Nilsson PM, Tuomilehto J, Rydén L. The metabolic syndrome—what is it and how should it be managed? Eur J Prev Cardiol. 2019;26(2):33–46.
Article
Google Scholar
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.
Article
CAS
Google Scholar
Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood–brain barrier. Front Neurosci. 2018;12:930.
Article
Google Scholar
Offen D, Shtaif B, Hadad D, Weizman A, Melamed E, Gil-Ad I. Protective effect of insulin-like-growth-factor-1 against dopamine-induced neurotoxicity in human and rodent neuronal cultures: possible implications for Parkinson’s disease. Neurosci Lett. 2001;316(3):129–32.
Article
CAS
Google Scholar
Niikura T, Hashimoto Y, Okamoto T, Abe Y, Yasukawa T, Kawasumi M, et al. Insulin-like growth factor I (IGF-I) protects cells from apoptosis by Alzheimer’s V642I mutant amyloid precursor protein through IGF-I receptor in an IGF-binding protein-sensitive manner. J Neurosci. 2001;21(6):1902–10.
Article
CAS
Google Scholar
Herrero-Labrador R, Trueba-Saiz A, Martinez-Rachadell L, de Sevilla MEF, Zegarra-Valdivia JA, Pignatelli J, et al. Circulating insulin-like growth factor I is involved in the effect of high fat diet on peripheral amyloid beta clearance. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21249675.
Article
Google Scholar
Wang F, Wang L, Wang Y, Li D, Hu T, Sun M, et al. Exogenous IGF-1 improves cognitive function in rats with high-fat diet consumption. J Mol Endocrinol. 2020;64(2):115–23.
Article
CAS
Google Scholar
Duarte AI, Petit GH, Ranganathan S, Li JY, Oliveira CR, Brundin P, et al. IGF-1 protects against diabetic features in an in vivo model of Huntington’s disease. Exp Neurol. 2011;231(2):314–9.
Article
CAS
Google Scholar
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol. 2019;72(11):725–35.
Article
CAS
Google Scholar
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017. https://doi.org/10.1101/cshperspect.a028035.
Article
Google Scholar
Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21(10):1300–9.
Article
CAS
Google Scholar
Dharshini SAP, Jemimah S, Taguchi YH, Gromiha MM. Exploring common therapeutic targets for neurodegenerative disorders using transcriptome study. Front Genet. 2021;12: 639160.
Article
CAS
Google Scholar
Blesch A. Neurotrophic factors in neurodegeneration. Brain Pathol. 2006;16(4):295–303.
Article
CAS
Google Scholar
Costales J, Kolevzon A. The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neurosci Biobehav Rev. 2016;63:207–22.
Article
CAS
Google Scholar
Laron Z. Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol. 2001;54(5):311–6.
Article
CAS
Google Scholar
Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: a target for endocrine disruptors? Environ Int. 2021;147: 106311.
Article
CAS
Google Scholar
Holly JM, Perks CM. Insulin-like growth factor physiology: what we have learned from human studies. Endocrinol Metab Clin North Am. 2012;41(2):249–63.
Article
CAS
Google Scholar
Werner H, LeRoith D. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects. Eur Neuropsychopharmacol. 2014;24(12):1947–53.
Article
CAS
Google Scholar
Leung KC, Doyle N, Ballesteros M, Waters MJ, Ho KK. Insulin regulation of human hepatic growth hormone receptors: divergent effects on biosynthesis and surface translocation. J Clin Endocrinol Metab. 2000;85(12):4712–20.
CAS
Google Scholar
Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: a review. Ageing Res Rev. 2018;42:14–27.
Article
CAS
Google Scholar
Bondy CA, Cheng CM. Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol. 2004;490(1–3):25–31.
Article
CAS
Google Scholar
Salzmann A, James SN, Williams DM, Richards M, Cadar D, Schott JM, et al. Investigating the relationship between IGF-I, IGF-II, and IGFBP-3 concentrations and later-life cognition and brain volume. J Clin Endocrinol Metab. 2021;106(6):1617–29.
Article
Google Scholar
Okamoto N, Yoshino K, Kitagawa S, Fujii R, Hamada S, Ikenouchi A, et al. Association between serum insulin-like growth factor 1 levels and the clinical symptoms of chronic schizophrenia: preliminary findings. Front Psychiatry. 2021;12: 653802.
Article
Google Scholar
Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, et al. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging. 2006;27(9):1250–7.
Article
CAS
Google Scholar
Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21(5):1628–34.
Article
CAS
Google Scholar
Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med. 2003;349(23):2211–22.
Article
CAS
Google Scholar
Juanes M, Guercio G, Marino R, Berensztein E, Warman DM, Ciaccio M, et al. Three novel IGF1R mutations in microcephalic patients with prenatal and postnatal growth impairment. Clin Endocrinol. 2015;82(5):704–11.
Article
CAS
Google Scholar
Park SE, Dantzer R, Kelley KW, McCusker RH. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation. 2011;8:12.
Article
CAS
Google Scholar
Aghanoori M-R, Agarwal P, Gauvin E, Nagalingam RS, Bonomo R, Yathindranath V, et al. CEBPβ regulation of endogenous IGF-1 in adult sensory neurons can be mobilized to overcome diabetes-induced deficits in bioenergetics and axonal outgrowth. Cell Mol Life Sci. 2022;79(4):1–19.
Article
Google Scholar
Chattopadhyay S, Shubayev VI. MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway. Glia. 2009;57(12):1316–25.
Article
Google Scholar
Cao Y, Gunn AJ, Bennet L, Wu D, George S, Gluckman PD, et al. Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep. J Cereb Blood Flow Metab. 2003;23(6):739–47.
