Tata JR: Gene expression during metamorphosis: an ideal model for post-embryonic development. BioEssays. 1993, 15: 239-248. 10.1002/bies.950150404
Article
CAS
PubMed
Google Scholar
Yen PM: Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001, 81: 1097-1142.
CAS
PubMed
Google Scholar
Hetzel BS: The story of iodine deficiency: An international challenge in nutrition. Oxford: Oxford University Press; 1989.
Google Scholar
Gilbert LI, Tata JR, Atkinson BG: Metamorphosis: Post-embryonic reprogramming of gene expression in amphibian and insect cells. New York: Academic; 1996.
Google Scholar
Shi Y-B: Amphibian Metamorphosis: From morphology to molecular biology. 1999, Wiley, New York.
Google Scholar
Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A: The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis. Cell Biosci. 2011, 1: 30. 10.1186/2045-3701-1-30
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Shi YB: Evolutionary insights into postembryonic development of adult intestinal stem cells. Cell Biosci. 2011, 1: 37. 10.1186/2045-3701-1-37
Article
PubMed Central
CAS
PubMed
Google Scholar
Lazar MA: Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993, 14: 184-193.
CAS
PubMed
Google Scholar
Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P: The nuclear receptor superfamily: the second decade. Cell. 1995, 83: 835-839. 10.1016/0092-8674(95)90199-X
Article
CAS
PubMed
Google Scholar
Tsai MJ, O’Malley BW: Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem. 1994, 63: 451-486. 10.1146/annurev.bi.63.070194.002315
Article
CAS
PubMed
Google Scholar
Schreiber AM, Das B, Huang H, Marsh-Armstrong N, Brown DD: Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor. PNAS. 2001, 98: 10739-10744. 10.1073/pnas.191361698
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown DD, Cai L: Amphibian metamorphosis. Dev Biol. 2007, 306: 20-33. 10.1016/j.ydbio.2007.03.021
Article
PubMed Central
CAS
PubMed
Google Scholar
Buchholz DR, Hsia VS-C, Fu L, Shi Y-B: A dominant negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol Cell Biol. 2003, 23: 6750-6758. 10.1128/MCB.23.19.6750-6758.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Buchholz DR, Tomita A, Fu L, Paul BD, Shi Y-B: Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. Mol Cell Biol. 2004, 24: 9026-9037. 10.1128/MCB.24.20.9026-9037.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Buchholz DR, Paul BD, Fu L, Shi YB: Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol. 2006, 145: 1-19. 10.1016/j.ygcen.2005.07.009
Article
CAS
PubMed
Google Scholar
Shi Y-B: Dual functions of thyroid hormone receptors in vertebrate development: the roles of histone-modifying cofactor complexes. Thyroid. 2009, 19: 987-999. 10.1089/thy.2009.0041
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakajima K, Yaoita Y: Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Dev Dyn. 2003, 227: 246-255. 10.1002/dvdy.10300
Article
CAS
PubMed
Google Scholar
Denver RJ, Hu F, Scanlan TS, Furlow JD: Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis. Dev Biol. 2009, 326: 155-168. 10.1016/j.ydbio.2008.11.005
Article
CAS
PubMed
Google Scholar
Bagamasbad P, Howdeshell KL, Sachs LM, Demeneix BA, Denver RJ: A role for basic transcription element-binding protein 1 (BTEB1) in the autoinduction of thyroid hormone receptor beta. J Biol Chem. 2008, 283: 2275-2285.
