Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology. 1998;251(1):1–15.
Article
PubMed
CAS
Google Scholar
Gottlinger HG. The HIV-1 assembly machine. Aids. 2001;15(Suppl 5):S13–20.
Article
PubMed
CAS
Google Scholar
Wilk T, Geiselhart V, Frech M, Fuller SD, Flugel RM, Lochelt M. Specific interaction of a novel foamy virus Env leader protein with the N-terminal Gag domain. J Virol. 2001;75(17):7995–8007
Article
PubMed
CAS
Google Scholar
Freed EO, Martin MA. The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection. J Biol Chem. 1995;270(41):23883–6.
Article
PubMed
CAS
Google Scholar
Mammano F, Kondo E, Sodroski J, Bukovsky A, Gottlinger HG. Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J Virol. 1995;69(6):3824–30
PubMed
CAS
Google Scholar
Deora A, Spearman P, Ratner L. The N-terminal matrix domain of HIV-1 Gag is sufficient but not necessary for viral protein U-mediated enhancement of particle release through a membrane-targeting mechanism. Virology. 2000;269(2):305–12.
Article
PubMed
CAS
Google Scholar
Gallay P, Swingler S, Song J, Bushman F, Trono D. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell. 1995;83(4):569–76
Article
PubMed
CAS
Google Scholar
Accola MA, Strack B, Gottlinger HG. Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J Virol. 2000;74(12):5395–402.
Article
PubMed
CAS
Google Scholar
Braaten D, Ansari H, Luban J. The hydrophobic pocket of cyclophilin is the binding site for the human immunodeficiency virus type 1 Gag polyprotein. J Virol. 1997;71(3):2107–13.
PubMed
CAS
Google Scholar
Kootstra NA, Munk C, Tonnu N, Landau NR, Verma IM. Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells. Proc Natl Acad Sci USA. 2003;100(3):1298–303
Article
PubMed
CAS
Google Scholar
Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, et al. Functional association of cyclophilin A with HIV-1 virions. Nature. 1994;372(6504):363–5
Article
PubMed
CAS
Google Scholar
von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, et al. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 1998;17(6):1555–68
Article
Google Scholar
Carroll SS, Olsen DB, Bennett CD, Gotlib L, Graham DJ, Condra JH, et al. Inhibition of HIV-1 reverse transcriptase by pyridinone derivatives. Potency, binding characteristics, and effect of template sequence. J Biol Chem. 1993;268(1):276–81
PubMed
CAS
Google Scholar
Lu M, Blacklow SC, Kim PS. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol. 1995;2(12):1075–82.
Article
PubMed
CAS
Google Scholar
Hill M, Tachedjian G, Mak J. The packaging and maturation of the HIV-1 Pol proteins. Curr HIV Res. 2005;3(1):73–85.
Article
PubMed
CAS
Google Scholar
Pearl LH, Taylor WR. A structural model for the retroviral proteases. Nature. 1987;329(6137):351–4.
Article
PubMed
CAS
Google Scholar
Hoffman AD, Banapour B, Levy JA. Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology. 1985;147(2):326–35.
Article
PubMed
CAS
Google Scholar
Oude Essink BB, Das AT, Berkhout B. HIV-1 reverse transcriptase discriminates against non-self tRNA primers. J Mol Biol. 1996;264(2):243–54.
Article
PubMed
CAS
Google Scholar
Chiu TK, Davies DR. Structure and function of HIV-1 integrase. Curr Top Med Chem. 2004;4(9):965–77.
Article
PubMed
CAS
Google Scholar
McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC, Reyes GR, et al. Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell. 1988;53(1):55–67
Article
PubMed
CAS
Google Scholar
Weiss CD. HIV-1 gp41: mediator of fusion and target for inhibition. AIDS Rev. 2003;5(4):214–21.
PubMed
Google Scholar
Li L, Li HS, Pauza CD, Bukrinsky M, Zhao RY. Roles of HIV-1 auxiliary proteins in viral pathogenesis and host–pathogen interactions. Cell Res. 2005;15(11–12):923–34
Article
PubMed
CAS
Google Scholar
Fan L, Peden K. Cell-free transmission of Vif mutants of HIV-1. Virology. 1992;190(1):19–29.
Article
PubMed
CAS
Google Scholar
Strebel K, Klimkait T, Martin MA. A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science. 1988;241(4870):1221–3.