Article
CAS
Google Scholar
Sun LY, Al-Regaiey K, Masternak MM, Wang J, Bartke A. Local expression of GH and IGF-1 in the hippocampus of GH-deficient long-lived mice. Neurobiol Aging. 2005;26(6):929–37.
Article
CAS
Google Scholar
Popken GJ, Hodge RD, Ye P, Zhang J, Ng W, O’Kusky JR, et al. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur J Neurosci. 2004;19(8):2056–68.
Article
Google Scholar
Ashpole NM, Sanders JE, Hodges EL, Yan H, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol. 2015;68:76–81.
Article
CAS
Google Scholar
Laron Z, Kauli R. Fifty seven years of follow-up of the Israeli cohort of Laron syndrome patients—from discovery to treatment. Growth Horm IGF Res. 2016;28:53–6.
Article
Google Scholar
Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR. Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience. 2001;107(4):603–13.
Article
CAS
Google Scholar
Åberg MA, Åberg ND, Hedbäcker H, Oscarsson J, Eriksson PS. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci. 2000;20(8):2896–903.
Article
Google Scholar
Cheng CM, Cohen M, Tseng V, Bondy CA. Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus. J Neurosci Res. 2001;64(4):341–7.
Article
CAS
Google Scholar
Mir S, Cai W, Carlson SW, Saatman KE, Andres DA. IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade. Sci Rep. 2017;7(1):3283.
Article
Google Scholar
Trejo JL, Piriz J, Llorens-Martin MV, Fernandez AM, Bolós M, LeRoith D, et al. Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry. 2007;12(12):1118–28.
Article
CAS
Google Scholar
Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4(2):195–212.
Article
CAS
Google Scholar
Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Springo Z, Fulop GA, Ashpole N, et al. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell. 2017;16(3):469–79.
Article
CAS
Google Scholar
Angelini A, Bendini C, Neviani F, Bergamini L, Manni B, Trenti T, et al. Insulin-like growth factor-1 (IGF-1): relation with cognitive functioning and neuroimaging marker of brain damage in a sample of hypertensive elderly subjects. Arch Gerontol Geriatr. 2009;49(Suppl 1):5–12.
Article
CAS
Google Scholar
Fernandez AM, Hernandez-Garzón E, Perez-Domper P, Perez-Alvarez A, Mederos S, Matsui T, et al. Insulin regulates astrocytic glucose handling through cooperation with IGF-I. Diabetes. 2017;66(1):64–74.
Article
CAS
Google Scholar
Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, et al. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience. 2021;43(2):901–11.
Article
CAS
Google Scholar
Calvo D, Gunstad J, Miller LA, Glickman E, Spitznagel MB. Higher serum insulin-like growth factor-1 is associated with better cognitive performance in persons with mild cognitive impairment. Psychogeriatrics. 2013;13(3):170–4.
Article
Google Scholar
Molina DP, Ariwodola OJ, Weiner JL, Brunso-Bechtold JK, Adams MM. Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. Age. 2013;35(5):1575–87.
Article
CAS
Google Scholar
Sonntag WE, Bennett SA, Khan AS, Thornton PL, Xu X, Ingram RL, et al. Age and insulin-like growth factor-1 modulate N-methyl-d-aspartate receptor subtype expression in rats. Brain Res Bull. 2000;51(4):331–8.
Article
CAS
Google Scholar
VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM. Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem. 2010;113(6):1577–88.
CAS
Google Scholar
Kelsch W, Hormuzdi S, Straube E, Lewen A, Monyer H, Misgeld U. Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward transport during maturation of hippocampal neurons. J Neurosci. 2001;21(21):8339–47.
Article
CAS
Google Scholar
Nuñez A, Carro E, Torres-Aleman I. Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. J Neurophysiol. 2003;89(6):3008–17.
Article
Google Scholar
Aimond F, Rauzier JM, Bony C, Vassort G. Simultaneous activation of p38 MAPK and p42/44 MAPK by ATP stimulates the K+ current ITREK in cardiomyocytes. J Biol Chem. 2000;275(50):39110–6.
Article
CAS
Google Scholar
Deijen JB, Arwert LI, Drent ML. The GH/IGF-I axis and cognitive changes across a 4-year period in healthy adults. ISRN Endocrinol. 2011;2011: 249421.
Article
Google Scholar
Yu XW, Oh MM, Disterhoft JF. CREB, cellular excitability, and cognition: implications for aging. Behav Brain Res. 2017;322(Pt B):206–11.
Article
CAS
Google Scholar
Zuloaga R, Fuentes EN, Molina A, Valdés JA. The cAMP response element binding protein (CREB) is activated by insulin-like growth factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast. Biochem Biophys Res Commun. 2013;440(2):258–64.
Article
CAS
Google Scholar
Merienne K, Pannetier S, Harel-Bellan A, Sassone-Corsi P. Mitogen-regulated RSK2-CBP interaction controls their kinase and acetylase activities. Mol Cell Biol. 2001;21(20):7089–96.
Article
CAS
Google Scholar
Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol. 2002;22(8):2871–81.
Article
CAS
Google Scholar
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111–28.
Article
Google Scholar
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020. https://doi.org/10.3390/molecules25245789.
Article
Google Scholar
Milionis HJ, Florentin M, Giannopoulos S. Metabolic syndrome and Alzheimer’s disease: a link to a vascular hypothesis? CNS Spectr. 2008;13(7):606–13.
Article
Google Scholar
Bye CM, McDonald RJ. A specific role of hippocampal NMDA receptors and Arc protein in rapid encoding of novel environmental representations and a more general long-term consolidation function. Front Behav Neurosci. 2019. https://doi.org/10.3389/fnbeh.2019.00008.
