Klumpp S, Scott M, Pedersen S, Hwa T. Molecular crowding limits translation and cell growth. Proc Natl Acad Sci. 2013;110(42):16754–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basan M, Zhu M, Dai X, Warren M, Sévin D, Wang YP, et al. Inflating bacterial cells by increased protein synthesis. Mol Syst Biol. 2015;11(10):836.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress. Nucleic Acids Res. 2019;47(14):7592–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu M, Dai X, Wang Y-P. Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZα complementation system. Nucleic Acids Res. 2016;44(20):e155.
PubMed
PubMed Central
Google Scholar
Brennan FP, Grant J, Botting CH, O’Flaherty V, Richards KG, Abram F. Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistent Escherichia coli. FEMS Microbiol Ecol. 2013;84(1):75–85.
Article
CAS
PubMed
Google Scholar
Record MT Jr, Courtenay ES, Cayley DS, Guttman HJ. Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci. 1998;23(4):143–8.
Article
CAS
PubMed
Google Scholar
Dennis PP, Ehrenberg M, Bremer H. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol Mol Biol Rev. 2004;68(4):639–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter JD, Coller J. Pausing on polyribosomes: make way for elongation in translational control. Cell. 2015;163(2):292–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedersen S. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 1984;3(12):2895–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Hubalewska M, Ignatova Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol. 2009;16(3):274–80.
Article
CAS
PubMed
Google Scholar
Rosano GL, Ceccarelli EA. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact. 2009;8(1):1–9.
Article
CAS
Google Scholar
Proud CG. Regulation and roles of elongation factor 2 kinase. Biochem Soc Trans. 2015;43(3):328–32.
Article
CAS
PubMed
Google Scholar
Faller WJ, Jackson TJ, Knight JR, Ridgway RA, Jamieson T, Karim SA, et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature. 2015;517(7535):497–500.
Article
CAS
PubMed
Google Scholar
Jan A, Jansonius B, Delaidelli A, An YA, Ferreira N, Smits LM, et al. Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Acta Neuropathol Commun. 2018;6(1):1–17.
Article
CAS
Google Scholar
Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB. Rate-limiting steps in yeast protein translation. Cell. 2013;153(7):1589–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramaniam AR, Zid BM, O’Shea EK. An integrated approach reveals regulatory controls on bacterial translation elongation. Cell. 2014;159(5):1200–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogel U, Sørensen M, Pedersen S, Jensen KF, Kilstrup M. Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Mol Microbiol. 1992;6(15):2191–200.
Article
CAS
PubMed
Google Scholar
Iyer S, Le D, Park BR, Kim M. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli. Nat Microbiol. 2018;3(6):741–8.
Article
CAS
PubMed
Google Scholar
Yahr TL, Wolfgang MC. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol. 2006;62(3):631–40.
Article
CAS
PubMed
Google Scholar
Tang X, Xiao Y, Zhou J-M. Regulation of the type III secretion system in phytopathogenic bacteria. Mol Plant Microbe Interact. 2006;19(11):1159–66.
Article
CAS
PubMed
Google Scholar
Cunnac S, Lindeberg M, Collmer A. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol. 2009;12(1):53–60.
Article
CAS
PubMed
Google Scholar
Guo M, Tian F, Wamboldt Y, Alfano JR. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol Plant Microbe Interact. 2009;22(9):1069–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
González AJ, Landeras E, Mendoza MC. Pathovars of Pseudomonas syringae causing bacterial brown spot and halo blight in Phaseolus vulgaris L. are distinguishable by ribotyping. Appl Environ Microbiol. 2000;66(2):850–4.
Article
PubMed
PubMed Central
Google Scholar
Verma G, Mondal KK, Kulshreshtha A, Sharma M. XopR T3SS-effector of Xanthomonas oryzae pv. oryzae suppresses cell death-mediated plant defense response during bacterial blight development in rice. 3 Biotech. 2019;9(7):1–10.
Article
Google Scholar
Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol. 2013;14(7):651–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in medical intensive care units in the United States. Crit Care Med. 1999;27(5):887–92.
Article
CAS
PubMed
Google Scholar
Richards MJ, Edwards JR, Culver DH, Gaynes RP, System NNIS. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000;21(8):510–5.
Article
CAS
PubMed
Google Scholar
Hikichi Y, Yoshimochi T, Tsujimoto S, Shinohara R, Nakaho K, Kanda A, et al. Global regulation of pathogenicity mechanism of Ralstonia solanacearum. Plant Biotechnol. 2007;24(1):149–54.
Article
CAS
Google Scholar
Kanda A, Yasukohchi M, Ohnishi K, Kiba A, Okuno T, Hikichi Y. Ectopic expression of Ralstonia solanacearum effector protein PopA early in invasion results in loss of virulence. Mol Plant Microbe Interact. 2003;16(5):447–55.
