Xun L, Matthias W, Janet T, Maja K. Elucidating human phosphatase-substrate networks. Sci Signaling. 2013;6:10. https://doi.org/10.1126/scisignal.2003203.
Article
CAS
Google Scholar
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;175:598–9. https://doi.org/10.1016/j.cell.2018.09.045.
Article
CAS
PubMed
Google Scholar
Cramer P. Organization and regulation of gene transcription. Nature. 2019;573:45–54. https://doi.org/10.1038/s41586-019-1517-4.
Article
CAS
PubMed
Google Scholar
Lam Dai Vu, Gevaert K, De Smet I. Protein language: post-translational modifications talking to each other. Trends Plant Sci. 2018;23:1068–80. https://doi.org/10.1016/j.tplants.2018.09.004.
Article
CAS
Google Scholar
Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000;64:435–59. https://doi.org/10.1128/MMBR.64.2.435-459.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Yi, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001;15:2343–60. https://doi.org/10.1101/gad.927301.
Article
CAS
PubMed
Google Scholar
Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006;75:243–69. https://doi.org/10.1146/annurev.biochem.75.103004.142422.
Article
CAS
PubMed
Google Scholar
Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 2006;20:966–76. https://doi.org/10.1101/gad.1404206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li En, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002;22:480–91. https://doi.org/10.1128/MCB.22.2.480-491.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hermann A, Schmitt S, Jeltsch A. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity*. J Biol Chem. 2003;278:31717–21. https://doi.org/10.1074/jbc.M305448200.
Article
CAS
PubMed
Google Scholar
Mary GG, Finn Kirpekar A, Maggert Keith A, Jeffrey Y, Hsieh C-L, Zhang X, et al. Methylation of tRNAAsp by the DNA Methyltransferase Homolog Dnmt2. Science. 2006;311:395–8. https://doi.org/10.1126/science.1120976.
Article
CAS
Google Scholar
Shanmugam R, Fierer J, Kaiser S, Helm M, Jurkowski TP, Jeltsch A. Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Discov. 2015;1:15010–15010. https://doi.org/10.1038/celldisc.2015.10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000;25:269–77. https://doi.org/10.1038/77023.
Article
CAS
PubMed
Google Scholar
Ding F, Richard Chaillet J. In vivo stabilization of the Dnmt1 (cytosine-5)- methyltransferase protein. Proc Natl Acad Sci U S A. 2002;99:14861–6. https://doi.org/10.1073/pnas.232565599.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pradhan M, Estève P-O, Chin HG, Samaranayke M, Kim G-D, Pradhan S. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry. 2008;47:10000–9. https://doi.org/10.1021/bi8011725.
Article
CAS
PubMed
Google Scholar
Song J, Rechkoblit O, Bestor TH, Patel DJ. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science. 2011;331:1036–40. https://doi.org/10.1126/science.1195380.
Article
CAS
PubMed
Google Scholar
Sharif J, Muto M, Takebayashi S-I, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450:908–12. https://doi.org/10.1038/nature06397.
Article
CAS
PubMed
Google Scholar
Arita K, Isogai S, Oda T, Unoki M, Sugita K, Sekiyama N, et al. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc Natl Acad Sci U S A. 2012;109:12950–5. https://doi.org/10.1073/pnas.1203701109.
Article
PubMed
PubMed Central
Google Scholar
Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature. 2013;502:249–53. https://doi.org/10.1038/nature12488.
Article
CAS
PubMed
Google Scholar
Bronner C, Thierry Chataigneau B, Schini-Kerth V, Landry Y. The “Epigenetic Code Replication Machinery”, ECREM: a promising drugable target of the epigenetic cell memory. Curr Med Chem. 2007;14:2629–41. https://doi.org/10.2174/092986707782023244.
Article
CAS
PubMed
Google Scholar
Chuang Linda SH, Ian H-I, Koh T-W, Ng H-H, Guoliang Xu, Li Benjamin FL. Human DNA-(Cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 1997;277:1996–2000. https://doi.org/10.1126/science.277.5334.1996.
Article
Google Scholar
Lavoie G, St-Pierre Y. Phosphorylation of human DNMT1: implication of cyclin-dependent kinases. Biochem Biophys Res Commun. 2011;409:187–92. https://doi.org/10.1016/j.bbrc.2011.04.115.
Article
CAS
PubMed
Google Scholar
Goyal R, Rathert P, Laser H, Gowher H, Jeltsch A. Phosphorylation of serine-515 activates the Mammalian maintenance methyltransferase Dnmt1. Epigenetics. 2007;2:155–60. https://doi.org/10.4161/epi.2.3.4768.
Article
PubMed
Google Scholar
Hervouet E, Lalier L, Debien E, Cheray M, Geairon A, Rogniaux H, et al. Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells. PLoS ONE. 2010;5:e11333–e11333. https://doi.org/10.1371/journal.pone.0011333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Estève P-O, Chang Y, Samaranayake M, Upadhyay AK, Horton JR, Feehery GR, et al. A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol. 2011;18:42–8. https://doi.org/10.1038/nsmb.1939.
Article
CAS
PubMed
Google Scholar
Sugiyama Y, Hatano N, Sueyoshi N, Suetake I, Tajima S, Kinoshita E, et al. The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1δ/ε. Biochem J. 2010;427:489–97. https://doi.org/10.1042/BJ20091856.
Article
CAS
PubMed
Google Scholar
Hodge DR, Cho E, Copeland TD, Guszczynski TAD, Yang E, Seth AK, et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics. 2007;4:387–98.
CAS
PubMed
Google Scholar
Tan X, Xingbo Xu, Zeisberg EM, Zeisberg M. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation. Biochem Biophys Res Commun. 2016;472:459–64. https://doi.org/10.1016/j.bbrc.2016.01.077.
Article
CAS
PubMed
Google Scholar
Molina H, Horn DM, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A. 2007;104:2199–204. https://doi.org/10.1073/pnas.0611217104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJR, Mohammed S. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009;81:4493–501. https://doi.org/10.1021/ac9004309.
Article
CAS
PubMed
Google Scholar
Viveka Mayya H, Deborah L, Hwang S-I, Rezaul K, Linfeng W, Eng Jimmy K, et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signaling. 2009;2:46. https://doi.org/10.1126/scisignal.2000007.
Article
Google Scholar
Tsai C-F, Wang Y-T, Chen Y-R, Lai C-Y, Lin P-Y, Pan K-T, et al. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res. 2008;7:4058–69. https://doi.org/10.1021/pr800364d.
Article
CAS
PubMed
Google Scholar
Sharma V, Jayadev Joshi IJu, Yeh YD, Blankenberg D, Wald D, et al. Re-expression of ERα and AR in receptor negative endocrine cancers via GSK3 inhibition. Front Oncol. 2022;12:824594–824594. https://doi.org/10.3389/fonc.2022.824594.