Article
CAS
PubMed
Google Scholar
Schreiber AM, Mukhi S, Brown DD: Cell-cell interactions during remodeling of the intestine at metamorphosis in Xenopus laevis. Dev Biol. 2009, 331: 89-98. 10.1016/j.ydbio.2009.04.033
Article
PubMed Central
CAS
PubMed
Google Scholar
Bilesimo P, Jolivet P, Alfama G, Buisine N, Le Mevel S, Havis E, Demeneix BA, Sachs LM: Specific Histone Lysine 4 Methylation Patterns Define TR-Binding Capacity and Differentiate Direct T3 Responses. Mol Endocrinol. 2011, 25: 225-237. 10.1210/me.2010-0269
Article
CAS
PubMed
Google Scholar
Matsuura K, Fujimoto K, Fu L, Shi Y-B: Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development. Endocrinology. 2012, 153: 961-972. 10.1210/en.2011-1736
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Matsuda H, Shi Y-B: Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology. 2008, 149: 5610-5618. 10.1210/en.2008-0751
Article
PubMed Central
CAS
PubMed
Google Scholar
Tomita A, Buchholz DR, Shi Y-B: Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol Cell Biol. 2004, 24: 3337-3346. 10.1128/MCB.24.8.3337-3346.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Sachs LM, Jones PL, Havis E, Rouse N, Demeneix BA, Shi Y-B: N-CoR recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development. Mol Cell Biol. 2002, 22: 8527-8538. 10.1128/MCB.22.24.8527-8538.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Sato Y, Buchholz DR, Paul BD, Shi Y-B: A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis. Mech Dev. 2007, 124: 476-488. 10.1016/j.mod.2007.03.006
Article
PubMed Central
CAS
PubMed
Google Scholar
Matsuda H, Paul BD, Choi CY, Hasebe T, Shi Y-B: Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis. Mol Cell Biol. 2009, 29: 745-757. 10.1128/MCB.00827-08
Article
PubMed Central
CAS
PubMed
Google Scholar
Paul BD, Buchholz DR, Fu L, Shi Y-B: Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development. J Biol Chem. 2005, 280: 27165-27172. 10.1074/jbc.M503999200
Article
CAS
PubMed
Google Scholar
Paul BD, Fu L, Buchholz DR, Shi Y-B: Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis. Mol Cell Biol. 2005, 25: 5712-5724. 10.1128/MCB.25.13.5712-5724.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Paul BD, Buchholz DR, Fu L, Shi Y-B: SRC-p300 coactivator complex is required for thyroid hormone induced amphibian metamorphosis. J Biol Chem. 2007, 282: 7472-7481.
Article
CAS
PubMed
Google Scholar
Havis E, Sachs LM, Demeneix BA: Metamorphic T3-response genes have specific co-regulator requirements. EMBO Reports. 2003, 4: 883-888. 10.1038/sj.embor.embor908
Article
PubMed Central
CAS
PubMed
Google Scholar
Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, Mahowald M, Gottschling DE: Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics. 1998, 150: 613-632.
PubMed Central
CAS
PubMed
Google Scholar
Nguyen AT, Zhang Y: The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 2011, 25: 1345-1358. 10.1101/gad.2057811
Article
PubMed Central
CAS
PubMed
Google Scholar
Greer EL, Shi Y: Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012, 13: 343-357.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dillon SC, Zhang X, Trievel RC, Cheng X: The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005, 6: 227. 10.1186/gb-2005-6-8-227
Article
PubMed Central
PubMed
Google Scholar
Barry ER, Corry GN, Rasmussen TP: Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development. Expert Opin Ther Targets. 2010, 14: 405-418. 10.1517/14728221003623241
Article
CAS
PubMed
Google Scholar
Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y: Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 2002, 12: 1052-1058. 10.1016/S0960-9822(02)00901-6
Article
CAS
PubMed
Google Scholar
Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, et al: The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 2008, 4: e1000190. 10.1371/journal.pgen.1000190
