. Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEBS ligands. Chem Phys Lipid. 2011;164(6):432–7. https://doi.org/10.1016/j.chemphyslip.2011.05.005.
Article
CAS
Google Scholar
Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78(9):838–48. https://doi.org/10.1038/ki.2010.278.
Article
CAS
PubMed
Google Scholar
Nazimek K, Bryniarski K, Santocki M, Ptak W. Exosomes as mediators of intercellular communication: clinical implications. Pol Arch Med Wewn. 2015;125(5):370–80.
PubMed
Google Scholar
Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81. https://doi.org/10.1016/j.ceb.2009.03.007.
Article
CAS
PubMed
Google Scholar
Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem. 2010;111(2):488–96. https://doi.org/10.1002/jcb.22733.
Article
CAS
PubMed
Google Scholar
Khalyfa A, Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J Transl Med. 2014;12:162. https://doi.org/10.1186/1479-5876-12-162.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol. 2011;8(1):23–30. https://doi.org/10.1038/cmi.2010.59.
Article
CAS
PubMed
Google Scholar
Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, Seabra MC, Wilson MS. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014;41(3):503. https://doi.org/10.1016/j.immuni.2014.08.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R, Lombardi G. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 2013;43(9):2430–40. https://doi.org/10.1002/eji.201242909.
Article
CAS
PubMed
Google Scholar
Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol (Baltimore, Md: 1950). 2011;187(2):676–83. https://doi.org/10.4049/jimmunol.1003884.
Article
CAS
Google Scholar
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.
Article
CAS
PubMed
Google Scholar
Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594–600.
Article
CAS
PubMed
Google Scholar
Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2017;43(1):52–68. https://doi.org/10.1159/000480317.
Article
CAS
Google Scholar
Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–22. https://doi.org/10.1016/j.scr.2009.12.003.
Article
CAS
PubMed
Google Scholar
Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J. Exosomes from adipose-derived mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through wnt/beta-catenin signaling pathway. J Cardiovasc Pharmacol. 2017;70(4):225–31. https://doi.org/10.1097/fjc.0000000000000507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H, Xu W. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells (Dayton, Ohio). 2015;33(7):2158–68. https://doi.org/10.1002/stem.1771.
Article
CAS
Google Scholar
van Koppen A, Joles JA, van Balkom BW, Lim SK, de Kleijn D, Giles RH, Verhaar MC. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS ONE. 2012;7(6):e38746. https://doi.org/10.1371/journal.pone.0038746.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. https://doi.org/10.1186/scrt465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang W, Tan Y, Cai M, Zhao T, Mao F. Human umbilical cord MSC-derived exosomes suppress the development of CCl4-induced liver injury through antioxidant effect. 2018. Article ID: 6079642. https://doi.org/10.1155/2018/6079642.
Willis GR, Mitsialis SA, Kourembanas S. “Good things come in small packages”: application of exosome-based therapeutics in neonatal lung injury. Pediatr Res. 2018;83(1–2):298–307. https://doi.org/10.1038/pr.2017.256.
Article
CAS
PubMed
Google Scholar
Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-Dependent mechanisms. Stem Cells Transl Med. 2017;6(4):1273–85. https://doi.org/10.1002/sctm.16-0428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, Zhang Y, Li Q, Zhang X, Li X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Scientific reports. 2016;6:34562. https://doi.org/10.1038/srep34562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells (Dayton, Ohio). 2012;30(7):1556–64. https://doi.org/10.1002/stem.1129.
Article
CAS
Google Scholar
Zoller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 2009;9(1):40–55. https://doi.org/10.1038/nrc2543.
Article
CAS
PubMed
Google Scholar
Faught E, Henrickson L, Vijayan MM. Plasma exosomes are enriched in Hsp70 and modulated by stress and cortisol in rainbow trout. J Endocrinol. 2017;232(2):237–46. https://doi.org/10.1530/joe-16-0427.
Article
CAS
PubMed
Google Scholar
Hong CS, Funk S, Muller L, Boyiadzis M, Whiteside TL. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer. J Extracell Vesicles. 2016;5:29289. https://doi.org/10.3402/jev.v5.29289.
Article
CAS
PubMed
Google Scholar
Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, Muhhina J, Fondelli C, Gavrilova J, Chiesi A. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods (San Diego, Calif). 2015;87:46–58. https://doi.org/10.1016/j.ymeth.2015.05.028.