Article
PubMed
PubMed Central
Google Scholar
Deplus R, Blanchon L, Rajavelu A, Boukaba A, Defrance M, Luciani J, et al. Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a. Cell Rep. 2014;8:743–53. https://doi.org/10.1016/j.celrep.2014.06.048.
Article
CAS
PubMed
Google Scholar
Po-Shu Tu, Lin E-Y, Chen H-W, Chen S-W, Lin T-A, Gau J-P, et al. The extracellular signal-regulated kinase 1/2 modulates the intracellular localization of DNA methyltransferase 3A to regulate erythrocytic differentiation. Am J Transl Res. 2020;12:1016–30.
Google Scholar
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5. https://doi.org/10.1126/science.1170116.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7. https://doi.org/10.1126/science.1210944.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito S, Shen Li, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3. https://doi.org/10.1126/science.1210597.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiaoji Wu, Zhang Yi. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–34. https://doi.org/10.1038/nrg.2017.33.
Article
CAS
Google Scholar
Lee HJ, Hore TA, Reik W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell. 2014;14:710–9. https://doi.org/10.1016/j.stem.2014.05.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang P, Tianjiao Chu N, Dedousis BS, Mantell IS, Li L, et al. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet. Mol Metab. 2017;6:327–39. https://doi.org/10.1016/j.molmet.2017.02.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cong B, Zhang Q, Cao X. The function and regulation of TET2 in innate immunity and inflammation. Protein Cell. 2021;12:165–73. https://doi.org/10.1007/s13238-020-00796-6.
Article
CAS
PubMed
Google Scholar
Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 2010;38:e181–e181. https://doi.org/10.1093/nar/gkq684.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, et al. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111:1361–6. https://doi.org/10.1073/pnas.1322921111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian-Peng Gu, Guo F, Yang H, Hai-Ping Wu, Gui-Fang Xu, Liu W, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–10. https://doi.org/10.1038/nature10443.
Article
CAS
Google Scholar
Yufei Xu, Chao Xu, Kato A, Tempel W, Abreu JG, Bian C, et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell. 2012;151:1200–13. https://doi.org/10.1016/j.cell.2012.11.014.
Article
CAS
Google Scholar
Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500:222–6. https://doi.org/10.1038/nature12362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer C, Göbel K, Nagaraj N, Colantuoni C, Wang M, Müller U, et al. Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT). J Biol Chem. 2015;290:4801–12. https://doi.org/10.1074/jbc.M114.605881.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Wu, Di Hu, Chen H, Shi G, Fetahu IS, Feizhen Wu, et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature. 2018;559:637–41. https://doi.org/10.1038/s41586-018-0350-5.
Article
CAS
Google Scholar
Zhang T, Guan X, Choi UL, Dong Q, Lam MMT, Zeng J, et al. Phosphorylation of TET2 by AMPK is indispensable in myogenic differentiation. Epigenetics Chromatin. 2019;12:32–32. https://doi.org/10.1186/s13072-019-0281-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Z, Feng H, Liang J, Jing X, Zhao Q, Zhan L, et al. FGFR3(△7-9) promotes tumor progression via the phosphorylation and destabilization of ten-eleven translocation-2 in human hepatocellular carcinoma. Cell Death Dis. 2020;11:903–903. https://doi.org/10.1038/s41419-020-03089-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong JJ, Xiaorong Gu, Nie Ji, Sundaravel S, Liu H, Kuo W-L, et al. Cytokine-regulated phosphorylation and activation of TET2 by JAK2 in hematopoiesis. Cancer Discov. 2019;9:778–95. https://doi.org/10.1158/2159-8290.CD-18-1138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao VK, Swarnaseetha A, Tham G-H, Lin W-Q, Han B-B, Benoukraf T, et al. Phosphorylation of Tet3 by cdk5 is critical for robust activation of BRN2 during neuronal differentiation. Nucleic Acids Res. 2020;48:1225–38. https://doi.org/10.1093/nar/gkz1144.
Article
CAS
PubMed
Google Scholar
Bannister AJ, Schneider R, Kouzarides T. Histone methylation: dynamic or static? Cell. 2002;109:801–6. https://doi.org/10.1016/s0092-8674(02)00798-5.
Article
CAS
PubMed
Google Scholar
Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95. https://doi.org/10.1146/annurev-biochem-051710-134100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bedford MT, Richard S. Arginine methylation: an emerging regulatorof protein function. Mol Cell. 2005;18:263–72. https://doi.org/10.1016/j.molcel.2005.04.003.
Article
CAS
PubMed
Google Scholar
Chiang K, Zielinska AE, Shaaban AM, Sanchez-Bailon MP, Jarrold J, Clarke TL, et al. PRMT5 is a critical regulator of breast cancer stem cell function via histone methylation and FOXP1 expression. Cell Rep. 2017;21:3498–513. https://doi.org/10.1016/j.celrep.2017.11.096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kexin Xu. In: Kaneda A, Tsukada Y-I, editors. DNA and Histone Methylation as Cancer Targets. Cham: Springer International Publishing; 2017. p. 489–529.
Google Scholar
Chen Y, Liu X, Li Y, Quan C, Zheng L, Huang K. Lung cancer therapy targeting histone methylation: opportunities and challenges. Comput Struct Biotechnol J. 2018;16:211–23. https://doi.org/10.1016/j.csbj.2018.06.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng X. Structural and functional coordination of DNA and histone methylation. Cold Spring Harb Perspect Biol. 2014;6: a018747. https://doi.org/10.1101/cshperspect.a018747.
Article
PubMed
PubMed Central
Google Scholar
Nakajo H, Ishibashi K, Aoyama K, Kubota S, Hasegawa H, Yamaguchi N, et al. Role for tyrosine phosphorylation of SUV39H1 histone methyltransferase in enhanced trimethylation of histone H3K9 via neuregulin-1/ErbB4 nuclear signaling. Biochem Biophys Res Commun. 2019;511:765–71. https://doi.org/10.1016/j.bbrc.2019.02.130.