Article
PubMed
CAS
Google Scholar
Giga-Hama Y, Kumagai H. Expression system for foreign genes using the fission yeast Schizosaccharomyces pombe. Biotechnol Appl Biochem. 1999;30(Pt 3):235–44.
PubMed
CAS
Google Scholar
Piel M, Tran PT. Cell shape and cell division in fission yeast. Curr Biol. 2009;19(17):R823–7.
Article
PubMed
CAS
Google Scholar
Zhao Y, Lieberman HB. Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA Cell Biol. 1995;14(5):359–71.
Article
PubMed
CAS
Google Scholar
Chino A, Watanabe K, Moriya H. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe. PLoS One. 2010;5(3):e9652.
Article
PubMed
Google Scholar
Lu Q, Bauer JC, Greener A. Using Schizosaccharomyces pombe as a host for expression and purification of eukaryotic proteins. Gene. 1997;200(1–2):135–44.
Article
PubMed
CAS
Google Scholar
Takegawa K, Tohda H, Sasaki M, Idiris A, Ohashi T, Mukaiyama H, et al. Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem. 2009;53(Pt 4):227–35
Article
PubMed
CAS
Google Scholar
Jacobs E, Gheysen D, Thines D, Francotte M, de Wilde M. The HIV-1 Gag precursor Pr55gag synthesized in yeast is myristoylated and targeted to the plasma membrane. Gene. 1989;79(1):71–81
Article
PubMed
CAS
Google Scholar
Toyama R, Bende SM, Dhar R. Transcriptional activity of the human immunodeficiency virus-1 LTR promoter in fission yeast Schizosaccharomyces pombe. Nucleic Acids Res. 1992;20(10):2591–6.
Article
PubMed
CAS
Google Scholar
Stutz F, Rosbash M. A functional interaction between Rev and yeast pre-mRNA is related to splicing complex formation. EMBO J. 1994;13(17):4096–104.
PubMed
CAS
Google Scholar
Zhao Y, Cao J, O'Gorman MR, Yu M, Yogev R. Effect of human immunodeficiency virus type 1 protein R (vpr) gene expression on basic cellular function of fission yeast Schizosaccharomyces pombe. J Virol. 1996;70(9):5821–6
PubMed
CAS
Google Scholar
Zhang C, Rasmussen C, Chang LJ. Cell cycle inhibitory effects of HIV and SIV Vpr and Vpx in the yeast Schizosaccharomyces pombe. Virology. 1997;230(1):103–12.
Article
PubMed
CAS
Google Scholar
Herrero L, Monroy N, Gonzalez ME. HIV-1 Vpu protein mediates the transport of potassium in Saccharomyces cerevisiae. Biochemistry. 2013;52(1):171–7.
Article
PubMed
CAS
Google Scholar
Benko Z, Liang D, Agbottah E, Hou J, Chiu K, Yu M, et al. Anti-Vpr activity of a yeast chaperone protein. J Virol. 2004;78(20):11016–29
Article
PubMed
CAS
Google Scholar
Elder RT, Yu M, Chen M, Edelson S, Zhao Y. Cell cycle G2 arrest induced by HIV-1 Vpr in fission yeast (Schizosaccharomyces pombe) is independent of cell death and early genes in the DNA damage checkpoint. Virus Res. 2000;68(2):161–73
Article
PubMed
CAS
Google Scholar
Huard S, Chen M, Burdette KE, Fenyvuesvolgyi C, Yu M, Elder RT, et al. HIV-1 Vpr-induced cell death in Schizosaccharomyces pombe is reminiscent of apoptosis. Cell Res. 2008;18(9):961–73
Article
PubMed
CAS
Google Scholar
Li G, Park HU, Liang D, Zhao RY. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R. Retrovirology. 2010;7:59
Article
PubMed
Google Scholar
Iordanskiy S, Zhao Y, Dubrovsky L, Iordanskaya T, Chen M, Liang D, et al. Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol. 2004;78(18):9697–704
Article
PubMed
CAS
Google Scholar
Caumont AB, Jamieson GA, Pichuantes S, Nguyen AT, Litvak S, Dupont C. Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype: potential use for inhibitor screening. Curr Genet. 1996;29(6):503–10
Article
PubMed
CAS
Google Scholar
Blanco R, Carrasco L, Ventoso I. Cell killing by HIV-1 protease. J Biol Chem. 2003;278(2):1086–93.
Article
PubMed
CAS
Google Scholar
Zhao Y, Elder RT. Yeast perspectives on HIV-1 Vpr. Front Biosci. 2000;5:905–16.