Article
Google Scholar
Li F, Tsien JZ. Memory and the NMDA receptors. N Engl J Med. 2009;361(3):302.
Article
CAS
Google Scholar
Sumi T, Harada K. Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors. Sci Rep. 2020;10(1):14711.
Article
CAS
Google Scholar
Bliss TVP, Collingridge GL. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain. 2013;6(1):5.
Article
CAS
Google Scholar
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400.
Article
CAS
Google Scholar
Kakizawa S, Yamada K, Iino M, Watanabe M, Kano M. Effects of insulin-like growth factor I on climbing fibre synapse elimination during cerebellar development. Eur J Neurosci. 2003;17(3):545–54.
Article
Google Scholar
Ramsey MM, Adams MM, Ariwodola OJ, Sonntag WE, Weiner JL. Functional characterization of des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus. J Neurophysiol. 2005;94(1):247–54.
Article
CAS
Google Scholar
Xing C, Yin Y, Chang R, Gong X, He X, Xie Z. Effects of insulin-like growth factor 1 on synaptic excitability in cultured rat hippocampal neurons. Exp Neurol. 2007;205(1):222–9.
Article
CAS
Google Scholar
Shi L, Linville MC, Tucker EW, Sonntag WE, Brunso-Bechtold JK. Differential effects of aging and insulin-like growth factor-1 on synapses in CA1 of rat hippocampus. Cereb Cortex. 2005;15(5):571–7.
Article
Google Scholar
Xing C, Yin Y, Chang R, He X, Xie Z. A role of insulin-like growth factor 1 in beta amyloid-induced disinhibition of hippocampal neurons. Neurosci Lett. 2005;384(1–2):93–7.
Article
CAS
Google Scholar
Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci. 2003;6(2):136–43.
Article
CAS
Google Scholar
Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron. 2003;40(2):361–79.
Article
CAS
Google Scholar
de la Vega AG, Buño W, Pons S, Garcia-Calderat MS, Garcia-Galloway E, Torres-Aleman I. Insulin-like growth factor I potentiates kainate receptors through a phosphatidylinositol 3-kinase dependent pathway. NeuroReport. 2001;12(6):1293–6.
Article
Google Scholar
Sanchez JC, Lopez-Zapata DF, Francis L, De Los RL. Effects of estradiol and IGF-1 on the sodium calcium exchanger in rat cultured cortical neurons. Cell Mol Neurobiol. 2011;31(4):619–27.
Article
CAS
Google Scholar
Xing C, Yin Y, He X, Xie Z. Effects of insulin-like growth factor 1 on voltage-gated ion channels in cultured rat hippocampal neurons. Brain Res. 2006;1072(1):30–5.
Article
CAS
Google Scholar
Evans AJ, Gurung S, Henley JM, Nakamura Y, Wilkinson KA. Exciting times: new advances towards understanding the regulation and roles of kainate receptors. Neurochem Res. 2019;44(3):572–84.
Article
CAS
Google Scholar
Isaac JTR, Mellor J, Hurtado D, Roche KW. Kainate receptor trafficking: physiological roles and molecular mechanisms. Pharmacol Ther. 2004;104(3):163–72.
Article
CAS
Google Scholar
Darstein M, Petralia RS, Swanson GT, Wenthold RJ, Heinemann SF. Distribution of kainate receptor subunits at hippocampal mossy fiber synapses. J Neurosci. 2003;23(22):8013.
Article
CAS
Google Scholar
Fadool DA, Tucker K, Phillips JJ, Simmen JA. Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv13. J Neurophysiol. 2000;83(4):2332–48.
Article
CAS
Google Scholar
Pekic S, Popovic V. Management of endocrine disease: GH therapy and cancer risk in hypopituitarism: what we know from human studies. Eur J Endocrinol. 2013;169(5):R89–97.
Article
CAS
Google Scholar
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol. 2020;13(1):64.
Article
Google Scholar
Westwood AJ, Beiser A, Decarli C, Harris TB, Chen TC, He XM, et al. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology. 2014;82(18):1613–9.
Article
CAS
Google Scholar
Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med. 2002;8(12):1390–7.
Article
CAS
Google Scholar
Kimoto A, Kasanuki K, Kumagai R, Shibata N, Ichimiya Y, Arai H. Serum insulin-like growth factor-I and amyloid beta protein in Alzheimer’s disease: relationship with cognitive function. Psychogeriatrics. 2016;16(4):247–54.
Article
Google Scholar
Kang K, Bai J, Zhong S, Zhang R, Zhang X, Xu Y, et al. Down-regulation of insulin like growth factor 1 involved in Alzheimer’s disease via MAPK, Ras, and FoxO signaling pathways. Oxid Med Cell Longev. 2022;2022:8169981.
Article
Google Scholar
Fukudome Y, Tabata T, Miyoshi T, Haruki S, Araishi K, Sawada S, et al. Insulin-like growth factor-I as a promoting factor for cerebellar Purkinje cell development. Eur J Neurosci. 2003;17(10):2006–16.
Article
Google Scholar
Zheng WH, Quirion R. Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J Neurochem. 2004;89(4):844–52.
Article
CAS
Google Scholar
Zheng WH, Quirion R. Insulin-like growth factor-1 (IGF-1) induces the activation/phosphorylation of Akt kinase and cAMP response element-binding protein (CREB) by activating different signaling pathways in PC12 cells. BMC Neurosci. 2006;7:51.
Article
Google Scholar
Ma K, Xu H, Zhang J, Zhao F, Liang H, Sun H, et al. Insulin-like growth factor-1 enhances neuroprotective effects of neural stem cell exosomes after spinal cord injury via an miR-219a-2-3p/YY1 mechanism. Aging. 2019;11(24):12278–94.