Article
CAS
PubMed
Google Scholar
Shen D-K, Filopon D, Chaker H, Boullanger S, Derouazi M, Polack B, et al. High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. Microbiology. 2008;154(8):2195–208.
Article
CAS
PubMed
Google Scholar
Deng X, Lan L, Xiao Y, Kennelly M, Zhou J-M, Tang X. Pseudomonas syringae two-component response regulator RhpR regulates promoters carrying an inverted repeat element. Mol Plant Microbe Interact. 2010;23(7):927–39.
Article
CAS
PubMed
Google Scholar
Deng X, Liang H, Chen K, He C, Lan L, Tang X. Molecular mechanisms of two-component system RhpRS regulating type III secretion system in Pseudomonas syringae. Nucleic Acids Res. 2014;42(18):11472–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jovanovic M, James EH, Burrows PC, Rego FG, Buck M, Schumacher J. Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat Commun. 2011;2(1):1–9.
Article
CAS
Google Scholar
Xie Y, Shao X, Zhang Y, Liu J, Wang T, Zhang W, et al. Pseudomonas savastanoi two-component system RhpRS switches between virulence and metabolism by tuning phosphorylation state and sensing nutritional conditions. MBio. 2019. https://doi.org/10.1128/mBio.02838-18.
Article
PubMed
PubMed Central
Google Scholar
Frank DW. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol. 1997;26(4):621–9.
Article
CAS
PubMed
Google Scholar
Vallis AJ, Yahr TL, Barbieri JT, Frank DW. Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun. 1999;67(2):914–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dasgupta N, Lykken GL, Wolfgang MC, Yahr TL. A novel anti-anti-activator mechanism regulates expression of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol. 2004;53(1):297–308.
Article
CAS
PubMed
Google Scholar
Ha UH, Kim J, Badrane H, Jia J, Baker HV, Wu D, et al. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol. 2004;54(2):307–20.
Article
CAS
PubMed
Google Scholar
Sundin C, Thelaus J, Bröms JE, Forsberg Å. Polarisation of type III translocation by Pseudomonas aeruginosa requires PcrG, PcrV and PopN. Microb Pathog. 2004;37(6):313–22.
Article
CAS
PubMed
Google Scholar
Yang H, Shan Z, Kim J, Wu W, Lian W, Zeng L, et al. Regulatory role of PopN and its interacting partners in type III secretion of Pseudomonas aeruginosa. J Bacteriol. 2007;189(7):2599–609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alfano JR, Collmer A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol. 1997;179(18):5655–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao Y, Hutcheson SW. A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol. 1994;176(10):3089–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam HN, Chakravarthy S, Wei H-L, BuiNguyen H, Stodghill PV, Collmer A, et al. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions. PloS ONE. 2014;9(8):e106115.
Article
PubMed
PubMed Central
Google Scholar
Hendrickson EL, Guevera P, Ausubel FM. The alternative sigma factor RpoN is required for hrpActivity in Pseudomonas syringae pv. Maculicola and acts at the level of hrpL transcription. J Bacteriol. 2000;182(12):3508–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waite C, Schumacher J, Jovanovic M, Bennett M, Buck M. Negative autogenous control of the master type III secretion system regulator HrpL in Pseudomonas syringae. MBio. 2017;8(1):e02273-e2316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutcheson SW, Bretz J, Sussan T, Jin S, Pak K. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. J Bacteriol. 2001;183(19):5589–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Shao X, Zhang Y, Zhu Y, Yang P, Yuan J, et al. HrpS is a global regulator on type III secretion system (T3SS) and non-T3SS genes in Pseudomonas savastanoi pv. phaseolicola. Mol Plant Microbe Interact. 2018;31(12):1232–43.
Article
CAS
PubMed
Google Scholar
Wei W, Plovanich-Jones A, Deng W-L, Jin Q-L, Collmer A, Huang H-C, et al. The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. Proc Natl Acad Sci. 2000;97(5):2247–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Markel E, Stodghill P, Bao Z, Myers CR, Swingle B. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000. J Bacteriol. 2016;198(17):2330–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact. 2003;16(12):1106–17.
Article
CAS
PubMed
Google Scholar
Fishman MR, Zhang J, Bronstein PA, Stodghill P, Filiatrault MJ. Ca2+-induced two-component system CvsSR regulates the type III secretion system and the extracytoplasmic function sigma factor AlgU in Pseudomonas syringae pv. tomato DC3000. J Bacteriol. 2018;200(5):e00538-17.