Article
CAS
PubMed
Google Scholar
Park SH, Seung Eun Yu, Chai YG, Jang YK. CDK2-dependent phosphorylation of Suv39H1 is involved in control of heterochromatin replication during cell cycle progression. Nucleic Acids Res. 2014;42:6196–207. https://doi.org/10.1093/nar/gku263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, Zhu Q, Xiaopeng Lu, Yipeng Du, Cao L, Shen C, et al. G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc Natl Acad Sci U S A. 2017;114:E6054–63. https://doi.org/10.1073/pnas.1700694114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma S, Čermáková K, De Rijck J, Demeulemeester J, Fábry M, El Ashkar S, et al. Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proc Natl Acad Sci U S A. 2018;115:E7053–62. https://doi.org/10.1073/pnas.1803909115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zibo Zhao Lu, Wang AG, Volk NW, Birch KL, Stoltz ET, et al. Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes Dev. 2019;33:61–74. https://doi.org/10.1101/gad.319830.118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Cheng EHY, Hsieh JJD. MLL fusions: pathways to leukemia. Cancer Biol Ther. 2009;8:1204–11. https://doi.org/10.4161/cbt.8.13.8924.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009;23:1490–9. https://doi.org/10.1038/leu.2009.33.
Article
CAS
PubMed
Google Scholar
Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK, et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature. 2010;467:343–6. https://doi.org/10.1038/nature09350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amar MS, Dustin WP, Valeriya VAS, Kenneth M, Daniel WA. In: Turksen K, editor. Stem Cell Heterogeneity: Methods and Protocols. New York: Springer; 2016. p. 153–69.
Google Scholar
Toska E, Osmanbeyoglu HU, Castel P, Chan C, Hendrickson RC, Elkabets M, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355:1324–30. https://doi.org/10.1126/science.aah6893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li LX, Zhou JX, Wang X, Zhang H, Harris PC, Calvet JP, et al. Cross-talk between CDK4/6 and SMYD2 regulates gene transcription, tubulin methylation, and ciliogenesis. Sci Adv. 2020;6:e3154. https://doi.org/10.1126/sciadv.abb3154.
Article
CAS
Google Scholar
Li Ni, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284–302. https://doi.org/10.1172/JCI91144.
Article
PubMed
PubMed Central
Google Scholar
Michowski W, Chick JM, Chu C, Kolodziejczyk A, Wang Y, Suski JM, et al. Cdk1 controls global epigenetic landscape in embryonic stem cells. Mol Cell. 2020;78:459-476.e413. https://doi.org/10.1016/j.molcel.2020.03.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20:1147–55. https://doi.org/10.1038/nsmb.2669.
Article
CAS
PubMed
Google Scholar
Liu P, Shuaib M, Zhang H, Nadeef S, Orlando V. Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells. Epigenetics Chromatin. 2019;12:78–78. https://doi.org/10.1186/s13072-019-0322-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller A, Dickmanns A, Resch C, Schäkel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;130:5765–81. https://doi.org/10.1172/JCI134217.
Article
PubMed
PubMed Central
Google Scholar
Tai-Lung Cha P, Binhua Z, Xia W, Yadi Wu, Yang C-C, Chen C-T, et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005;310:306–10. https://doi.org/10.1126/science.1118947.
Article
CAS
PubMed
Google Scholar
Schonfeld M, Villar MT, Artigues A, Weinman SA, Tikhanovich I. Arginine methylation of hepatic hnRNPH suppresses complement activation and systemic inflammation in alcohol-fed mice. Hepatol Commun. 2021;5:812–29. https://doi.org/10.1002/hep4.1674.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang T, Yang Y, Song X, Wan X, Bingli Wu, Sastry N, et al. PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Mol Cell. 2021;81:1276-1291.e1279. https://doi.org/10.1016/j.molcel.2021.01.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ginjala V, Rodriguez-Colon L, Ganguly B, Gangidi P, Gallina P, Al-Hraishawi H, et al. Protein-lysine methyltransferases G9a and GLP1 promote responses to DNA damage. Sci Rep. 2017;7:16613–16613. https://doi.org/10.1038/s41598-017-16480-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Wang XN, Cheng F, Liou Y-C, Deng L-W. Phosphorylation of mixed lineage leukemia 5 by CDC2 affects its cellular distribution and is required for mitotic entry. J Biol Chem. 2010;285:20904–14. https://doi.org/10.1074/jbc.M109.098558.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Yan J, Phyu T, Fan S, Chung T-H, Mustafa N, et al. MELK mediates the stability of EZH2 through site-specific phosphorylation in extranodal natural killer/T-cell lymphoma. Blood. 2019;134:2046–58. https://doi.org/10.1182/blood.2019000381.
Article
PubMed
Google Scholar
Yan J, Li B, Lin B, Lee PT, Chung T-H, Tan J, et al. EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma. Blood. 2016;128:948–58. https://doi.org/10.1182/blood-2016-01-690701.
Article
CAS
PubMed
Google Scholar
Jin X, Yang C, Fan P, Xiao J, Zhang W, Zhan S, et al. CDK5/FBW7-dependent ubiquitination and degradation of EZH2 inhibits pancreatic cancer cell migration and invasion. J Biol Chem. 2017;292:6269–80. https://doi.org/10.1074/jbc.M116.764407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan L, Kexin Xu, Wei Y, Zhang J, Han T, Fry C, et al. Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol Cell. 2018;69:279-291.e275. https://doi.org/10.1016/j.molcel.2017.12.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko H-W, Lee H-H, Huo L, Xia W, Yang C-C, Hsu JL, et al. GSK3β inactivation promotes the oncogenic functions of EZH2 and enhances methylation of H3K27 in human breast cancers. Oncotarget. 2016;7:57131–44. https://doi.org/10.18632/oncotarget.11008.
Article
PubMed
PubMed Central
Google Scholar
Nie L, Wei Y, Zhang F, Hsu Y-H, Chan L-C, Xia W, et al. CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer. Nat Commun. 2019;10:5114–5114. https://doi.org/10.1038/s41467-019-13105-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan J, Zhan J, Li S, Ma Ji, Weizhi Xu, Liu C, et al. PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression. Nucleic Acids Res. 2015;43:3591–604. https://doi.org/10.1093/nar/gkv238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahasrabuddhe AA, Chen X, Chung F, Velusamy T, Lim MS, Elenitoba-Johnson KSJ. Oncogenic Y641 mutations in EZH2 prevent Jak2/β-TrCP-mediated degradation. Oncogene. 2015;34:445–54. https://doi.org/10.1038/onc.2013.571.
Article
CAS
PubMed
Google Scholar
Cao LL, Wei F, Du Y, Song B, Wang D, Shen C, et al. ATM-mediated KDM2A phosphorylation is required for the DNA damage repair. Oncogene. 2016;35:402–402. https://doi.org/10.1038/onc.2015.311.
Article
CAS
PubMed
Google Scholar
Baker M, Petasny M, Taqatqa N, Bentata M, Kay G, Engal E, et al. KDM3A regulates alternative splicing of cell-cycle genes following DNA damage. RNA. 2021;27:1353–62. https://doi.org/10.1261/rna.078796.121.