Article
CAS
Google Scholar
Decourt B, Lahiri DK, Sabbagh MN. Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr Alzheimer Res. 2017;14(4):412–25.
Article
CAS
Google Scholar
Whiten DR, Brownjohn PW, Moore S, De S, Strano A, Zuo Y, et al. Tumour necrosis factor induces increased production of extracellular amyloid-β- and α-synuclein-containing aggregates by human Alzheimer’s disease neurons. Brain Commun. 2020;2(2):fcaa146.
Article
Google Scholar
Johanson CE, Johanson NL. Choroid plexus blood-CSF barrier: major player in brain disease modeling and neuromedicine. J Neurol Neuromed. 2018. https://doi.org/10.29245/2572.942X/2018/4.1194.
Article
Google Scholar
Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, et al. Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res. 2004;1(1):3.
Article
Google Scholar
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.
Article
Google Scholar
Radhakrishnan S, Menon UK, Sundaram KR. Usefulness of a modified questionnaire as a screening tool for swallowing disorders in Parkinson disease: a pilot study. Neurol India. 2019;67(1):118–22.
Google Scholar
Nadjar A, Berton O, Guo S, Leneuve P, Dovero S, Diguet E, et al. IGF-1 signaling reduces neuro-inflammatory response and sensitivity of neurons to MPTP. Neurobiol Aging. 2009;30(12):2021–30.
Article
CAS
Google Scholar
Bernhard FP, Heinzel S, Binder G, Weber K, Apel A, Roeben B, et al. Insulin-like growth factor 1 (IGF-1) in Parkinson’s disease: potential as trait-, progression- and prediction marker and confounding factors. PLoS ONE. 2016;11(3): e0150552.
Article
Google Scholar
Ghazi Sherbaf F, Mohajer B, Ashraf-Ganjouei A, Mojtahed Zadeh M, Javinani A, Sanjari Moghaddam H, et al. Serum insulin-like growth factor-1 in Parkinson’s disease; study of cerebrospinal fluid biomarkers and white matter microstructure. Front Endocrinol. 2018;9:608.
Article
Google Scholar
Godau J, Herfurth M, Kattner B, Gasser T, Berg D. Increased serum insulin-like growth factor 1 in early idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81(5):536–8.
Article
Google Scholar
Guan J, Krishnamurthi R, Waldvogel HJ, Faull RL, Clark R, Gluckman P. N-terminal tripeptide of IGF-1 (GPE) prevents the loss of TH positive neurons after 6-OHDA induced nigral lesion in rats. Brain Res. 2000;859(2):286–92.
Article
CAS
Google Scholar
Krishnamurthi R, Stott S, Maingay M, Faull RL, McCarthy D, Gluckman P, et al. N-terminal tripeptide of IGF-1 improves functional deficits after 6-OHDA lesion in rats. NeuroReport. 2004;15(10):1601–4.
Article
CAS
Google Scholar
Quesada A, Micevych PE. Estrogen interacts with the IGF-1 system to protect nigrostriatal dopamine and maintain motoric behavior after 6-hydroxdopamine lesions. J Neurosci Res. 2004;75(1):107–16.
Article
CAS
Google Scholar
Ebert AD, Beres AJ, Barber AE, Svendsen CN. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol. 2008;209(1):213–23.
Article
CAS
Google Scholar
Pristerà A, Blomeley C, Lopes E, Threlfell S, Merlini E, Burdakov D, et al. Dopamine neuron-derived IGF-1 controls dopamine neuron firing, skill learning, and exploration. Proc Natl Acad Sci USA. 2019;116(9):3817–26.
Article
Google Scholar
Quesada A, Lee BY, Micevych PE. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson’s disease. Dev Neurobiol. 2008;68(5):632–44.
Article
CAS
Google Scholar
Wang L, Yang HJ, Xia YY, Feng ZW. Insulin-like growth factor 1 protects human neuroblastoma cells SH-EP1 against MPP+-induced apoptosis by AKT/GSK-3β/JNK signaling. Apoptosis. 2010;15(12):1470–9.
Article
CAS
Google Scholar
Alberti KG, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.
Article
Google Scholar
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12.
Article
Google Scholar
Watts AS, Loskutova N, Burns JM, Johnson DK. Metabolic syndrome and cognitive decline in early Alzheimer’s disease and healthy older adults. J Alzheimer’s Dis. 2013;35(2):253–65.
Article
CAS
Google Scholar
Wang F, Zhao M, Han Z, Li D, Zhang S, Zhang Y, et al. Long-term subclinical hyperglycemia and hypoglycemia as independent risk factors for mild cognitive impairment in elderly people. Tohoku J Exp Med. 2017;242(2):121–8.
Article
CAS
Google Scholar
Zhong Y, Zhu Y, He T, Li W, Li Q, Miao Y. Brain-derived neurotrophic factor inhibits hyperglycemia-induced apoptosis and downregulation of synaptic plasticity-related proteins in hippocampal neurons via the PI3K/Akt pathway. Int J Mol Med. 2019;43(1):294–304.
CAS
Google Scholar
Mukherjee A, Mehta BK, Sen KK, Banerjee S. Metabolic syndrome-associated cognitive decline in mice: role of minocycline. Indian J Pharmacol. 2018;50(2):61–8.
Article
CAS
Google Scholar
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176275.
Article
Google Scholar
Robertson K, Lu Y, De Jesus K, Li B, Su Q, Lund PK, et al. A general and islet cell-enriched overexpression of IGF-I results in normal islet cell growth, hypoglycemia, and significant resistance to experimental diabetes. Am J Physiol Endocrinol Metab. 2008;294(5):E928–38.