Article
PubMed Central
PubMed
Google Scholar
Kouzarides T: Chromatin modifications and their function. Cell. 2007, 128: 693-705. 10.1016/j.cell.2007.02.005
Article
CAS
PubMed
Google Scholar
Shilatifard A: Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006, 75: 243-269. 10.1146/annurev.biochem.75.103004.142422
Article
CAS
PubMed
Google Scholar
Wang Z, Schones DE, Zhao K: Characterization of human epigenomes. Curr Opin Genet Dev. 2009, 19: 127-134. 10.1016/j.gde.2009.02.001
Article
PubMed Central
CAS
PubMed
Google Scholar
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002, 298: 1039-1043. 10.1126/science.1076997
Article
CAS
PubMed
Google Scholar
Cao R, Zhang Y: The functions of E(Z)/EZH2- mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004, 14: 155-164. 10.1016/j.gde.2004.02.001
Article
CAS
PubMed
Google Scholar
Li B, Carey M, Workman JL: The role of chromatin during transcription. Cell. 2007, 128: 707-719. 10.1016/j.cell.2007.01.015
Article
CAS
PubMed
Google Scholar
Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K: Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008, 40: 897-903. 10.1038/ng.154
Article
PubMed Central
CAS
PubMed
Google Scholar
Roh TY, Cuddapah S, Cui K, Zhao K: The genomic landscape of histone modifications in human T cells. Proc Natl Acad Sci U S A. 2006, 103: 15782-15787. 10.1073/pnas.0607617103
Article
PubMed Central
CAS
PubMed
Google Scholar
Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129: 823-837. 10.1016/j.cell.2007.05.009
Article
CAS
PubMed
Google Scholar
Maunakea AK, Chepelev I, Zhao K: Epigenome mapping in normal and disease States. Circ Res. 2010, 107: 327-339. 10.1161/CIRCRESAHA.110.222463
Article
PubMed Central
CAS
PubMed
Google Scholar
Barth TK, Imhof A: Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci. 2010, 35: 618-626. 10.1016/j.tibs.2010.05.006
Article
CAS
PubMed
Google Scholar
Zhang W, Hayashizaki Y, Kone BC: Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase. Biochem J. 2004, 377: 641-651.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shi Y-B, Yaoita Y, Brown DD: Genomic organization and alternative promoter usage of the two thyroid hormone receptor ß genes in Xenopus laevis. J Biol Chem. 1992, 267: 733-788.
CAS
PubMed
Google Scholar
Ranjan M, Wong J, Shi YB: Transcriptional repression of Xenopus TR beta gene is mediated by a thyroid hormone response element located near the start site. J Biol Chem. 1994, 269: 24699-24705.
CAS
PubMed
Google Scholar
Wong J, Liang VC, Sachs LM, Shi YB: Transcription from the thyroid hormone-dependent promoter of the Xenopus laevis thyroid hormone receptor betaA gene requires a novel upstream element and the initiator, but not a TATA Box. J Biol Chem. 1998, 273: 14186-14193. 10.1074/jbc.273.23.14186
Article
CAS
PubMed
Google Scholar
Wong J, Shi Y-B: Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors. J Biol Chem. 1995, 270: 18479-18483. 10.1074/jbc.270.31.18479
Article
CAS
PubMed
Google Scholar
Buchholz DR, Ishizuya-Oka A, Shi YB: Spatial and temporal expression pattern of a novel gene in the frog Xenopus laevis: correlations with adult intestinal epithelial differentiation during metamorphosis. Gene Expr Patterns. 2004, 4: 321-328. 10.1016/j.modgep.2003.10.005
Article
CAS
PubMed
Google Scholar
Nieuwkoop PD, Faber J: Normal table of Xenopus laevis. Amsterdam: North Holland Publishing; 1965.
Google Scholar
Das B, Heimeier RA, Buchholz DR, Shi YB: Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis. J Biol Chem. 2009, 284: 34167-34178. 10.1074/jbc.M109.066084
Article
PubMed Central
CAS
PubMed
Google Scholar
Sandelin A, Wasserman WW: Prediction of nuclear hormone receptor response elements. Mol Endocrinol. 2005, 19: 595-606.
Article
CAS
PubMed
Google Scholar