Article
PubMed
PubMed Central
Google Scholar
Yan Q, Rogan CJ, Pang Y-Y, Davis EW, Anderson JC. Ancient co-option of an amino acid ABC transporter locus in Pseudomonas syringae for host signal-dependent virulence gene regulation. PLoS Pathog. 2020;16(7): e1008680.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao X, Tan M, Xie Y, Yao C, Wang T, Huang H, et al. Integrated regulatory network in Pseudomonas syringae reveals dynamics of virulence. Cell Rep. 2021;34(13): 108920.
Article
CAS
PubMed
Google Scholar
Bretz J, Losada L, Lisboa K, Hutcheson SW. Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Mol Microbiol. 2002;45(2):397–409.
Article
CAS
PubMed
Google Scholar
Hua C, Wang T, Shao X, Xie Y, Huang H, Liu J, et al. Pseudomonas syringae dual-function protein Lon switches between virulence and metabolism by acting as both DNA-binding transcriptional regulator and protease in different environments. Environ Microbiol. 2020;22(7):2968–88.
Article
CAS
PubMed
Google Scholar
Wei CF, Deng WL, Huang HC. A chaperone-like HrpG protein acts as a suppressor of HrpV in regulation of the Pseudomonas syringae pv. syringae type III secretion system. Mol Microbiol. 2005;57(2):520–36.
Article
CAS
PubMed
Google Scholar
Ortiz-Martín I, Thwaites R, Mansfield JW, Beuzón CR. Negative regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola. Mol Plant Microbe Interact. 2010;23(5):682–701.
Article
PubMed
CAS
Google Scholar
Huang YC, Lin YC, Wei CF, Deng WL, Huang HC. The pathogenicity factor HrpF interacts with HrpA and HrpG to modulate type III secretion system (T3SS) function and t3ss expression in Pseudomonas syringae pv. averrhoi. Mol Plant Pathol. 2016;17(7):1080–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Shao X, Deng X. Regulation of type III secretion system in Pseudomonas syringae. Environ Microbiol. 2019;21(12):4465–77.
Article
CAS
PubMed
Google Scholar
Fan L, Wang T, Hua C, Sun W, Li X, Grunwald L, et al. A compendium of DNA-binding specificities of transcription factors in Pseudomonas syringae. Nat Commun. 2020;11(1):1–11.
Article
CAS
Google Scholar
Preston G, Huang H-C, He SY, Collmer A. The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol Plant Microbe Interact. 1995;8(5):717–32.
Article
CAS
PubMed
Google Scholar
Rodríguez-Puerto C, Chakraborty R, Singh R, Rocha-Loyola P, Rojas CM. The Pseudomonas syringae type III effector HopG1 triggers necrotic cell death that is attenuated by AtNHR2B. Sci Rep. 2022;12(1):1–14.
Article
CAS
Google Scholar
Block A, Guo M, Li G, Elowsky C, Clemente TE, Alfano JR. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell Microbiol. 2010;12(3):318–30.
Article
CAS
PubMed
Google Scholar
Gimenez-Ibanez S, Boter M, Fernández-Barbero G, Chini A, Rathjen JP, Solano R. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS Biol. 2014;12(2): e1001792.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang L, Teixeira PJPL, Biswas S, Finkel OM, He Y, Salas-Gonzalez I, et al. Pseudomonas syringae type III effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence. Cell Host Microbe. 2017;21(2):156–68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao Y, Lan L, Yin C, Deng X, Baker D, Zhou J-M, et al. Two-component sensor RhpS promotes induction of Pseudomonas syringae type III secretion system by repressing negative regulator RhpR. Mol Plant Microbe Interact. 2007;20(3):223–34.
Article
CAS
PubMed
Google Scholar
Zhou T, Chen K, Zhang H-X, Deng X. Genome-wide DNA binding pattern of two-component system response regulator RhpR in Pseudomonas syringae. Genomics data. 2015;4:146–7.
Article
PubMed
PubMed Central
Google Scholar
Xie Y, Ding Y, Shao X, Yao C, Li J, Liu J, et al. Pseudomonas syringae senses polyphenols via phosphorelay crosstalk to inhibit virulence. EMBO Rep. 2021. https://doi.org/10.15252/embr.202152805.
Article
PubMed
PubMed Central
Google Scholar
Wengelnik K, Rossier O, Bonas U. Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol. 1999;181(21):6828–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furutani A, Tsuge S, Oku T, Tsuno K, Inoue Y, Ochiai H, et al. Hpa1 secretion via type III secretion system in Xanthomonas oryzae pv. oryzae. J Gen Plant Pathol. 2003;69(4):271–5.
Article
CAS
Google Scholar
Koebnik R, Krüger A, Thieme F, Urban A, Bonas U. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J Bacteriol. 2006;188(21):7652–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aldon D, Brito B, Boucher C, Genin S. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J. 2000;19(10):2304–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valls M, Genin S, Boucher C. Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog. 2006;2(8): e82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, et al. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol. 2016;2(2):1–9.