Article
CAS
Google Scholar
Spauwen PJ, Köhler S, Verhey FR, Stehouwer CD, van Boxtel MP. Effects of type 2 diabetes on 12-year cognitive change: results from the Maastricht aging study. Diabetes Care. 2013;36(6):1554–61.
Article
Google Scholar
Li X, Song D, Leng SX. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging. 2015;10:549–60.
Article
Google Scholar
Mittal K, Katare DP. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: a review. Diabetes Metab Syndr. 2016;10(2 Suppl 1):S144–9.
Article
Google Scholar
Adzovic L, Lynn AE, D’Angelo HM, Crockett AM, Kaercher RM, Royer SE, et al. Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains. J Neuroinflammation. 2015;12:63.
Article
Google Scholar
Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology. 2004;29(10):1326–34.
Article
CAS
Google Scholar
Ortiz GG, Huerta M, Gonzalez-Usigli HA, Torres-Sanchez ED, Delgado-Lara DL, Pacheco-Moises FP, et al. Cognitive disorder and dementia in type 2 diabetes mellitus. World J Diabetes. 2022;13(4):319–37.
Article
Google Scholar
Yuan XY, Wang XG. Mild cognitive impairment in type 2 diabetes mellitus and related risk factors: a review. Rev Neurosci. 2017;28(7):715–23.
Article
Google Scholar
Rui-Hua C, Yong-de P, Xiao-Zhen J, Chen J, Bin Z. Decreased levels of serum IGF-1 and vitamin D are associated with cognitive impairment in patients with type 2 diabetes. Am J Alzheimers Dis Other Demen. 2019;34(7–8):450–6.
Article
Google Scholar
Huang R, Wang P, Han J, Xia W, Cai R, Sun H, et al. Decreased serum IGF-1/IGFBP-3 Molar ratio is associated with executive function behaviors in type 2 diabetic patients with mild cognitive impairment. J Alzheimer’s Dis. 2015;48(3):875.
Article
Google Scholar
Aksu I, Ates M, Baykara B, Kiray M, Sisman AR, Buyuk E, et al. Anxiety correlates to decreased blood and prefrontal cortex IGF-1 levels in streptozotocin induced diabetes. Neurosci Lett. 2012;531(2):176–81.
Article
CAS
Google Scholar
Jing YH, Song YF, Yao YM, Yin J, Wang DG, Gao LP. Retardation of fetal dendritic development induced by gestational hyperglycemia is associated with brain insulin/IGF-I signals. Int J Dev Neurosci. 2014;37:15–20.
Article
CAS
Google Scholar
Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes. 2000;49(11):1932–8.
Article
CAS
Google Scholar
Vinik AI, Casellini CM. Guidelines in the management of diabetic nerve pain: clinical utility of pregabalin. Diabetes Metab Syndr Obes. 2013;6:57–78.
Article
CAS
Google Scholar
Chu Q, Moreland R, Yew NS, Foley J, Ziegler R, Scheule RK. Systemic Insulin-like growth factor-1 reverses hypoalgesia and improves mobility in a mouse model of diabetic peripheral neuropathy. Mol Ther. 2008;16(8):1400–8.
Article
CAS
Google Scholar
Russell JW, Cheng H-L, Golovoy D. Insulin-like growth factor-i promotes myelination of peripheral sensory axons. J Neuropathol Exp Neurol. 2000;59(7):575–84.
Article
CAS
Google Scholar
Ye P, Li L, Lund PK, D’Ercole AJ. Deficient expression of insulin receptor substrate-1 (IRS-1) fails to block insulin-like growth factor-I (IGF-I) stimulation of brain growth and myelination. Brain Res Dev Brain Res. 2002;136(2):111–21.
Article
CAS
Google Scholar
Dávila D, Fernández S, Torres-Alemán I. Astrocyte resilience to oxidative stress induced by insulin-like growth factor I (IGF-I) involves preserved AKT (protein kinase B) activity. J Biol Chem. 2016;291(23):12039.
Article
Google Scholar
Genis L, Dávila D, Fernandez S, Pozo-Rodrigálvarez A, Martínez-Murillo R, Torres-Aleman I. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Res. 2014;3:28.
Article
Google Scholar
Yu J, Li J, Zhang S, Xu X, Zheng M, Jiang G, et al. IGF-1 induces hypoxia-inducible factor 1α-mediated GLUT3 expression through PI3K/Akt/mTOR dependent pathways in PC12 cells. Brain Res. 2012;1430:18–24.
Article
CAS
Google Scholar
Chen X, Le Y, Tang S-Q, He W-y, He J, Wang Y-h, et al. Painful Diabetic Neuropathy Is Associated with Compromised Microglial IGF-1 Signaling Which Can Be Rescued by Green Tea Polyphenol EGCG in Mice. Oxidative medicine and cellular longevity. 2022;2022:6773662.
Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91.
Article
CAS
Google Scholar
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91(2):461–553.
Article
CAS
Google Scholar
Labandeira-Garcia JL, Costa-Besada MA, Labandeira CM, Villar-Cheda B, Rodríguez-Perez AI. Insulin-like growth factor-1 and neuroinflammation. Front Aging Neurosci. 2017. https://doi.org/10.3389/fnagi.2017.00365.
Article
Google Scholar
Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain renin-angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front Aging Neurosci. 2017. https://doi.org/10.3389/fnagi.2017.0012.
Article
Google Scholar
Suh HS, Zhao ML, Derico L, Choi N, Lee SC. Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflammation. 2013;10:37.
Article
CAS
Google Scholar
Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV, et al. IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep. 2017;19(2):225–34.