Article
CAS
Google Scholar
Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Can Res. 2010;70(23):9621–30. https://doi.org/10.1158/0008-5472.can-10-1722.
Article
CAS
Google Scholar
Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci CMLS. 2011;68(16):2667–88. https://doi.org/10.1007/s00018-011-0689-3.
Article
CAS
PubMed
Google Scholar
Prunotto M, Farina A, Lane L, Pernin A, Schifferli J, Hochstrasser DF, Lescuyer P, Moll S. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. J Proteom. 2013;82:193–229. https://doi.org/10.1016/j.jprot.2013.01.012.
Article
CAS
Google Scholar
de Hoog VC, Timmers L, Schoneveld AH, Wang JW, van de Weg SM, Sze SK, van Keulen JK, Hoes AW, den Ruijter HM, de Kleijn DP, Mosterd A. Serum extracellular vesicle protein levels are associated with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2013;2(1):53–60. https://doi.org/10.1177/2048872612471212.
Article
PubMed
PubMed Central
Google Scholar
Oksvold MP, Kullmann A, Forfang L, Kierulf B, Li M, Brech A, Vlassov AV, Smeland EB, Neurauter A, Pedersen KW. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther. 2014;36(6):847–862.e841. https://doi.org/10.1016/j.clinthera.2014.05.010.
Article
CAS
PubMed
Google Scholar
Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014;103(4):530–41. https://doi.org/10.1093/cvr/cvu167.
Article
CAS
PubMed
Google Scholar
Kesimer M, Gupta R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods (San Diego, Calif). 2015;87:59–63. https://doi.org/10.1016/j.ymeth.2015.03.013.
Article
CAS
Google Scholar
Oosthuyzen W, Sime NE, Ivy JR, Turtle EJ, Street JM, Pound J, Bath LE, Webb DJ, Gregory CD, Bailey MA, Dear JW. Quantification of human urinary exosomes by nanoparticle tracking analysis. J Physiol. 2013;591(Pt 23):5833–42. https://doi.org/10.1113/jphysiol.2013.264069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu L, Wang K, Cui J, Liu H, Bu X, Ma H, Wang W, Gong H, Lausted C, Hood L, Yang G, Hu Z. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86(17):8857–64. https://doi.org/10.1021/ac5023056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Street JM, Koritzinsky EH, Glispie DM, Star RA, Yuen PS. Urine exosomes: an emerging trove of biomarkers. Adv Clin Chem. 2017;78:103–22. https://doi.org/10.1016/bs.acc.2016.07.003.
Article
CAS
PubMed
Google Scholar
Machida T, Tomofuji T, Ekuni D, Maruyama T, Yoneda T, Kawabata Y, Mizuno H, Miyai H, Kunitomo M, Morita M. MicroRNAs in salivary exosome as potential biomarkers of aging. Int J Mol Sci. 2015;16(9):21294–309. https://doi.org/10.3390/ijms160921294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin W, Tsukasaki Y, Dasgupta S, Mukhopadhyay N, Ikebe M, Sauter ER. Exosomes in human breast milk promote EMT. Clin Cancer Res. 2016;22(17):4517–24. https://doi.org/10.1158/1078-0432.ccr-16-0135.
Article
CAS
PubMed
Google Scholar
Yagi Y, Ohkubo T, Kawaji H, Machida A, Miyata H, Goda S, Roy S, Hayashizaki Y, Suzuki H, Yokota T. Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci Lett. 2017;636:48–57. https://doi.org/10.1016/j.neulet.2016.10.042.
Article
CAS
PubMed
Google Scholar
Madison MN, Jones PH, Okeoma CM. Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex. Virology. 2015;482:189–201. https://doi.org/10.1016/j.virol.2015.03.040.
Article
CAS
PubMed
Google Scholar
Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P, Altevogt P. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007;72(9):1095–102. https://doi.org/10.1038/sj.ki.5002486.
Article
CAS
PubMed
Google Scholar
Peng P, Yan Y, Keng S. Exosomes in the ascites of ovarian cancer patients: origin and effects on anti-tumor immunity. Oncol Rep. 2011;25(3):749–62. https://doi.org/10.3892/or.2010.1119.