Article
CAS
PubMed
Google Scholar
Duan L, Chen Z, Jun Lu, Liang Y, Wang M, Roggero CM, et al. Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Res. 2019;47:11623–36. https://doi.org/10.1093/nar/gkz1004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu LN, Wang YQ, Tan J, Xu J, Gao QY, Chen YX, et al. Role of JMJD2B in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms. Oncogene. 2018;37:389–402. https://doi.org/10.1038/onc.2017.345.
Article
CAS
PubMed
Google Scholar
Chen Y, Fang R, Yue C, Chang G, Li P, Guo Q, et al. Wnt-induced stabilization of KDM4C is required for Wnt/β-catenin target gene expression and glioblastoma tumorigenesis. Cancer Res. 2020;80:1049–63. https://doi.org/10.1158/0008-5472.CAN-19-1229.
Article
CAS
PubMed
Google Scholar
Ju Yeh I, Esakov E, Lathia JD, Miyagi M, Reizes O, Montano MM. Phosphorylation of the histone demethylase KDM5B and regulation of the phenotype of triple negative breast cancer. Sci Rep. 2019;9:17663–17663. https://doi.org/10.1038/s41598-019-54184-0.
Article
CAS
Google Scholar
Sterling J, Menezes SV, Abbassi RH, Munoz L. Histone lysine demethylases and their functions in cancer. Int J Cancer. 2021;148:2375–88. https://doi.org/10.1002/ijc.33375.
Article
CAS
Google Scholar
Lin C-Y, Wang B-J, Chen B-C, Tseng J-C, Jiang SS, Tsai KK, et al. Histone demethylase KDM4C stimulates the proliferation of prostate cancer cells via activation of AKT and c-Myc. Cancers (Basel). 2019;11:1785. https://doi.org/10.3390/cancers11111785.
Article
CAS
Google Scholar
Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50. https://doi.org/10.1038/nrc3409.
Article
CAS
PubMed
Google Scholar
Walport LJ, Hopkinson RJ, Chowdhury R, Schiller R, Ge W, Kawamura A, et al. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun. 2016;7:11974–11974. https://doi.org/10.1038/ncomms11974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Yi, Zhao W, Chen Y, Zhao Y, Wei Gu. Acetylation is indispensable for p53 activation. Cell. 2008;133:612–26. https://doi.org/10.1016/j.cell.2008.03.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng W-W, Dong X-M, Yin R-H, Fei-Fei Xu, Ning H-M, Zhang M-J, et al. EDAG positively regulates erythroid differentiation and modifies GATA1 acetylation through recruiting p300. Stem Cells. 2014;32:2278–89. https://doi.org/10.1002/stem.1723.
Article
CAS
PubMed
Google Scholar
Sengupta T, Chen K, Milot E, Bieker JJ. Acetylation of EKLF is essential for epigenetic modification and transcriptional activation of the beta-globin locus. Mol Cell Biol. 2008;28:6160–70. https://doi.org/10.1128/MCB.00919-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marin TL, Gongol B, Zhang F, Martin M, Johnson DA, Xiao H, et al. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Science Signaling. 2017;10:e7478. https://doi.org/10.1126/scisignal.aaf7478.
Article
CAS
Google Scholar
Sakai M, Tujimura-Hayakawa T, Yagi T, Yano H, Mitsushima M, Unoki-Kubota H, et al. The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch. Nat Commun. 2016;7:13147–13147. https://doi.org/10.1038/ncomms13147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava S, Mohibi S, Mirza S, Band H, Band V. Epidermal growth factor receptor activation promotes ADA3 acetylation through the AKT-p300 pathway. Cell Cycle. 2017;16:1515–25. https://doi.org/10.1080/15384101.2017.1339846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yue Wu, Wang X, Feifei Xu, Zhang Lu, Wang T, Xueli Fu, et al. The regulation of acetylation and stability of HMGA2 via the HBXIP-activated Akt-PCAF pathway in promotion of esophageal squamous cell carcinoma growth. Nucleic Acids Res. 2020;48:4858–76. https://doi.org/10.1093/nar/gkaa232.
Article
CAS
Google Scholar
Syal C, Seegobin M, Sarma SN, Gouveia A, Hsu K, Niibori Y, et al. Ectopic expression of aPKC-mediated phosphorylation in p300 modulates hippocampal neurogenesis, CREB binding and fear memory differently with age. Sci Rep. 2018;8:13489–13489. https://doi.org/10.1038/s41598-018-31657-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan W, You Z, Yinfeng Xu, Zhou Li, Guan Z, Peng C, et al. mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis. Mol Cell. 2017;68:323-335.e326. https://doi.org/10.1016/j.molcel.2017.09.020.
Article
CAS
PubMed
Google Scholar
Chen Y-J, Wang Y-N, Chang W-C. ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression*. J Biol Chem. 2007;282:27215–28. https://doi.org/10.1074/jbc.M700264200.
Article
CAS
PubMed
Google Scholar
Jang ER, Choi JD, Jeong G, Lee J-S. Phosphorylation of p300 by ATM controls the stability of NBS1. Biochem Biophys Res Commun. 2010;397:637–43. https://doi.org/10.1016/j.bbrc.2010.05.060.
Article
CAS
PubMed
Google Scholar
Wuchao Yuan L, Gambee JE. Phosphorylation of p300 at Serine 89 by Protein Kinase C. J Biol Chem. 2000;275:40946–51. https://doi.org/10.1074/jbc.M007832200.
Article
Google Scholar
Zhang Z-N, Gong L, Lv S, Li J, Tai X, Cao W, et al. SIK2 regulates fasting-induced PPARα activity and ketogenesis through p300. Sci Rep. 2016;6:23317–23317. https://doi.org/10.1038/srep23317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S-A, Hung C-Y, Chuang J-Y, Chang W-C, Hsu T-I, Hung J-J. Phosphorylation of p300 increases its protein degradation to enhance the lung cancer progression. Biochimica et Biophysica Acta Mol Cell Res. 2014;1843:1135–49. https://doi.org/10.1016/j.bbamcr.2014.02.001.
Article
CAS
Google Scholar
Brouillard F, Cremisi CE. Concomitant increase of histone acetyltransferase activity and degradation of p300 during retinoic acid-induced differentiation of F9 cells. J Biol Chem. 2003;278:39509–16. https://doi.org/10.1074/jbc.M307123200.
Article
CAS
PubMed
Google Scholar
He L, Naik K, Meng S, Cao J, Sidhaye AR, Ma A, et al. Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis. J Biol Chem. 2012;287:32069–77. https://doi.org/10.1074/jbc.M112.385864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao-Qiu Wu, Liu X. Role for Plk1 phosphorylation of Hbo1 in regulation of replication licensing. Proc Natl Acad Sci U S A. 2008;105:1919–24. https://doi.org/10.1073/pnas.0712063105.