Article
CAS
Google Scholar
Sun Z, Wu K, Gu L, Huang L, Zhuge Q, Yang S, et al. IGF-1R stimulation alters microglial polarization via TLR4/NF-kappaB pathway after cerebral hemorrhage in mice. Brain Res Bull. 2020;164:221–34.
Article
CAS
Google Scholar
Mirdamadi Y, Bommhardt U, Goihl A, Guttek K, Zouboulis CC, Quist S, et al. Insulin and Insulin-like growth factor-1 can activate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in T cells in vitro. Dermatoendocrinol. 2017;9(1): e1356518.
Article
Google Scholar
Obadia N, Andrade G, Leardini-Tristao M, Albuquerque L, Garcia C, Lima F, et al. TLR4 mutation protects neurovascular function and cognitive decline in high-fat diet-fed mice. J Neuroinflammation. 2022;19(1):104.
Article
CAS
Google Scholar
Bellini MJ, Hereñú CB, Goya RG, Garcia-Segura LM. Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide. J Neuroinflammation. 2011;8(1):21.
Article
CAS
Google Scholar
Wolters TLC, Netea MG, Hermus A, Smit JWA, Netea-Maier RT. IGF1 potentiates the pro-inflammatory response in human peripheral blood mononuclear cells via MAPK. J Mol Endocrinol. 2017;59(2):129–39.
Article
CAS
Google Scholar
Lee WJ. IGF-I exerts an anti-inflammatory effect on skeletal muscle cells through down-regulation of TLR4 signaling. Immune Netw. 2011;11(4):223–6.
Article
Google Scholar
Finicelli M, Squillaro T, Di Cristo F, Di Salle A, Melone MAB, Galderisi U, et al. Metabolic syndrome, Mediterranean diet, and polyphenols: evidence and perspectives. J Cell Physiol. 2019;234(5):5807–26.
Article
CAS
Google Scholar
Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.
Article
Google Scholar
Misra A, Khurana L. Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S9-30.
Article
CAS
Google Scholar
Deckers K, Van Boxtel MPJ, Verhey FRJ, Köhler S. Obesity and cognitive decline in adults: effect of methodological choices and confounding by age in a longitudinal study. J Nutr Health Aging. 2017;21(5):546–53.
Article
CAS
Google Scholar
Ganguli M, Beer JC, Zmuda JM, Ryan CM, Sullivan KJ, Chang CH, et al. Aging, diabetes, obesity, and cognitive decline: a population-based study. J Am Geriatr Soc. 2020;68(5):991–8.
Article
Google Scholar
Chen J, Guan Z, Wang L, Song G, Ma B, Wang Y. Meta-analysis: overweight, obesity, and Parkinson’s disease. Int J Endocrinol. 2014;2014: 203930.
Google Scholar
Palacios N, Gao X, McCullough ML, Jacobs EJ, Patel AV, Mayo T, et al. Obesity, diabetes, and risk of Parkinson’s disease. Mov Disord. 2011;26(12):2253–9.
Article
Google Scholar
Waldstein SR, Katzel LI. Interactive relations of central versus total obesity and blood pressure to cognitive function. Int J Obes. 2006;30(1):201–7.
Article
CAS
Google Scholar
Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7.
Article
CAS
Google Scholar
Bhat NR, Thirumangalakudi L. Increased tau phosphorylation and impaired brain insulin/IGF signaling in mice fed a high fat/high cholesterol diet. J Alzheimer’s Dis. 2013;36(4):781–9.
Article
CAS
Google Scholar
Guerra-Cantera S, Frago LM, Jiménez-Hernaiz M, Ros P, Freire-Regatillo A, Barrios V, et al. Impact of long-term HFD intake on the peripheral and central IGF system in male and female mice. Metabolites. 2020;10(11):462.
Article
CAS
Google Scholar
Ogundele OM, Pardo J, Francis J, Goya RG, Lee CC. A putative mechanism of age-related synaptic dysfunction based on the impact of IGF-1 receptor signaling on synaptic CaMKIIα phosphorylation. Front Neuroanat. 2018. https://doi.org/10.3389/fnana.2018.00035.
Article
Google Scholar
Sun MK, Alkon DL. Links between Alzheimer’s disease and diabetes. Drugs of today. 2006;42(7):481–9.
Article
CAS
Google Scholar
Pasinetti GM, Eberstein JA. Metabolic syndrome and the role of dietary lifestyles in Alzheimer’s disease. J Neurochem. 2008;106(4):1503–14.
Article
CAS
Google Scholar
James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.
Article
CAS
Google Scholar
Canavan M, O’Donnell MJ. Hypertension and cognitive impairment: a review of mechanisms and key concepts. Front Neurol. 2022;13: 821135.
Article
Google Scholar
Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33(11):1732–42.
Article
CAS
Google Scholar
Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34(12):1887–97.
Article
CAS
Google Scholar
Ungvari Z, Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci. 2012;67(6):599–610.
Article
Google Scholar
Bailey-Downs LC, Sosnowska D, Toth P, Mitschelen M, Gautam T, Henthorn JC, et al. Growth hormone and IGF-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats: implications for vascular aging. J Gerontol A Biol Sci Med Sci. 2012;67(6):553–64.
Article
Google Scholar
Riddle DR, Sonntag WE, Lichtenwalner RJ. Microvascular plasticity in aging. Ageing Res Rev. 2003;2(2):149–68.
Article
Google Scholar
Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P, et al. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol. 2008;295(5):H1882–94.
Article
CAS
Google Scholar
Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, et al. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell. 2015;14(6):1034–44.
Article
CAS
Google Scholar
Kubik LL, Philbert MA. The role of astrocyte mitochondria in differential regional susceptibility to environmental neurotoxicants: tools for understanding neurodegeneration. Toxicol Sci. 2015;144(1):7–16.
