Xia W, Xie W. Rebooting the epigenomes during mammalian early embryogenesis. Stem Cell Rep. 2020;15(6):1158–75.
CAS
Google Scholar
Ooga M, Fulka H, Hashimoto S, Suzuki MG, Aoki F. Analysis of chromatin structure in mouse preimplantation embryos by fluorescent recovery after photobleaching. Epigenetics. 2016;11(1):85–94.
PubMed
PubMed Central
Google Scholar
Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N, et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature. 2017;544(7648):110–4.
CAS
PubMed
PubMed Central
Google Scholar
Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol. 1997;181(2):296–307.
CAS
PubMed
Google Scholar
Funaya S, Aoki F. Regulation of zygotic gene activation by chromatin structure and epigenetic factors. J Reprod Dev. 2017;63(4):359–63.
CAS
PubMed
PubMed Central
Google Scholar
Bogolyubova I, Bogolyubov D. Heterochromatin morphodynamics in late oogenesis and early embryogenesis of mammals. Cells. 2020;9(6):1497.
CAS
PubMed Central
Google Scholar
Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction. 2015;150(3):R109-120.
CAS
PubMed
PubMed Central
Google Scholar
Gonsalves FC, Weisblat DA. MAPK regulation of maternal and zygotic Notch transcript stability in early development. Proc Natl Acad Sci USA. 2007;104(2):531–6.
CAS
PubMed
PubMed Central
Google Scholar
Xu L, Liu T, Han F, Zong Z, Wang G, Yu B, et al. AURKB and MAPK involvement in the regulation of the early stages of mouse zygote development. Sci China Life Sci. 2012;55(1):47–56.
CAS
PubMed
Google Scholar
Sagata N, Daar I, Oskarsson M, Showalter SD, Vande Woude GF. The product of the mos proto-oncogene as a candidate “initiator” for oocyte maturation. Science. 1989;245(4918):643–6.
CAS
PubMed
Google Scholar
Chau AS, Shibuya EK. Mos-induced p42 mitogen-activated protein kinase activation stabilizes M-phase in Xenopus egg extracts after cyclin destruction. Biol Cell. 1998;90(8):565–72.
CAS
PubMed
Google Scholar
Watanabe N, Hunt T, Ikawa Y, Sagata N. Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs. Nature. 1991;352(6332):247–8.
CAS
PubMed
Google Scholar
Verlhac MH, Kubiak JZ, Clarke HJ, Maro B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development. 1994;120(4):1017–25.
CAS
PubMed
Google Scholar
Sun QY, Rubinstein S, Breitbart H. MAP kinase activity is downregulated by phorbol ester during mouse oocyte maturation and egg activation in vitro. Mol Reprod Dev. 1999;52(3):310–8.
CAS
PubMed
Google Scholar
Pokrass MJ, Ryan KA, Xin T, Pielstick B, Timp W, Greco V, et al. Cell-cycle-dependent ERK signaling dynamics direct fate specification in the mammalian preimplantation embryo. Dev Cell. 2020;55(3):328-340.e325.
CAS
PubMed
PubMed Central
Google Scholar
Patel AL, Shvartsman SY. Outstanding questions in developmental ERK signaling. Development. 2018;145(14):dev143818.
PubMed
PubMed Central
Google Scholar
Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem. 2006;281(1):559–68.
CAS
PubMed
Google Scholar
Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis.” Proc Natl Acad Sci USA. 2006;103(17):6428–35.
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Kim JM, Aoki F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development. 2004;131(10):2269–80.
CAS
PubMed
Google Scholar
Santos F, Peters AH, Otte AP, Reik W, Dean W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol. 2005;280(1):225–36.
CAS
PubMed
Google Scholar
Ma XS, Chao SB, Huang XJ, Lin F, Qin L, Wang XG, et al. The Dynamics and regulatory mechanism of pronuclear H3k9me2 asymmetry in mouse zygotes. Sci Rep. 2015;5:17924.
CAS
PubMed
PubMed Central
Google Scholar
Zeng TB, Han L, Pierce N, Pfeifer GP, Szabo PE. EHMT2 and SETDB1 protect the maternal pronucleus from 5mC oxidation. Proc Natl Acad Sci USA. 2019;116(22):10834–41.
CAS
PubMed
PubMed Central
Google Scholar
Shimaji K, Konishi T, Tanaka S, Yoshida H, Kato Y, Ohkawa Y, et al. Genomewide identification of target genes of histone methyltransferase dG9a during Drosophila embryogenesis. Genes Cells Devot Mole Cell Mech. 2015;20(11):902–14.
CAS
Google Scholar
Schübeler D. Function and information content of DNA methylation. Nature. 2015;517(7534):321–6.
PubMed
Google Scholar
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.
CAS
PubMed
Google Scholar
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.
CAS
PubMed
PubMed Central
Google Scholar
Pendina AA, Efimova OA, Fedorova ID, Leont’eva OA, Shilnikova EM, Lezhnina JG, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011;132(1–2):1–7.
CAS
PubMed
Google Scholar
Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241(1):172–82.
CAS
PubMed
Google Scholar
Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014;28(8):812–28.
CAS
PubMed
PubMed Central
Google Scholar
Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D’Souza Z, et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol. 2016;18(2):225–33.