Article
CAS
PubMed
Google Scholar
Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M, Watanabe M, Baba H. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 2013;119(6):1159–67. https://doi.org/10.1002/cncr.27895.
Article
CAS
PubMed
Google Scholar
Wang H, Hou L, Li A, Duan Y, Gao H, Song X. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int. 2014;2014:864894. https://doi.org/10.1155/2014/864894.
Article
PubMed
PubMed Central
Google Scholar
Machida T, Tomofuji T, Maruyama T, Yoneda T, Ekuni D, Azuma T, Miyai H, Mizuno H, Kato H, Tsutsumi K, Uchida D, Takaki A, Okada H, Morita M. miR1246 and miR4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep. 2016;36(4):2375–81. https://doi.org/10.3892/or.2016.5021.
Article
CAS
PubMed
Google Scholar
Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA, Sonstegard TS. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genom. 2015;16:806. https://doi.org/10.1186/s12864-015-2044-9.
Article
CAS
Google Scholar
Zhou H, Pisitkun T, Aponte A, Yuen PS, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen RF, Knepper MA, Star RA. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int. 2006;70(10):1847–57. https://doi.org/10.1038/sj.ki.5001874.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oshikawa S, Sonoda H, Ikeda M. Aquaporins in urinary extracellular vesicles (exosomes). Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17060957.
Article
PubMed
PubMed Central
Google Scholar
Zhou H, Cheruvanky A, Hu X, Matsumoto T, Hiramatsu N, Cho ME, Berger A, Leelahavanichkul A, Doi K, Chawla LS, Illei GG, Kopp JB, Balow JE, Austin HA 3rd, Yuen PS, Star RA. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 2008;74(5):613–21. https://doi.org/10.1038/ki.2008.206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou H, Kajiyama H, Tsuji T, Hu X, Leelahavanichkul A, Vento S, Frank R, Kopp JB, Trachtman H, Star RA, Yuen PS. Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. Am J Physiol Renal Physiol. 2013;305(4):F553–9. https://doi.org/10.1152/ajprenal.00056.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dijkstra S, Birker IL, Smit FP, Leyten GH, de Reijke TM, van Oort IM, Mulders PF, Jannink SA, Schalken JA. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol. 2014;191(4):1132–8. https://doi.org/10.1016/j.juro.2013.11.001.
Article
CAS
PubMed
Google Scholar
Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, Seifalian AM. Exosomes as immunotheranostic nanoparticles. Clin Ther. 2014;36(6):820–9. https://doi.org/10.1016/j.clinthera.2014.04.019.
Article
CAS
PubMed
Google Scholar
Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Vigano L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262–70. https://doi.org/10.1016/j.jconrel.2014.07.042.
Article
CAS
PubMed
Google Scholar
Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30. https://doi.org/10.1016/j.jconrel.2015.03.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalani A, Kamat PK, Chaturvedi P, Tyagi SC, Tyagi N. Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life Sci. 2014;107(1–2):1–7. https://doi.org/10.1016/j.lfs.2014.04.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S. Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–14. https://doi.org/10.1007/s11095-014-1593-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Controlled Release. 2015;219:396–405. https://doi.org/10.1016/j.jconrel.2015.07.030.
Article
CAS
Google Scholar
Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40(17):e130. https://doi.org/10.1093/nar/gks463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, Sapp E, Ly S, Alterman JF, Hassler MR, Echeverria D, Raj L, Morrissey DV, DiFiglia M, Aronin N, Khvorova A. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther. 2016;24(10):1836–47. https://doi.org/10.1038/mt.2016.126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, Bai S. Delivery of small interfering RNA to inhibit vascular endothelial growth factor in Zebrafish Using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J. 2017;19(2):475–86. https://doi.org/10.1208/s12248-016-0015-y.
Article
CAS
PubMed
Google Scholar
Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, Nilsson J, Lotvall J, Kim YK, Gho YS. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–710. https://doi.org/10.1021/nn402232g.
Article
CAS
PubMed
Google Scholar
Camussi G, Deregibus MC, Cantaluppi V. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans. 2013;41(1):283–7. https://doi.org/10.1042/bst20120192.
Article
CAS
PubMed
Google Scholar
Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–5. https://doi.org/10.1038/jcbfm.2013.152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S, Ochi M. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014;445(2):381–7. https://doi.org/10.1016/j.bbrc.2014.02.007.
