Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.
Article
CAS
PubMed
Google Scholar
Weigert A, Brüne B. Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide. 2008;19(2):95–102.
Article
CAS
PubMed
Google Scholar
Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.
Article
CAS
PubMed
Google Scholar
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003;425(6958):577–84.
Article
CAS
PubMed
Google Scholar
Nurgazieva D, Mickley A, Moganti K, Ming W, Ovsyi I, Popova A, et al. TGF-β1, but not bone morphogenetic proteins, activates Smad1/5 pathway in primary human macrophages and induces expression of proatherogenic genes. J Immunol. 2015;194(2):709–18.
Article
CAS
PubMed
Google Scholar
Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 2013;13(11):788–99.
Article
CAS
PubMed Central
PubMed
Google Scholar
Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol. 2010;10(8):554–67.
Article
CAS
PubMed
Google Scholar
Gong D, Shi W, Yi S-j, Chen H, Groffen J, Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13(1):31.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gigante M, Gesualdo L, Ranieri E. TGF-beta: a master switch in tumor immunity. Curr Pharm Des. 2012;18(27):4126–34.
Article
CAS
PubMed
Google Scholar
Byrne SN, Knox MC, Halliday GM. TGFβ is responsible for skin tumour infiltration by macrophages enabling the tumours to escape immune destruction. Immunol Cell Biol. 2007;86(1):92–7.
Article
PubMed
Google Scholar
Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231–7.
Article
CAS
PubMed
Google Scholar
Harris AL. Hypoxia — a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.
Article
CAS
PubMed
Google Scholar
Ratcliffe PJ. Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol. 2013;591(8):2027–42.
Article
CAS
PubMed Central
PubMed
Google Scholar
Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, et al. Redox control of inflammation in macrophages. Antioxid Redox Signal. 2013;19(6):595–637.
Article
PubMed Central
PubMed
Google Scholar
Nath B, Szabo G. Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. Hepatology. 2012;55(2):622–33.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ueno M, Maeno T, Nomura M, Aoyagi-Ikeda K, Matsui H, Hara K, et al. Hypoxia-inducible factor-1α mediates TGF-β-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2011;300(5):L740–52.
Article
CAS
PubMed
Google Scholar
Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW. Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol. 2011;300(4):F898–905.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chae K, Kang M, Lee J, Ryu B, Lee M, Her N, et al. Opposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditions. Oncogene. 2011;30(10):1213–28.
Article
CAS
PubMed
Google Scholar
Herr B, Zhou J, Werno C, Menrad H, Namgaladze D, Weigert A, et al. The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor–1α in macrophages via sphingosine-1-phosphate and transforming growth factor-β. Blood. 2009;114(10):2140–8.
Article
CAS
PubMed
Google Scholar
Dehne N, Tausendschön M, Essler S, Geis T, Schmid T, Brüne B. IL-4 reduces the proangiogenic capacity of macrophages by down-regulating HIF-1α translation. J Leukoc Biol. 2014;95(1):129–37.
Article
PubMed
Google Scholar
Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, et al. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4–2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Biochem J. 2005;386:461–70.
Article
CAS
PubMed Central
PubMed
Google Scholar
Seo SR, Lallemand F, Ferrand N, Pessah M, L'Hoste S, Camonis J, et al. The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J. 2004;23(19):3780–92.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tausendschön M, Rehli M, Dehne N, Schmidl C, Döring C, Hansmann M-L, et al. Genome-wide identification of hypoxia-inducible factor-1 and-2 binding sites in hypoxic human macrophages alternatively activated by IL-10. Biochim Biophys Acta. 2015;1849(1):10–22.
Heikkinen PT, Nummela M, Leivonen SK, Westermarck J, Hill CS, Kahari VM, et al. Hypoxia-activated Smad3-specific Dephosphorylation by PP2A. J Biol Chem. 2009;285(6):3740–9.
Article
PubMed Central
PubMed
Google Scholar
Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M, et al. Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. Mol Cell Biol. 2009;29(1):172–86.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nakagawa T, Li JH, Garcia G, Mu W, Piek E, Böttinger EP, et al. TGF-β induces proangiogenic and antiangiogenic factorsvia parallel but distinct Smad pathways1. Kidney Int. 2004;66(2):605–13.
Article
CAS
PubMed
Google Scholar
Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, et al. Functional characterization of transforming growth factor β signaling in Smad2-and Smad3-deficient fibroblasts. J Biol Chem. 2001;276(23):19945–53.
Article
CAS
PubMed
Google Scholar
Lo RS, Massagué J. Ubiquitin-dependent degradation of TGF-β activated Smad2. Nat Cell Biol. 1999;1(8):472–8.
Article
CAS
PubMed
Google Scholar
Goll DE, Thompson VF, Li H, Wei W, CONG J. The calpain system. Physiol Rev. 2003;83(3):731–801.