Google Scholar
Andersson DI, Bohman K, Isaksson LA, Kurland CG. Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol Gen Genet MGG. 1982;187(3):467–72.
Article
CAS
PubMed
Google Scholar
Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, et al. Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci. 2007;104(19):8101–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stumpf CR, Moreno MV, Olshen AB, Taylor BS, Ruggero D. The translational landscape of the mammalian cell cycle. Mol Cell. 2013;52(4):574–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanenbaum ME, Stern-Ginossar N, Weissman JS, Vale RD. Regulation of mRNA translation during mitosis. Elife. 2015;4: e07957.
Article
PubMed Central
Google Scholar
Hu X-P, Dourado H, Schubert P, Lercher MJ. The protein translation machinery is expressed for maximal efficiency in Escherichia coli. Nat Commun. 2020;11(1):1–10.
Article
CAS
Google Scholar
Zhang G, Ignatova Z. Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis. PLoS ONE. 2009;4(4): e5036.
Article
PubMed
PubMed Central
CAS
Google Scholar
Young R, Bremer H. Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochem J. 1976;160(2):185–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Fedyunin I, Miekley O, Valleriani A, Moura A, Ignatova Z. Global and local depletion of ternary complex limits translational elongation. Nucleic Acids Res. 2010;38(14):4778–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunohara T, Jojima K, Tagami H, Inada T, Aiba H. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J Biol Chem. 2004;279(15):15368–75.
Article
CAS
PubMed
Google Scholar
Jacques N, Dreyfus M. Translation initiation in Escherichia coli: old and new questions. Mol Microbiol. 1990;4(7):1063–7.
Article
CAS
PubMed
Google Scholar
Dalbow DG, Young R. Synthesis time of β-galactosidase in Escherichia coli B/r as a function of growth rate. Biochem J. 1975;150(1):13–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Svenningsen SL, Kongstad M, Stenum TS, Muñoz-Gómez AJ, Sørensen MA. Transfer RNA is highly unstable during early amino acid starvation in Escherichia coli. Nucleic Acids Res. 2017;45(2):793–804.
Article
PubMed
CAS
Google Scholar
Menninger JR. Accumulation of peptidyl tRNA is lethal to Escherichia coli. J Bacteriol. 1979;137(1):694–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnston TC, Borgia PT, Parker J. Codon specificity of starvation induced misreading. Mol Gen Genet MGG. 1984;195(3):459–65.
Article
CAS
PubMed
Google Scholar
Andersen C, Wiborg O. Escherichia coli elongation-factor-Tu mutants with decreased affinity for aminoacyl-tRNA. Eur J Biochem. 1994;220(3):739–44.
Article
CAS
PubMed
Google Scholar
Bremer H, Dennis P. Escherichia coli and Salmonella: cellular and molecular biology. Washington, DC: American Society for microbiology chapter, modulation of chemical composition and other parameters of the cell by growth rate; 1996. p. 1553–69.
Miyajima A, Kaziro Y. Coordination of levels of elongation factors Tu, Ts, and G, and ribosomal protein S1 in Escherichia coli. J Biochem. 1978;83(2):453–62.
Article
CAS
PubMed
Google Scholar
King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44(2):301–7.
CAS
PubMed
Google Scholar
Deng C-Y, Deng A-H, Sun S-T, Wang L, Wu J, Wu Y, et al. The periplasmic PDZ domain–containing protein Prc modulates full virulence, envelops stress responses, and directly interacts with dipeptidyl peptidase of Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact. 2014;27(2):101–12.
Article
CAS
PubMed
Google Scholar
Boucher CA, Barberis PA, Trigalet AP, Demery DA. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. Microbiology. 1985;131(09):2449–57.
Article
CAS
Google Scholar
Huynh TV, Dahlbeck D, Staskawicz BJ. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science. 1989;245(4924):1374–7.
Article
CAS
PubMed
Google Scholar
Tsuge S, Furutani A, Fukunaka R, Takashi O, Tsuno K, Ochiai H, et al. Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium. J Gen Plant Pathol. 2002;68(4):363–71.
Article
CAS
Google Scholar
Yoshimochi T, Zhang Y, Kiba A, Hikichi Y, Ohnishi K. Expression of hrpG and activation of response regulator HrpG are controlled by distinct signal cascades in Ralstonia solanacearum. J Gen Plant Pathol. 2009;75(3):196–204.
Article
CAS
Google Scholar
Schleif R, Hess W, Finkelstein S, Ellis D. Induction kinetics of the l-arabinose operon of Escherichia coli. J Bacteriol. 1973;115(1):9–14.
Article
CAS
PubMed
PubMed Central
Google Scholar