Article
Google Scholar
Zhao RY, Bukrinsky M, Elder RT. HIV-1 viral protein R (Vpr) and host cellular responses. Indian J Med Res. 2005;121(4):270–86.
PubMed
CAS
Google Scholar
Li G, Bukrinsky M, Zhao RY. HIV-1 viral protein R (Vpr) and its interactions with host cell. Curr HIV Res. 2009;7(2):178–83.
Article
PubMed
CAS
Google Scholar
Andreola ML, Litvak S. Yeast and the AIDS virus: the odd couple. J Biomed Biotechnol. 2012;2012:549020.
Article
PubMed
Google Scholar
Zhao Y, Elder RT, Chen M, Cao J. Fission yeast expression vectors adapted for positive identification of gene insertion and green fluorescent protein fusion. Biotechniques. 1998;25(3):438–40, 42, 44
Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 1993;123(1):127–30.
Article
PubMed
CAS
Google Scholar
Braddock M, Chambers A, Wilson W, Esnouf MP, Adams SE, Kingsman AJ, et al. HIV-1 TAT “activates” presynthesized RNA in the nucleus. Cell. 1989;58(2):269–79
Article
PubMed
CAS
Google Scholar
Ono A. HIV-1 assembly at the plasma membrane: gag trafficking and localization. Future Virol. 2009;4(3):241–57.
Article
PubMed
CAS
Google Scholar
Zhou W, Resh MD. Differential membrane binding of the human immunodeficiency virus type 1 matrix protein. J Virol. 1996;70(12):8540–8.
PubMed
CAS
Google Scholar
Dennin RH, Beyer A. Application of scanning electron microscopy (SEM) and microbead techniques to study the localization of p24 and p18 antigens of HIV-1 on the surface of HIV-1-infected H9-lymphocytes. J Microsc. 1991;164(Pt 1):53–60.
Article
PubMed
CAS
Google Scholar
Haffar OK, Popov S, Dubrovsky L, Agostini I, Tang H, Pushkarsky T, et al. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J Mol Biol. 2000;299(2):359–68
Article
PubMed
CAS
Google Scholar
Salgado GF, Vogel A, Marquant R, Feller SE, Bouaziz S, Alves ID. The role of membranes in the organization of HIV-1 Gag p6 and Vpr: p6 shows high affinity for membrane bilayers which substantially increases the interaction between p6 and Vpr. J Med Chem. 2009;52(22):7157–62
Article
PubMed
CAS
Google Scholar
Ansari-Lari MA, Gibbs RA. Analysis of HIV type 1 reverse transcriptase expression in a human cell line. AIDS Res Hum Retroviruses. 1994;10(9):1117–24.
Article
PubMed
CAS
Google Scholar
Levin A, Armon-Omer A, Rosenbluh J, Melamed-Book N, Graessmann A, Waigmann E, et al. Inhibition of HIV-1 integrase nuclear import and replication by a peptide bearing integrase putative nuclear localization signal. Retrovirology. 2009;6:112
Article
PubMed
Google Scholar
Chen M, Elder RT, Yu M, O'Gorman MG, Selig L, Benarous R, et al. Mutational analysis of Vpr-induced G2 arrest, nuclear localization, and cell death in fission yeast. J Virol. 1999;73(4):3236–45
PubMed
CAS
Google Scholar
Schubert U, Bour S, Ferrer-Montiel AV, Montal M, Maldarell F, Strebel K. The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol. 1996;70(2):809–19
PubMed
CAS
Google Scholar
Wichroski MJ, Ichiyama K, Rana TM. Analysis of HIV-1 viral infectivity factor-mediated proteasome-dependent depletion of APOBEC3G: correlating function and subcellular localization. J Biol Chem. 2005;280(9):8387–96.
Article
PubMed
CAS
Google Scholar
Fackler OT, Kienzle N, Kremmer E, Boese A, Schramm B, Klimkait T, et al. Association of human immunodeficiency virus Nef protein with actin is myristoylation dependent and influences its subcellular localization. Eur J Biochem. 1997;247(3):843–51
Article
PubMed
CAS
Google Scholar
Boe SO, Bjorndal B, Rosok B, Szilvay AM, Kalland KH. Subcellular localization of human immunodeficiency virus type 1 RNAs, Rev, and the splicing factor SC-35. Virology. 1998;244(2):473–82
Article
PubMed
CAS
Google Scholar
Yang Y, Ma J, Song Z, Wu M. HIV-1 TAT-mediated protein transduction and subcellular localization using novel expression vectors. FEBS Lett. 2002;532(1–2):36–44
Article
PubMed
CAS
Google Scholar
Zhao Y, Yu M, Chen M, Elder RT, Yamamoto A, Cao J. Pleiotropic effects of HIV-1 protein R (Vpr) on morphogenesis and cell survival in fission yeast and antagonism by pentoxifylline. Virology. 1998;246(2):266–76
Article
PubMed
CAS
Google Scholar
Maundrell K. nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem. 1990;265(19):10857–64.