Article
CAS
PubMed
Google Scholar
Deshpande RV, Goust J-M, Chakrabarti AK, Barbosa E, Hogan EL, Banik NL. Calpain expression in lymphoid cells increased mRNA and protein levels after cell activation. J Biol Chem. 1995;270(6):2497–505.
Article
CAS
PubMed
Google Scholar
Walker G, Pfeilschifter J, Otten U, Kunz D. Proteolytic cleavage of inducible nitric oxide synthase (iNOS) by calpain I. Biochim Biophys Acta. 2001;1568(3):216–24.
Zheng X, Zhou A-X, Rouhi P, Uramoto H, Borén J, Cao Y, et al. Hypoxia-induced and calpain-dependent cleavage of filamin A regulates the hypoxic response. Proc Natl Acad Sci. 2014;111(7):2560–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Iwamoto H, Miura T, Okamura T, Shirakawa K, Iwatate M, Kawamura S, et al. Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol. 1999;33(4):580–6.
Article
CAS
PubMed
Google Scholar
Zhang J, Patel JM, Block ER. Hypoxia-specific upregulation of calpain activity and gene expression in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 1998;275(3):L461–8.
CAS
Google Scholar
Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V, et al. Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood. 2014;123(8):1250–60.
Article
CAS
PubMed
Google Scholar
Zimmerman UJP, Boring L, Pak UH, Mukerjee N, Wang KK. The calpain small subunit gene is essential: its inactivation results in embryonic lethality. IUBMB Life. 2000;50(1):63–8.
Article
CAS
PubMed
Google Scholar
Zhou J, Köhl R, Herr B, Frank R, Brüne B. Calpain mediates a von hippel-lindau protein–independent destruction of hypoxia-inducible factor-1α. Mol Biol Cell. 2006;17(4):1549–58.
Article
CAS
PubMed Central
PubMed
Google Scholar
Muldoon LL, Rodland K, Magun B. Transforming growth factor beta and epidermal growth factor alter calcium influx and phosphatidylinositol turnover in rat-1 fibroblasts. J Biol Chem. 1988;263(35):18834–41.
CAS
PubMed
Google Scholar
Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilágyi A, Bánóczi Z, et al. On the sequential determinants of calpain cleavage. J Biol Chem. 2004;279(20):20775–85.
Article
CAS
PubMed
Google Scholar
Ono Y, Sorimachi H, Mamitsuka H. Calpain cleavage prediction using multiple kernel learning. PLoS One. 2011;6(5):e19035.
Article
PubMed Central
PubMed
Google Scholar
Whiteside T. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–12.
Article
CAS
PubMed Central
PubMed
Google Scholar
LaGamba D, Nawshad A, Hay ED. Microarray analysis of gene expression during epithelial–mesenchymal transformation. Dev Dyn. 2005;234(1):132–42.
Article
CAS
PubMed
Google Scholar
Kretschmer A, Moepert K, Dames S, Sternberger M, Kaufmann J, Klippel A. Differential regulation of TGF-β signaling through Smad2, Smad3 and Smad4. Oncogene. 2003;22(43):6748–63.
Article
CAS
PubMed
Google Scholar
Petersen M, Pardali E, Van Der Horst G, Cheung H, Van Den Hoogen C, Van Der Pluijm G, et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene. 2009;29(9):1351–61.
Article
PubMed
Google Scholar
Martin-Manso G, Galli S, Ridnour LA, Tsokos M, Wink DA, Roberts DD. Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res. 2008;68(17):7090–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation-and metastasis-sustaining neovasculature. Matrix Biol. 2015. doi:10.1016/j.matbio.2015.04.004.
PubMed
Google Scholar
Jiang W, Sanders A, Katoh M, Ungefroren H, Gieseler F, Prince M, et al. Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin Cancer Biol. 2015. doi: 10.1016/j.semcancer.2015.03.008.
Shapiro S, Khodalev O, Bitterman H, Auslender R, Lahat N. Different activation forms of MMP-2 oppositely affect the fate of endothelial cells. Am J Physiol Cell Physiol. 2010;298(4):C942–51.
Article
CAS
PubMed
Google Scholar
Ben-Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res. 2002;90(7):784–91.
Article
CAS
PubMed
Google Scholar
Chowdhury UR, Samant RS, Fodstad O, Shevde LA. Emerging role of nuclear protein 1 (NUPR1) in cancer biology. Cancer Metastasis Rev. 2009;28(1–2):225–32.
Article
CAS
PubMed
Google Scholar
Zawel L, Le Dai J, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998;1(4):611–7.
Article
CAS
PubMed
Google Scholar
Jennewein C, Kuhn A-M, Schmidt MV, Meilladec-Jullig V, von Knethen A, Gonzalez FJ, et al. Sumoylation of peroxisome proliferator-activated receptor γ by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from κB binding sites mediating transrepression of proinflammatory cytokines. J Immunol. 2008;181(8):5646–52.
Article
CAS
PubMed Central
PubMed
Google Scholar