Article
Google Scholar
Brauns-Schubert P, Schubert F, Wissler M, Weiss M, Schlicher L, Bessler S, et al. CDK9-mediated phosphorylation controls the interaction of TIP60 with the transcriptional machinery. EMBO Rep. 2018;19:244–56. https://doi.org/10.15252/embr.201744311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sin TK, Zhang G, Zhang Z, Zhu JZ, Zuo Y, Frost JA, et al. Cancer-induced muscle wasting requires p38β MAPK activation of p300. Cancer Res. 2021;81:885–97. https://doi.org/10.1158/0008-5472.CAN-19-3219.
Article
CAS
PubMed
Google Scholar
Liang Y, Yuanyuan Su, Chenzhong Xu, Zhang Na, Liu D, Li G, et al. Protein kinase D1 phosphorylation of KAT7 enhances its protein stability and promotes replication licensing and cell proliferation. Cell Death Discovery. 2020;6:89. https://doi.org/10.1038/s41420-020-00323-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Qiu J, Wang X, Zhang Y, Xia M. AMP-activated protein kinase suppresses endothelial cell inflammation through phosphorylation of transcriptional coactivator p300. Arterioscler Thromb Vasc Biol. 2011;31:2897–908. https://doi.org/10.1161/ATVBAHA.111.237453.
Article
CAS
PubMed
Google Scholar
Schwartz C, Beck K, Mink S, Schmolke M, Budde B, Wenning D, et al. Recruitment of p300 by C/EBPbeta triggers phosphorylation of p300 and modulates coactivator activity. EMBO J. 2003;22:882–92. https://doi.org/10.1093/emboj/cdg076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charvet C, Wissler M, Brauns-Schubert P, Wang S-J, Tang Yi, Sigloch FC, et al. Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol Cell. 2011;42:584–96. https://doi.org/10.1016/j.molcel.2011.03.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemercier C, Legube G, Caron C, Louwagie M, Garin J, Trouche D, et al. Tip60 acetyltransferase activity is controlled by phosphorylation. J Biol Chem. 2003;278:4713–8. https://doi.org/10.1074/jbc.M211811200.
Article
CAS
PubMed
Google Scholar
Niida H, Matsunuma R, Horiguchi R, Uchida C, Nakazawa Y, Motegi A, et al. Phosphorylated HBO1 at UV irradiated sites is essential for nucleotide excision repair. Nat Commun. 2017;8:16102–16102. https://doi.org/10.1038/ncomms16102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duong MT, Akli S, Macalou S, Biernacka A, Debeb BG, Yi M, et al. Hbo1 is a cyclin E/CDK2 substrate that enriches breast cancer stem-like cells. Cancer Res. 2013;73:5556–68. https://doi.org/10.1158/0008-5472.CAN-13-0013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta A, Hunt CR, Hegde ML, Chakraborty S, Chakraborty S, Udayakumar D, et al. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell Rep. 2014;8:177–89. https://doi.org/10.1016/j.celrep.2014.05.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore NL, Weigel NL. Regulation of progesterone receptor activity by cyclin dependent kinases 1 and 2 occurs in part by phosphorylation of the SRC-1 carboxyl-terminus. Int J Biochem Cell Biol. 2011;43:1157–67. https://doi.org/10.1016/j.biocel.2011.04.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing S, Li F, Zeng Z, Zhao Y, Shuyang Yu, Shan Q, et al. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity. Nat Immunol. 2016;17:695–703. https://doi.org/10.1038/ni.3456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Vidaurre OG, Adula KP, Kezunovic N, Wentling M, Huntley GW, et al. Subcellular distribution of HDAC1 in neurotoxic conditions is dependent on serine phosphorylation. J Neurosci. 2017;37:7547–59. https://doi.org/10.1523/JNEUROSCI.3000-16.2017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mary KH, Pflum JK, Tong WS. Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem. 2001;276:47733–41. https://doi.org/10.1074/jbc.M105590200.
Article
Google Scholar
Masoumi KC, Daams R, Sime W, Siino V, Ke H, Levander F, et al. NLK-mediated phosphorylation of HDAC1 negatively regulates Wnt signaling. Mol Biol Cell. 2017;28:346–55. https://doi.org/10.1091/mbc.E16-07-0547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daams R, Sime W, Leandersson K, Sitnicka E, Massoumi R. Deletion of Nemo-like Kinase in T Cells Reduces Single-Positive CD8 + Thymocyte Population. J Immunol. 2020;205:1830. https://doi.org/10.4049/jimmunol.2000109.
Article
CAS
PubMed
Google Scholar
Loponte S, Segré CV, Senese S, Miccolo C, Santaguida S, Deflorian G, et al. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development. Sci Rep. 2016;6:30213–30213. https://doi.org/10.1038/srep30213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bahl S, Ling H, Acharige NPN, Santos-Barriopedro I, Mary KH, Pflum and Edward Seto. EGFR phosphorylates HDAC1 to regulate its expression and anti-apoptotic function. Cell Death Dis. 2021;12:469–469. https://doi.org/10.1038/s41419-021-03697-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan DH, He S, Jenny Yu, Winter S, Cao W, Seiser C, et al. Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. J Biol Chem. 2013;288:16518–28. https://doi.org/10.1074/jbc.M112.440446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adenuga D, Rahman I. Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys. 2010;498:62–73. https://doi.org/10.1016/j.abb.2010.04.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng B, Han M, Shu Y-N, Li Y-J, Miao S-B, Zhang X-H, et al. HDAC2 phosphorylation-dependent Klf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs. Cell Res. 2011;21:1487–508. https://doi.org/10.1038/cr.2011.34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon S, Kim M, Min H-K, Lee Y-U, Kwon D-H, Lee M, et al. Inhibition of heat shock protein 70 blocks the development of cardiac hypertrophy by modulating the phosphorylation of histone deacetylase 2. Cardiovasc Res. 2019;115:1850–60. https://doi.org/10.1093/cvr/cvy317.
Article
CAS
PubMed
Google Scholar
Zhang Y, Zheng X, Tan H, Yilu Lu, Tao D, Liu Y, et al. PIWIL2 suppresses Siah2-mediated degradation of HDAC3 and facilitates CK2α-mediated HDAC3 phosphorylation. Cell Death Dis. 2018;9:423–423. https://doi.org/10.1038/s41419-018-0462-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang J-L, Yang Qi, Chong-Hui Xu, Zhao He, Liu Y-L, Liu C-Y, et al. Histone deacetylase 3 promotes innate antiviral immunity through deacetylation of TBK1. Protein Cell. 2021;12:261–78. https://doi.org/10.1007/s13238-020-00751-5.