PubMed
CAS
Google Scholar
Mitchison DO. Physiological and cytological methods for Schizosaccharomyces pombe. Methods Cell Physiol. 1970;4:131–65.
Google Scholar
Hardy M, Rockenbauer A, Vasquez-Vivar J, Felix C, Lopez M, Srinivasan S, et al. Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap. Chem Res Toxicol. 2007;20(7):1053–60
Article
PubMed
CAS
Google Scholar
Zhou Y, Ratner L. A novel inducible expression system to study transdominant mutants of HIV-1 Vpr. Virology. 2001;287(1):133–42.
Article
PubMed
CAS
Google Scholar
Frei M. Cell viability and proliferation-trpan blue, in centrifugation. St. Louis: Sigma-Aldrich; 2001.
Google Scholar
Zhao, RY. Interactions of Vpr with host cellular proteins. Reactome. 2006;19. http://dx.doi.org/10.3180/REACT_6288.4.
Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger E, Haseltine W. A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature. 1986;321(6068):412–7
Article
PubMed
CAS
Google Scholar
Pollard VW, Malim MH. The HIV-1 Rev protein. Annu Rev Microbiol. 1998;52:491–532.
Article
PubMed
CAS
Google Scholar
Malim MH, Bohnlein S, Hauber J, Cullen BR. Functional dissection of the HIV-1 Rev trans-activator—derivation of a trans-dominant repressor of Rev function. Cell. 1989;58(1):205–14
Article
PubMed
CAS
Google Scholar
Cochrane AW, Perkins A, Rosen CA. Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol. 1990;64(2):881–5.
PubMed
CAS
Google Scholar
Suhasini M, Reddy TR. Cellular proteins and HIV-1 Rev function. Curr HIV Res. 2009;7(1):91–100.
Article
PubMed
CAS
Google Scholar
Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 1989;338(6212):254–7
Article
PubMed
CAS
Google Scholar
Stutz F, Neville M, Rosbash M. Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast. Cell. 1995;82(3):495–506.
Article
PubMed
CAS
Google Scholar
Levin A, Hayouka Z, Friedler A, Loyter A. Over-expression of the HIV-1 Rev promotes death of nondividing eukaryotic cells. Virus Genes. 2010;40(3):341–6.
Article
PubMed
CAS
Google Scholar
Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993;75(2):241–51
Article
PubMed
CAS
Google Scholar
Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, et al. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993;262(5137):1274–7
Article
PubMed
CAS
Google Scholar
Fineberg K, Fineberg T, Graessmann A, Luedtke NW, Tor Y, Lixin R, et al. Inhibition of nuclear import mediated by the Rev-arginine rich motif by RNA molecules. Biochemistry. 2003;42(9):2625–33
Article
PubMed
CAS
Google Scholar
No D, Yao TP, Evans RM. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA. 1996;93(8):3346–51.
Article
PubMed
CAS
Google Scholar
Thomas HE, Stunnenberg HG, Stewart AF. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature. 1993;362(6419):471–5.
Article
PubMed
CAS
Google Scholar
Basi G, Schmid E, Maundrell K. TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene. 1993;123(1):131–6.
Article
PubMed
CAS
Google Scholar
Lewis N, Williams J, Rekosh D, Hammarskjold ML. Identification of a cis-acting element in human immunodeficiency virus type 2 (HIV-2) that is responsive to the HIV-1 rev and human T-cell leukemia virus types I and II rex proteins. J Virol. 1990;64(4):1690–7
PubMed
CAS
Google Scholar
Patki AH, Lederman MM. HIV-1 Tat protein and its inhibitor Ro 24-7429 inhibit lymphocyte proliferation and induce apoptosis in peripheral blood mononuclear cells from healthy donors. Cell Immunol. 1996;169(1):40–6.
Article
PubMed
CAS
Google Scholar
BXT, Electro Cell Manipulator: ECM 600 protocol 0226. 2001.