Article
CAS
Google Scholar
Parihar MS, Kunz EA, Brewer GJ. Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons. J Neurosci Res. 2008;86(10):2339–52.
Article
CAS
Google Scholar
Parihar MS, Brewer GJ. Mitoenergetic failure in Alzheimer disease. Am J Physiol Cell Physiol. 2007;292(1):C8-23.
Article
CAS
Google Scholar
Vančová O, Bačiak L, Kašparová S, Kucharská J, Palacios HH, Horecký J, et al. In vivo and in vitro assessment of brain bioenergetics in aging rats. J Cell Mol Med. 2010;14(11):2667–74.
Article
Google Scholar
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 2019;218:165–84.
Article
CAS
Google Scholar
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–14.
CAS
Google Scholar
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73–82.
Article
CAS
Google Scholar
Bartke A, List EO, Kopchick JJ. The somatotropic axis and aging: benefits of endocrine defects. Growth Horm IGF Res. 2016;27:41–5.
Article
CAS
Google Scholar
Ge L, Liu S, Rubin L, Lazarovici P, Zheng W. Research progress on neuroprotection of insulin-like growth factor-1 towards glutamate-induced neurotoxicity. Cells. 2022. https://doi.org/10.3390/cells11040666.
Article
Google Scholar
Redmond L, Kashani AH, Ghosh A. Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron. 2002;34(6):999–1010.
Article
CAS
Google Scholar
Yamamoto K, Sakagami Y, Sugiura S, Inokuchi K, Shimohama S, Kato N. Homer 1a enhances spike-induced calcium influx via L-type calcium channels in neocortex pyramidal cells. Eur J Neurosci. 2005;22(6):1338–48.
Article
Google Scholar
Gao L, Blair LAC, Salinas GD, Needleman LA, Marshall J. Insulin-like growth factor-1 modulation of CaV1.3 calcium channels depends on Ca2+ release from IP3-sensitive stores and calcium/calmodulin kinase II phosphorylation of the alpha1 subunit EF hand. J Neurosci. 2006;26(23):6259–68.
Article
CAS
Google Scholar
Marshall J, Dolan BM, Garcia EP, Sathe S, Tang X, Mao Z, et al. Calcium channel and NMDA receptor activities differentially regulate nuclear C/EBPbeta levels to control neuronal survival. Neuron. 2003;39(4):625–39.
Article
CAS
Google Scholar
Yang C, Sui G, Li D, Wang L, Zhang S, Lei P, et al. Exogenous IGF-1 alleviates depression-like behavior and hippocampal mitochondrial dysfunction in high-fat diet mice. Physiol Behav. 2021;229: 113236.
Article
CAS
Google Scholar
Backeljauw PF, Underwood LE. Therapy for 6.5–7.5 years with recombinant insulin-like growth factor I in children with growth hormone insensitivity syndrome: a clinical research center study. J Clin Endocrinol Metab. 2001;86(4):1504–10.
CAS
Google Scholar
Torres-Aleman I. Toward a comprehensive neurobiology of IGF-I. Dev Neurobiol. 2010;70(5):384–96.
CAS
Google Scholar
ter Braak B, Siezen C, Speksnijder EN, Koedoot E, van Steeg H, Salvatori DC, et al. Mammary gland tumor promotion by chronic administration of IGF1 and the insulin analogue AspB10 in the p53R270H/(+)WAPCre mouse model. Breast Cancer Res. 2015;17:14.
Article
Google Scholar
Heskamp S, Boerman OC, Molkenboer-Kuenen JD, Wauters CA, Strobbe LJ, Mandigers CM, et al. Upregulation of IGF-1R expression during neoadjuvant therapy predicts poor outcome in breast cancer patients. PLoS ONE. 2015;10(2): e0117745.
Article
Google Scholar
Hayes CA, Valcarcel-Ares MN, Ashpole NM. Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. J Cereb Blood Flow Metab. 2021;41(10):2475–91.
Article
CAS
Google Scholar
Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P, et al. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. GeroScience. 2021;43(5):2387–94.
Article
CAS
Google Scholar
Horvath A, Salman Z, Quinlan P, Wallin A, Svensson J. Patients with Alzheimer’s disease have increased levels of insulin-like growth factor-i in serum but not in cerebrospinal fluid. J Alzheimer’s Dis. 2020;75(1):289–98.
Article
CAS
Google Scholar
Pharaoh G, Owen D, Yeganeh A, Premkumar P, Farley J, Bhaskaran S, et al. Disparate central and peripheral effects of circulating IGF-1 deficiency on tissue mitochondrial function. Mol Neurobiol. 2020;57(3):1317–31.
Article
CAS
Google Scholar
Prabhu D, Khan SM, Blackburn K, Marshall JP, Ashpole NM. Loss of insulin-like growth factor-1 signaling in astrocytes disrupts glutamate handling. J Neurochem. 2019;151(6):689–702.
Article
CAS
Google Scholar
Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol Metab. 2018;9:141–55.
Article
CAS
Google Scholar
Nageeb RS, Hashim NA, Fawzy A. Serum insulin-like growth factor 1 (IGF-1) in multiple sclerosis: relation to cognitive impairment and fatigue. Egypt J Neurol Psychiatry Neurosurg. 2018;54(1):25.
Article
Google Scholar
Quinlan P, Horvath A, Nordlund A, Wallin A, Svensson J. Low serum insulin-like growth factor-I (IGF-I) level is associated with increased risk of vascular dementia. Psychoneuroendocrinology. 2017;86:169–75.
Article
CAS
Google Scholar
Vidal JS, Hanon O, Funalot B, Brunel N, Viollet C, Rigaud AS, et al. Low serum insulin-like growth factor-i predicts cognitive decline in Alzheimer’s disease. J Alzheimer’s Dis. 2016;52(2):641–9.