Article
CAS
PubMed
Google Scholar
Syn NL, Wang L, Chow EK, Lim CT, Goh BC. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35(7):665–76. https://doi.org/10.1016/j.tibtech.2017.03.004.
Article
CAS
PubMed
Google Scholar
Mignot G, Roux S, Thery C, Segura E, Zitvogel L. Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med. 2006;10(2):376–88.
Article
CAS
PubMed
Google Scholar
Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq JB, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10. https://doi.org/10.1186/1479-5876-3-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S, Vimond N, Peguillet I, Thery C, Lacroix L, Zoernig I, Dhodapkar K, Dhodapkar M, Viaud S, Soria JC, Reiners KS, Pogge von Strandmann E, Vely F, Rusakiewicz S, Eggermont A, Pitt JM, Zitvogel L, Chaput N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5(4):e1071008. https://doi.org/10.1080/2162402x.2015.1071008.
Article
PubMed
Google Scholar
Hiltbrunner S, Larssen P, Eldh M, Martinez-Bravo MJ, Wagner AK, Karlsson MC, Gabrielsson S. Exosomal cancer immunotherapy is independent of MHC molecules on exosomes. Oncotarget. 2016;7(25):38707–17. https://doi.org/10.18632/oncotarget.9585.
Article
PubMed
PubMed Central
Google Scholar
Naslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol (Baltimore, Md: 1950). 2013;190(6):2712–9. https://doi.org/10.4049/jimmunol.1203082.
Article
CAS
Google Scholar
Theodoraki MN, Hoffmann TK, Whiteside TL. Separation of plasma-derived exosomes into CD3((+)) and CD3((-)) fractions allows for association of immune cell and tumour cell markers with disease activity in HNSCC patients. Clin Exp Immunol. 2018. https://doi.org/10.1111/cei.13113.
Article
PubMed
Google Scholar
Sharma P, Allison JP. The future of immune checkpoint therapy. Science (New York, NY). 2015;348(6230):56–61. https://doi.org/10.1126/science.aaa8172.
Article
CAS
Google Scholar
Bianco NR, Kim SH, Morelli AE, Robbins PD. Modulation of the immune response using dendritic cell-derived exosomes. Methods Mol Biol (Clifton, NJ). 2007;380:443–55. https://doi.org/10.1007/978-1-59745-395-0_28.
Article
CAS
Google Scholar
Pitt JM, Andre F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L. Dendritic cell-derived exosomes for cancer therapy. J Clin Investig. 2016;126(4):1224–32. https://doi.org/10.1172/jci81137.
Article
PubMed
PubMed Central
Google Scholar
Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochem Biophys Acta. 2014;1841(1):108–20. https://doi.org/10.1016/j.bbalip.2013.10.004.
Article
CAS
PubMed
Google Scholar
Sluijter JP, Verhage V, Deddens JC, van den Akker F, Doevendans PA. Microvesicles and exosomes for intracardiac communication. Cardiovasc Res. 2014;102(2):302–11. https://doi.org/10.1093/cvr/cvu022.
Article
CAS
PubMed
Google Scholar
Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res. 2013;100(1):7–18. https://doi.org/10.1093/cvr/cvt161.
Article
CAS
PubMed
Google Scholar
Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3(4):339–45. https://doi.org/10.1038/35070009.
Article
CAS
PubMed
Google Scholar
Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood. 2004;104(9):2761–6. https://doi.org/10.1182/blood-2003-10-3614.
Article
CAS
PubMed
Google Scholar
Daleke DL. Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res. 2003;44(2):233–42. https://doi.org/10.1194/jlr.R200019-JLR200.
Article
CAS
PubMed
Google Scholar
Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell–cell messengers in cardiovascular diseases. Circ Res. 2014;114(2):345–53. https://doi.org/10.1161/circresaha.113.300858.
Article
CAS
PubMed
Google Scholar
Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;8(19):4083–99. https://doi.org/10.1002/pmic.200800109.
Article
CAS
PubMed
Google Scholar
Choi DS, Kim DK, Kim YK, Gho YS. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev. 2015;34(4):474–90. https://doi.org/10.1002/mas.21420.