CAS
PubMed
PubMed Central
Google Scholar
Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature. 2012;486(7403):415–9.
CAS
PubMed
Google Scholar
Han L, Ren C, Li L, Li X, Ge J, Wang H, et al. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet. 2018;50(3):432–42.
CAS
PubMed
Google Scholar
Zhao Q, Zhang J, Chen R, Wang L, Li B, Cheng H, et al. Dissecting the precise role of H3K9 methylation in crosstalk with DNA maintenance methylation in mammals. Nat Commun. 2016;7:12464.
CAS
PubMed
PubMed Central
Google Scholar
Au Yeung WK, Brind’Amour J, Hatano Y, Yamagata K, Feil R, Lorincz MC, et al. Histone H3K9 methyltransferase g9a in oocytes is essential for preimplantation development but dispensable for CG methylation protection. Cell Rep. 2019;27(1):282-293.e284.
CAS
PubMed
Google Scholar
DeVeale B, Brokhman I, Mohseni P, Babak T, Yoon C, Lin A, et al. Oct4 is required ~E7.5 for proliferation in the primitive streak. PLoS Genet. 2013;9(11):e1003957.
PubMed
PubMed Central
Google Scholar
Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development. 2008;135(18):3081–91.
CAS
PubMed
Google Scholar
Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell. 2010;18(4):675–85.
CAS
PubMed
Google Scholar
Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, et al. Nanog is the gateway to the pluripotent ground state. Cell. 2009;138(4):722–37.
CAS
PubMed
PubMed Central
Google Scholar
Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P, Bardot O, et al. Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev Cell. 2011;21(6):1005–13.
CAS
PubMed
Google Scholar
Lepikhov K, Walter J. Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol. 2004;4:12.
PubMed
PubMed Central
Google Scholar
Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell. 2007;25(3):473–81.
CAS
PubMed
Google Scholar
Srimongkolpithak N, Sundriyal S, Li F, Vedadi M, Fuchter MJ. Identification of 2,4-diamino-6,7-dimethoxyquinoline derivatives as G9a inhibitors†Electronic supplementary information (ESI) available. MedChemComm. 2014;5(12):1821–8. https://doi.org/10.1039/c4md00274a.
Article
CAS
PubMed
Google Scholar
Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod. 2004;70(3):535–47.
CAS
PubMed
Google Scholar
Gonzalez-Garcia JR, Bradley J, Nomikos M, Paul L, Machaty Z, Lai FA, et al. The dynamics of MAPK inactivation at fertilization in mouse eggs. J Cell Sci. 2014;127(Pt 12):2749–60.
CAS
PubMed
PubMed Central
Google Scholar
Abe K, Yamamoto R, Franke V, Cao M, Suzuki Y, Suzuki MG, et al. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3’ processing. EMBO J. 2015;34(11):1523–37.
CAS
PubMed
PubMed Central
Google Scholar
Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 2012;484(7394):339–44.
CAS
PubMed
PubMed Central
Google Scholar
Guo F, Li X, Liang D, Li T, Zhu P, Guo H, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15(4):447–59.
CAS
PubMed
Google Scholar
Shen L, Inoue A, He J, Liu Y, Lu F, Zhang Y. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell. 2014;15(4):459–71.
CAS
PubMed
PubMed Central
Google Scholar
Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell. 2003;12(6):1591–8.
CAS
PubMed
Google Scholar
Maison C, Almouzni G. HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol. 2004;5(4):296–304.
CAS
PubMed
Google Scholar
Hamilton WB, Mosesson Y, Monteiro RS, Emdal KB, Knudsen TE, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;575(7782):355–60.
CAS
PubMed
Google Scholar
Wu BK, Brenner C. Suppression of TET1-dependent DNA demethylation is essential for KRAS-mediated transformation. Cell Rep. 2014;9(5):1827–40.
CAS
PubMed
PubMed Central
Google Scholar
Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477(7366):606–10.
CAS
PubMed
Google Scholar
Zylicz JJ, Borensztein M, Wong FC, Huang Y, Lee C, Dietmann S, et al. G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst. Elife. 2018;7:e33361.
PubMed
PubMed Central
Google Scholar
Riahi H, Fenckova M, Goruk KJ, Schenck A, Kramer JM. The epigenetic regulator G9a attenuates stress-induced resistance and metabolic transcriptional programs across different stressors and species. BMC Biol. 2021;19(1):112.
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Zhang Z, Chen J, Liu W, Lai W, Liu B, et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature. 2018;564(7734):136–40.
CAS
PubMed
Google Scholar
Han L, Ren C, Zhang J, Shu W, Wang Q. Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development. Cell Discov. 2019;5:9.
PubMed
PubMed Central
Google Scholar
Kristensen DG, Skakkebæk NE, Rajpert-De Meyts E, Almstrup K. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells. Int J Dev Biol. 2013;57(2–4):309–17.
CAS
PubMed
Google Scholar
Griñán-Ferré C, Marsal-García L, Bellver-Sanchis A, Kondengaden SM, Turga RC, Vázquez S, et al. Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer’s disease mouse model. Aging. 2019;11(23):11591–608.
PubMed
PubMed Central
Google Scholar