Article
CAS
Google Scholar
Hu X, Yang Y, Gong D. Circulating insulin-like growth factor 1 and insulin-like growth factor binding protein-3 level in Alzheimer’s disease: a meta-analysis. Neurol Sci. 2016;37(10):1671–7.
Article
Google Scholar
Nieto-Estevez V, Oueslati-Morales CO, Li L, Pickel J, Morales AV, Vicario-Abejon C. Brain insulin-like growth factor-i directs the transition from stem cells to mature neurons during postnatal/adult hippocampal neurogenesis. Stem Cells. 2016;34(8):2194–209.
Article
CAS
Google Scholar
Basta-Kaim A, Szczesny E, Glombik K, Stachowicz K, Slusarczyk J, Nalepa I, et al. Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats. Eur Neuropsychopharmacol. 2014;24(9):1546–56.
Article
CAS
Google Scholar
Johansson P, Åberg D, Johansson J-O, Mattsson N, Hansson O, Ahrén B, et al. Serum but not cerebrospinal fluid levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 (IGFBP-3) are increased in Alzheimer’s disease. Psychoneuroendocrinology. 2013;38(9):1729–37.
Article
CAS
Google Scholar
Duron E, Funalot B, Brunel N, Coste J, Quinquis L, Viollet C, et al. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 in Alzheimer’s disease. J Clin Endocrinol Metab. 2012;97(12):4673–81.
Article
CAS
Google Scholar
Mitschelen M, Yan H, Farley JA, Warrington JP, Han S, Hereñú CB, et al. Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: a potential model of geriatric depression. Neuroscience. 2011;185:50–60.
Article
CAS
Google Scholar
Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31(2):224–43.
Article
CAS
Google Scholar
Freude S, Hettich MM, Schumann C, Stöhr O, Koch L, Köhler C, et al. Neuronal IGF-1 resistance reduces Aβ accumulation and protects against premature death in a model of Alzheimer’s disease. FASEB J. 2009;23(10):3315–24.
Article
CAS
Google Scholar
Watanabe T, Miyazaki A, Katagiri T, Yamamoto H, Idei T, Iguchi T. Relationship between serum insulin-like growth factor-1 levels and Alzheimer’s disease and vascular dementia. J Am Geriatr Soc. 2005;53(10):1748–53.
Article
Google Scholar
Selles MC, Fortuna JTS, Zappa-Villar MF, de Faria YPR, Souza AS, Suemoto CK, et al. Adenovirus-mediated transduction of insulin-like growth factor 1 protects hippocampal neurons from the toxicity of abeta oligomers and prevents memory loss in an Alzheimer mouse model. Mol Neurobiol. 2020;57(3):1473–83.
Article
CAS
Google Scholar
Farias Quipildor GE, Mao K, Hu Z, Novaj A, Cui M-H, Gulinello M, et al. Central IGF-1 protects against features of cognitive and sensorimotor decline with aging in male mice. GeroScience. 2019;41(2):185–208.
Article
Google Scholar
Carlson SW, Saatman KE. Central infusion of insulin-like growth factor-1 increases hippocampal neurogenesis and improves neurobehavioral function after traumatic brain injury. J Neurotrauma. 2018;35(13):1467–80.
Article
Google Scholar
Morel GR, Leon ML, Uriarte M, Reggiani PC, Goya RG. Therapeutic potential of IGF-I on hippocampal neurogenesis and function during aging. Neurogenesis. 2017;4(1): e1259709.
Article
Google Scholar
Pardo J, Uriarte M, Cónsole GM, Reggiani PC, Outeiro TF, Morel GR, et al. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci. 2016;44(4):2120–8.
Article
Google Scholar
Bake S, Selvamani A, Cherry J, Sohrabji F. Blood brain barrier and neuroinflammation are critical targets of IGF-1-mediated neuroprotection in stroke for middle-aged female rats. PLoS ONE. 2014;9(3):e91427.
Article
Google Scholar
Jacobsen KT, Adlerz L, Multhaup G, Iverfeldt K. Insulin-like growth factor-1 (IGF-1)-induced Processing of amyloid-β precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J Biol Chem. 2010;285(14):10223–31.
Article
CAS
Google Scholar
Sun X, Huang L, Zhang M, Sun S, Wu Y. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta. Toxicology. 2010;271(1–2):5–12.
Article
CAS
Google Scholar
Kao S-Y. Rescue of α-synuclein cytotoxicity by insulin-like growth factors. Biochem Biophys Res Commun. 2009;385(3):434–8.
Article
CAS
Google Scholar
Aghanoori M-R, Smith DR, Shariati-Ievari S, Ajisebutu A, Nguyen A, Desmond F, et al. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes. Mol Metab. 2019;20:149–65.
Article
CAS
Google Scholar
Rizk NN, Myatt-Jones J, Rafols J, Dunbar JC. Insulin like growth factor-1 (IGF-1) decreases ischemia-reperfusion induced apoptosis and necrosis in diabetic rats. Endocrine. 2007;31(1):66–71.
Article
CAS
Google Scholar
Wold LE, Muralikrishnan D, Albano CB, Norby FL, Ebadi M, Ren J. Insulin-like growth factor I (IGF-1) supplementation prevents diabetes-induced alterations in coenzymes Q9 and Q10. Acta Diabetol. 2003;40(2):85–90.
Article
CAS
Google Scholar
Delaney CL, Russell JW, Cheng HL, Feldman EL. Insulin-like growth factor-I and over-expression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J Neuropathol Exp Neurol. 2001;60(2):147–60.
Article
CAS
Google Scholar