Article
CAS
PubMed
Google Scholar
Han KA, Shin WH, Jung S, Seol W, Seo H, Ko C, et al. Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation. Hum Mol Genet. 2017;26:1–18. https://doi.org/10.1093/hmg/ddw363.
Article
CAS
PubMed
Google Scholar
Hanigan TW, Aboukhatwa SM, Taha TY, Frasor J, Petukhov PA. Divergent JNK phosphorylation of HDAC3 in triple-negative breast cancer cells determines HDAC inhibitor binding and selectivity. Cell Chem Biol. 2017;24:1356-1367.e1358. https://doi.org/10.1016/j.chembiol.2017.08.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi H-K, Choi Y, Kang H, Lim E-J, Park S-Y, Lee H-S, et al. PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death. Hum Mol Genet. 2015;24:1127–41. https://doi.org/10.1093/hmg/ddu526.
Article
CAS
PubMed
Google Scholar
Zhang F, Qi L, Feng Q, Zhang B, Li X, Liu C, et al. HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proc Natl Acad Sci. 2021;118: e2021798118. https://doi.org/10.1073/pnas.2021798118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakayama T, Akagawa K. Transcription regulation mechanism of the syntaxin 1A gene via protein kinase A. Biochemical Journal. 2017;474:2465–73. https://doi.org/10.1042/BCJ20170249.
Article
CAS
PubMed
Google Scholar
Lee H, Sengupta N, Villagra A, Rezai-Zadeh N, Seto E. Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol. 2006;26:5259–69. https://doi.org/10.1128/MCB.01971-05.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Liang R, Sun M, Li Z, Sheng H, Wang J, et al. AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Cancer Lett. 2020;478:82–92. https://doi.org/10.1016/j.canlet.2020.03.007.
Article
CAS
PubMed
Google Scholar
Ohnuki Y, Umeki D, Mototani Y, Jin H, Cai W, Shiozawa K, et al. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation. J Physiol. 2014;592:5461–75. https://doi.org/10.1113/jphysiol.2014.282996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen TJ, Choi M-C, Kapur M, Lira VA, Yan Z, Yao T-P. HDAC4 regulates muscle fiber type-specific gene expression programs. Mol Cells. 2015;38:343–8. https://doi.org/10.14348/molcells.2015.2278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest. 2006;116:1853–64. https://doi.org/10.1172/JCI27438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu E, Nakatani T, He Z, Partridge NC. Parathyroid hormone regulates histone deacetylase (HDAC) 4 through protein kinase A-mediated phosphorylation and dephosphorylation in osteoblastic cells. J Biol Chem. 2014;289:21340–50. https://doi.org/10.1074/jbc.M114.550699.
Article
CAS
PubMed
PubMed Central
Google Scholar
He T, Huang J, Chen L, Han G, Stanmore D, Krebs-Haupenthal J, et al. Cyclic AMP represses pathological MEF2 activation by myocyte-specific hypo-phosphorylation of HDAC5. J Mol Cell Cardiol. 2020;145:88–98. https://doi.org/10.1016/j.yjmcc.2020.05.018.
Article
CAS
PubMed
Google Scholar
Zhang H, Shao Z, Alibin CP, Acosta C, Anderson HD. Liganded peroxisome proliferator-activated receptors (PPARs) preserve nuclear histone deacetylase 5 levels in endothelin-treated Sprague-Dawley rat cardiac myocytes. PLoS ONE. 2014;9:e115258–e115258. https://doi.org/10.1371/journal.pone.0115258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J-X, Yue W-F, Zhu M-J, Min Du. AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem. 2011;286:16426–34. https://doi.org/10.1074/jbc.M110.199372.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pietruczuk P, Jain A, Simo-Cheyou ER, Anand-Srivastava MB, Srivastava AK. Protein kinase B/AKT mediates insulin-like growth factor 1-induced phosphorylation and nuclear export of histone deacetylase 5 via NADPH oxidase 4 activation in vascular smooth muscle cells. J Cell Physiol. 2019;234:17337–50. https://doi.org/10.1002/jcp.28353.
Article
CAS
PubMed
Google Scholar
Meng Z-X, Gong J, Chen Z, Sun J, Xiao Y, Wang L, et al. Glucose sensing by skeletal myocytes couples nutrient signaling to systemic homeostasis. Mol Cell. 2017;66:332-344.e334. https://doi.org/10.1016/j.molcel.2017.04.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao C, Li X, Minh Lam Yu, Liu SC, Kao H-Y. CRM1 mediates nuclear export of HDAC7 independently of HDAC7 phosphorylation and association with 14–3-3s. FEBS Lett. 2006;580:5096–104. https://doi.org/10.1016/j.febslet.2006.08.038.
Article
CAS
PubMed
Google Scholar
Lagman J, Sayegh P, Lee CS, Sulon SM, Jacinto AZ, Sok V, et al. G protein-coupled receptor kinase 5 modifies cancer cell resistance to paclitaxel. Mol Cell Biochem. 2019;461:103–18. https://doi.org/10.1007/s11010-019-03594-9.
Article
CAS
PubMed
Google Scholar
Mazzetti S, De Leonardis M, Gagliardi G, Calogero AM, Basellini MJ, Madaschi L, et al. Phospho-HDAC6 gathers into protein aggregates in Parkinson’s disease and atypical Parkinsonisms. Front Neurosci. 2020;14:624–624. https://doi.org/10.3389/fnins.2020.00624.
Article
PubMed
PubMed Central
Google Scholar
Watabe M, Nakaki T. CK2 as anti-stress factor. Commun Integr Biol. 2012;5:278–80. https://doi.org/10.4161/cib.19473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams KA, Zhang Mu, Xiang S, Chen Hu, Jheng-Yu Wu, Zhang S, et al. Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J Biol Chem. 2013;288:33156–70. https://doi.org/10.1074/jbc.M113.472506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deribe YL, Wild P, Chandrashaker A, Curak J, Mirko S, Kalaidzidis Y, et al. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signaling. 2009;2:84. https://doi.org/10.1126/scisignal.2000576.
Article
CAS
Google Scholar
Zhang M, Yang X, Zimmerman RJ, Wang Q, Ross MA, Granger JM, et al. CaMKII exacerbates heart failure progression by activating class I HDACs. J Mol Cell Cardiol. 2020;149:73–81. https://doi.org/10.1016/j.yjmcc.2020.09.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karwowska-Desaulniers P, Ketko A, Kamath N, Mary Pflum KH. Histone deacetylase 1 phosphorylation at S421 and S423 is constitutive in vivo, but dispensable in vitro. Biochem Biophys Res Commun. 2007;361:349–55. https://doi.org/10.1016/j.bbrc.2007.06.167.