Article
CAS
PubMed
Google Scholar
Esser J, Gehrmann U, D’Alexandri FL, Hidalgo-Estevez AM, Wheelock CE, Scheynius A, Gabrielsson S, Radmark O (2010) Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol 126(5):1032–40, 1040.e1031–4. https://doi.org/10.1016/j.jaci.2010.06.039.
Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H, Lankar D, Salles JP, Bonnerot C, Perret B, Record M. PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett. 2004;572(1–3):11–4. https://doi.org/10.1016/j.febslet.2004.06.082.
Article
CAS
PubMed
Google Scholar
Alonso R, Rodriguez MC, Pindado J, Merino E, Merida I, Izquierdo M. Diacylglycerol kinase alpha regulates the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes. J Biol Chem. 2005;280(31):28439–50. https://doi.org/10.1074/jbc.M501112200.
Article
CAS
PubMed
Google Scholar
Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science (New York, NY). 2008;319(5867):1244–7. https://doi.org/10.1126/science.1153124.
Article
CAS
Google Scholar
Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 2007;89(2):205–12. https://doi.org/10.1016/j.biochi.2006.10.014.
Article
CAS
PubMed
Google Scholar
Falguieres T, Castle D, Gruenberg J. Regulation of the MVB pathway by SCAMP3. Traffic (Copenhagen, Denmark). 2012;13(1):131–42. https://doi.org/10.1111/j.1600-0854.2011.01291.x.
Article
CAS
Google Scholar
Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL. Isolation of biologically-active exosomes from human plasma. J Immunol Methods. 2014;411:55–65. https://doi.org/10.1016/j.jim.2014.06.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3:3.22. https://doi.org/10.1002/0471143030.cb0322s30.
Article
Google Scholar
Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, Vered M. Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem. 2015;63(3):181–9. https://doi.org/10.1369/0022155414564219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liga A, Vliegenthart AD, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M. Exosome isolation: a microfluidic road-map. Lab Chip. 2015;15(11):2388–94. https://doi.org/10.1039/c5lc00240k.
Article
CAS
PubMed
Google Scholar
Kastelowitz N, Yin H. Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. Chembiochem Eur J Chem Biol. 2014;15(7):923–8. https://doi.org/10.1002/cbic.201400043.
Article
CAS
Google Scholar
Rupert DL, Lasser C, Eldh M, Block S, Zhdanov VP, Lotvall JO, Bally M, Hook F. Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem. 2014;86(12):5929–36. https://doi.org/10.1021/ac500931f.
Article
CAS
PubMed
Google Scholar
Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79. https://doi.org/10.1038/mt.2011.164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–90. https://doi.org/10.1016/j.biomaterials.2013.11.083.
Article
CAS
PubMed
Google Scholar
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23. https://doi.org/10.1038/mt.2015.44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91. https://doi.org/10.1038/mt.2012.180.
Article
CAS
PubMed
Google Scholar
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. https://doi.org/10.1038/nbt.1807.
Article
CAS
PubMed
Google Scholar
Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, Lin HM, Shang CZ, Chen YJ, Min J. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem. 2012;287(19):15874–85. https://doi.org/10.1074/jbc.M112.340588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Haney MJ, Gupta R, Bohnsack JP, He Z, Kabanov AV, Batrakova EV. GDNF-transfected macrophages produce potent neuroprotective effects in Parkinson’s disease mouse model. PLoS ONE. 2014;9(9):e106867. https://doi.org/10.1371/journal.pone.0106867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A, Delcayre A, Le Pecq JB, Combadiere B, Amigorena S, Thery C. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Can Res. 2008;68(4):1228–35. https://doi.org/10.1158/0008-5472.can-07-3163.
Article
CAS
Google Scholar
Haney MJ, Zhao Y, Harrison EB, Mahajan V, Ahmed S, He Z, Suresh P, Hingtgen SD, Klyachko NL, Mosley RL, Gendelman HE, Kabanov AV, Batrakova EV. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases. PLoS ONE. 2013;8(4):e61852. https://doi.org/10.1371/journal.pone.0061852.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maguire CA, Balaj L, Sivaraman S, Crommentuijn MH, Ericsson M, Mincheva-Nilsson L, Baranov V, Gianni D, Tannous BA, Sena-Esteves M, Breakefield XO, Skog J. Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther. 2012;20(5):960–71. https://doi.org/10.1038/mt.2011.303.
Article
CAS
PubMed
PubMed Central
Google Scholar