Article
CAS
PubMed
Google Scholar
Yang Qi, Tang J, Pei R, Gao X, Guo J, Chonghui Xu, et al. Host HDAC4 regulates the antiviral response by inhibiting the phosphorylation of IRF3. J Mol Cell Biol. 2019;11:158–69. https://doi.org/10.1093/jmcb/mjy035.
Article
CAS
PubMed
Google Scholar
Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, et al. Regulation of histone deacetylase 4 by binding of 14–3-3 proteins. Mol Cell Biol. 2000;20:6904–12. https://doi.org/10.1128/MCB.20.18.6904-6912.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinnett-Smith J, Ni Y, Wang J, Ming M, Young SH, Rozengurt E. Protein kinase D1 mediates class IIa histone deacetylase phosphorylation and nuclear extrusion in intestinal epithelial cells: role in mitogenic signaling. Am J Physiol Cell Physiol. 2014;306:C961–71. https://doi.org/10.1152/ajpcell.00048.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, et al. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med. 2012;18:783–90. https://doi.org/10.1038/nm.2709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popov S, Kyriaki Venetsanou P, Chedrese J, Pinto V, Takemori H, Franco-Cereceda A, et al. Increases in intracellular sodium activate transcription and gene expression via the salt-inducible kinase 1 network in an atrial myocyte cell line. Am J Physiol-Heart Circul Physiol. 2012;303:H57–65. https://doi.org/10.1152/ajpheart.00512.2011.
Article
CAS
Google Scholar
Khai Huynh Q. Evidence for the phosphorylation of serine259 of histone deacetylase 5 by protein kinase Cδ. Arch Biochem Biophys. 2011;506:173–80. https://doi.org/10.1016/j.abb.2010.12.005.
Article
CAS
PubMed
Google Scholar
Ha CH, Kim JY, Zhao J, Wang W, Jhun BS, Wong C, et al. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. 2010;107:15467–72. https://doi.org/10.1073/pnas.1000462107.
Article
PubMed
PubMed Central
Google Scholar
Harrison BC, Huynh K, Lundgaard GL, Helmke SM, Benjamin Perryman M, Mckinsey TA. Protein kinase C-related kinase targets nuclear localization signals in a subset of class IIa histone deacetylases. FEBS Lett. 2010;584:1103–10. https://doi.org/10.1016/j.febslet.2010.02.057.
Article
CAS
PubMed
Google Scholar
Park CH, Lee JH, Lee MY, Lee JH, Lee BH, Kwang-Seok Oh. A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in H9c2UT cells. Mol Cell Biochem. 2016;422:151–60. https://doi.org/10.1007/s11010-016-2814-y.
Article
CAS
PubMed
Google Scholar
Dodge-Kafka KL, Gildart M, Li J, Thakur H, Kapiloff MS. Bidirectional regulation of HDAC5 by mAKAPβ signalosomes in cardiac myocytes. J Mol Cell Cardiol. 2018;118:13–25. https://doi.org/10.1016/j.yjmcc.2018.03.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato T, Verma S, Castro CD, Andrade MO, Campbell N, Wang JS, et al. A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction. Nat Commun. 2020;11:3282–3282. https://doi.org/10.1038/s41467-020-17099-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ran J, Liu M, Feng J, Li H, Ma H, Song T, et al. ASK1-mediated phosphorylation blocks HDAC6 ubiquitination and degradation to drive the disassembly of photoreceptor connecting cilia. Dev Cell. 2020;53:287-299.e285. https://doi.org/10.1016/j.devcel.2020.03.010.
Article
CAS
PubMed
Google Scholar
Wang S, Li X, Parra M, Verdin E, Bassel-Duby R, Olson EN. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci U S A. 2008;105:7738–43. https://doi.org/10.1073/pnas.0802857105.
Article
PubMed
PubMed Central
Google Scholar
Ha CH, Jhun BS, Kao H-Y, Jin Z-G. VEGF stimulates HDAC7 phosphorylation and cytoplasmic accumulation modulating matrix metalloproteinase expression and angiogenesis. Arterioscler Thromb Vasc Biol. 2008;28:1782–8. https://doi.org/10.1161/ATVBAHA.108.172528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chengzhuo Gao Yu, Liu ML, Kao H-Y. Histone deacetylase 7 (HDAC7) regulates myocyte migration and differentiation. Biochim Biophys Acta. 2010;1803:1186–97. https://doi.org/10.1016/j.bbamcr.2010.06.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parra M, Mahmoudi T, Verdin E. Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev. 2007;21:638–43. https://doi.org/10.1101/gad.1513107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen ED, Gopalakrishnan R, Westendorf JJ. Bone morphogenic protein 2 activates protein kinase D to regulate histone deacetylase 7 localization and repression of Runx2. J Biol Chem. 2009;284:2225–34. https://doi.org/10.1074/jbc.M800586200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welker KR, Leng CA, Castañeda CD, Islam B, Haider SM, Christianson DW, et al. Phosphorylation of histone deacetylase 8: structural and mechanistic analysis of the phosphomimetic S39E mutant. Biochemistry. 2019;58:4480–93. https://doi.org/10.1021/acs.biochem.9b00653.
Article
CAS
Google Scholar
Imai S-I, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800. https://doi.org/10.1038/35001622.
Article
CAS
PubMed
Google Scholar
Yuan F, Xie Qi, Junbing Wu, Bai Y, Mao B, Dong Y, et al. MST1 promotes apoptosis through regulating Sirt1-dependent p53 deacetylation. J Biol Chem. 2011;286:6940–5. https://doi.org/10.1074/jbc.M110.182543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Back JH, Rezvani HR, Zhu Y, Guyonnet-Duperat V, Athar M, Ratner D, et al. Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of sirtuin 1. J Biol Chem. 2011;286:19100–8. https://doi.org/10.1074/jbc.M111.240598.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Zhou Z, Zhang L, Meng S, Li S, Wang X. Inhibition of SIRT2 by targeting GSK3β-mediated phosphorylation alleviates SIRT2 toxicity in SH-SY5Y cells. Front Cell Neurosci. 2019;13:148–148. https://doi.org/10.3389/fncel.2019.00148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naini SM, Sheridan AM, Force T, Shah JV, Bonventre JV. Group IVA cytosolic phospholipase A2 regulates the G2-to-M transition by modulating the activity of tumor suppressor SIRT2. Mol Cell Biol. 2015;35:3768–84. https://doi.org/10.1128/MCB.00184-15.
Article
CAS
Google Scholar
Nahhas F, Dryden SC, Abrams J, Tainsky MA. Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin. Mol Cell Biochem. 2007;303:221–30. https://doi.org/10.1007/s11010-007-9478-6.
Article
CAS
PubMed
Google Scholar
Kang WK, Kim YH, Kang HA, Kwon K-S, Kim J-Y. Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast. Elife. 2015;4: e09709. https://doi.org/10.7554/eLife.09709.
Article
CAS
PubMed Central
Google Scholar
Thirumurthi U, Shen J, Xia W, Labaff AM, Wei Y, Li C-W, et al. MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Sci Signaling. 2014;7:71. https://doi.org/10.1126/scisignal.2005076.
Article
CAS
Google Scholar
Gao T, Li M, Guanqun Mu, Hou T, Zhu W-G, Yang Y. PKCζ phosphorylates SIRT6 to mediate fatty acid β-oxidation in colon cancer cells. Neoplasia. 2019;21:61–73. https://doi.org/10.1016/j.neo.2018.11.008.
Article
CAS
PubMed
Google Scholar
Van Meter M, Simon M, Tombline G, May A, Morello TD, Hubbard BP, et al. JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Rep. 2016;16:2641–50. https://doi.org/10.1016/j.celrep.2016.08.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong Wu, Zeng H, Dong A, Li F, He H, Senisterra G, et al. Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. PLoS ONE. 2013;8:e83737–e83737. https://doi.org/10.1371/journal.pone.0083737.
Article
CAS
Google Scholar
Wen L, Chen Z, Zhang F, Cui X, Sun W, Geary GG, et al. Ca2+/calmodulin-dependent protein kinase kinase β phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc Natl Acad Sci U S A. 2013;110:E2420–7. https://doi.org/10.1073/pnas.1309354110.
Article
PubMed
PubMed Central
Google Scholar
Tatomir A, Rao G, Boodhoo D, Vlaicu SI, Beltrand A, Anselmo F, et al. Histone deacetylase SIRT1 mediates C5b–9-induced cell cycle in oligodendrocytes. Front Immunol. 2020;11:619–619. https://doi.org/10.3389/fimmu.2020.00619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, De Cabo R, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS ONE. 2009;4:e8414–e8414. https://doi.org/10.1371/journal.pone.0008414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Yang Y, He X, Yang L, Wang J, Xia S, et al. Cdk5-mediated phosphorylation of Sirt1 contributes to podocyte mitochondrial dysfunction in diabetic nephropathy. Antioxid Redox Signal. 2020;34:171–90. https://doi.org/10.1089/ars.2020.8038.
Article
CAS
PubMed
Google Scholar
Senthil KKJ, Gokila VM, Mau J-L, Lin C-C, Chu F-H, Wei C-C, et al. A steroid like phytochemical Antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1. Oncotarget. 2016;7:62836–61. https://doi.org/10.18632/oncotarget.11229.
Article
PubMed
PubMed Central
Google Scholar
Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem. 2011;286:22227–34. https://doi.org/10.1074/jbc.M111.228874.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi SE, Kwon S, Seok S, Xiao Z, Lee K-W, Kang Y, et al. Obesity-linked phosphorylation of SIRT1 by casein kinase 2 inhibits its nuclear localization and promotes fatty liver. Mol Cell Biol. 2017;37:e00006-00017. https://doi.org/10.1128/MCB.00006-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Li F, Yuanming Xu, Wei J, Zhang Y, Yang H, et al. JAK1-mediated Sirt1 phosphorylation functions as a negative feedback of the JAK1-STAT3 pathway. J Biol Chem. 2018;293:11067–75. https://doi.org/10.1074/jbc.RA117.001387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee C-W, Wong L-Y, Tse E-T, Liu H-F, Leong V-L, Lee J-F, et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 2012;72:4394–404. https://doi.org/10.1158/0008-5472.CAN-12-0429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo X, Kesimer M, Tolun G, Zheng X, Qing Xu, Jing Lu, et al. The NAD(+)-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Sci Rep. 2012;2:640–640. https://doi.org/10.1038/srep00640.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utani K, Haiqing Fu, Jang S-M, Marks AB, Smith OK, Zhang Ya, et al. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Nucleic Acids Res. 2017;45:7807–24. https://doi.org/10.1093/nar/gkx468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shan P, Fan G, Sun L, Liu J, Wang W, Chen Hu, et al. SIRT1 functions as a negative regulator of eukaryotic poly(A)RNA transport. Curr Biol. 2017;27:2271-2284.e2275. https://doi.org/10.1016/j.cub.2017.06.040.
Article
CAS
PubMed
Google Scholar
Huang Y, Jianlin Lu, Zhan Li, Wang M, Shi R, Yuan X, et al. Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism. J Biol Chem. 2021;297:100929–100929. https://doi.org/10.1016/j.jbc.2021.100929.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HR, Shin HK, Park SY, Kim HY, Lee WS, Rhim BY, et al. Attenuation of β-amyloid-induced tauopathy via activation of CK2α/SIRT1: Targeting for cilostazol. J Neurosci Res. 2014;92:206–17. https://doi.org/10.1002/jnr.23310.
Article
CAS
PubMed
Google Scholar
Dehennaut V, Loison I, Pinte S, Leprince D. Molecular dissection of the interaction between HIC1 and SIRT1. Biochem Biophys Res Commun. 2012;421:384–8. https://doi.org/10.1016/j.bbrc.2012.04.026.
Article
CAS
PubMed
Google Scholar
Conrad E, Polonio-Vallon T, Meister M, Matt S, Bitomsky N, Herbel C, et al. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. Cell Death Differ. 2016;23:110–22. https://doi.org/10.1038/cdd.2015.75.
Article
CAS
PubMed
Google Scholar
Choi YH, Kim H, Lee SH, Jin Y-H, Lee KY. Src regulates the activity of SIRT2. Biochem Biophys Res Commun. 2014;450:1120–5. https://doi.org/10.1016/j.bbrc.2014.06.117.
Article
CAS
PubMed
Google Scholar
North BJ, Verdin E. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J Biol Chem. 2007;282:19546–55. https://doi.org/10.1074/jbc.M702990200.
Article
CAS
PubMed
Google Scholar
Hussein UK, Ahmed AG, Song Y, Kim KM, Moon YJ, Ahn A-R, et al. CK2α/CSNK2A1 induces resistance to doxorubicin through SIRT6-mediated activation of the DNA damage repair pathway. Cells. 2021;10:1770. https://doi.org/10.3390/cells10071770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94. https://doi.org/10.1073/pnas.51.5.786.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Zha X, Tan Yi, Hornbeck PV, Mastrangelo AJ, Alessi DR, et al. Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J Biol Chem. 2002;277:39379–87. https://doi.org/10.1074/jbc.M206399200.
Article
CAS
PubMed
Google Scholar