Parodi L, Coarelli G, Stevanin G, Brice A, Durr A. Hereditary ataxias and paraparesias: clinical and genetic update. Curr Opin Neurol. 2018;31:462–71.
Article
PubMed
Google Scholar
De Bot ST, Willemsen MAAP, Vermeer S, Kremer HPH, VanDeWarrenburg BPC. Reviewing the genetic causes of spastic-ataxias. Neurology. 2012;79(14):1507–14.
Article
PubMed
Google Scholar
Minnerop M, Kurzwelly D, Wagner H, Soehn AS, Reichbauer J, Tao F, et al. Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain. 2017;140(6):1561–78.
Article
PubMed
PubMed Central
Google Scholar
Calandra CR, Buda G, Vishnopolska SA, Oliveri J, Olivieri FA, Pérez Millán MI, et al. Spastic ataxia with eye-of-the-tiger-like sign in 4 siblings due to novel compound heterozygous AFG3L2 mutation. Parkinson Relat Disord. 2020; 73:52–4. http://www.prd-journal.com/article/S1353802020300766/fulltext. Accessed 14 Feb 2021.
Votsi C, Zamba-Papanicolaou E, Middleton LT, Pantzaris M, Christodoulou K. A novel GBA2 gene missense mutation in spastic ataxia. Ann Hum Genet. 2014;78(1):13–22.
Article
CAS
PubMed
Google Scholar
Harzer K, Blech-Hermoni Y, Goldin E, Felderhoff-Mueser U, Igney C, Sidransky E, et al. Beta-glucosidase 1 (GBA1) is a second bile acid β-glucosidase in addition to β-glucosidase 2 (GBA2) Study in β-glucosidase deficient mice and humans. Biochem Biophys Res Commun. 2012;423(2):308–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malekkou A, Samarani M, Drousiotou A, Votsi C, Aureli M, Loberto N, et al. Biochemical characterization of the GBA2 c. 1780G > C missense mutation in lymphoblastoid cells from patients with spastic ataxia. IJMS. 2018. https://doi.org/10.3390/ijms19103099.
Article
PubMed
PubMed Central
Google Scholar
Sultana S, Reichbauer J, Schüle R, Mochel F, Synofzik M, Van Der Spoel AC. Lack of enzyme activity in GBA2 mutants associated with hereditary spastic paraplegia/cerebellar ataxia (SPG46). Biochem Biophys Res Commun. 2015;465(1):35–40.
Article
CAS
PubMed
Google Scholar
Sultana S, Stewart J, van der Spoel AC. Truncated mutants of beta-glucosidase 2 (GBA2) are localized in the mitochondrial matrix and cause mitochondrial fragmentation. PLoS ONE. 2020;15(6): e0233856. https://doi.org/10.1371/journal.pone.0233856.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kakouri AC, Votsi C, Tomazou M, Minadakis G, Karatzas E, Christodoulou K, et al. Analyzing gene expression profiles from ataxia and spasticity phenotypes to reveal spastic ataxia related pathways. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21186722.
Article
PubMed
PubMed Central
Google Scholar
MonzioCompagnoni G, Kleiner G, Samarani M, Aureli M, Faustini G, Bellucci A, et al. Mitochondrial dysregulation and impaired autophagy in iPSC-derived dopaminergic neurons of multiple system atrophy. Stem Cell Rep. 2018;11(5):1185–98.
Article
CAS
Google Scholar
Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480(7378):547–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews S. FASTQC A quality control tool for high throughput sequence data. Babraham Inst; 2015. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
FASTX-Toolkit FASTQ/A short-reads pre-processing tools. http://hannonlab.cshl.edu/fastx_toolkit/.
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009. https://doi.org/10.1186/gb-2009-10-3-r25.
Article
PubMed
PubMed Central
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002. https://doi.org/10.1101/gr.229102.
Article
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009. https://doi.org/10.1093/bioinformatics/btp616.
Article
PubMed
PubMed Central
Google Scholar
Lun ATL, Chen Y, Smyth GK. It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol Biol. 2016. https://doi.org/10.1007/978-1-4939-3578-9_19.
Article
PubMed
Google Scholar
Minadakis G, Zachariou M, Oulas A, Spyrou GM. PathwayConnector: finding complementary pathways to enhance functional analysis. Bioinformatics. 2019;35(5):889–91.
Article
CAS
PubMed
Google Scholar
Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet. 2016;2(5):94.
Article
Google Scholar
Higuchi Y, Hashiguchi A, Yuan J, Yoshimura A, Mitsui J, Ishiura H, et al. Mutations in MME cause an autosomal-recessive Charcot–Marie–Tooth disease type 2. Ann Neurol. 2016;79(4):659–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong D, Fang P, Yao S, Chen J, Zhang X, Chen S, et al. Variants in MME are associated with autosomal-recessive distal hereditary motor neuropathy. Ann Clin Transl Neurol. 2019;6(9):1728–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desai S, Juncker M, Kim C. Regulation of mitophagy by the ubiquitin pathway in neurodegenerative diseases. Exp Biol Med. 2018;43:554–62.
Article
Google Scholar
Desai SD, Reed RE, Babu S, Lorio EA. ISG15 deregulates autophagy in genotoxin-treated ataxia telangiectasia cells. J Biol Chem. 2013;288(4):2388–402.
Article
CAS
PubMed
Google Scholar
Zafar F, Valappil RA, Kim S, Johansen KK, Chang ALS, Tetrud JW, et al. Genetic fine-mapping of the Iowan SNCA gene triplication in a patient with Parkinson’s disease. NPJ Park Dis. 2018. https://doi.org/10.1038/s41531-018-0054-4.
Article
Google Scholar
Xiu MX, Zeng B, Kuang BH. Identification of hub genes, miRNAs and regulatory factors relevant for Duchenne muscular dystrophy by bioinformatics analysis. Int J Neurosci. 2020. https://doi.org/10.1080/00207454.2020.1810030.
Article
PubMed
Google Scholar
Salvalaio M, D’Avanzo F, Rigon L, Zanetti A, D’Angelo M, Valle G, et al. Brain RNA-seq profiling of the mucopolysaccharidosis type II mouse model. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18051072.
Article
PubMed
PubMed Central
Google Scholar
Bai B, Wang X, Li Y, Chen PC, Yu K, Dey KK, et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron. 2020. https://doi.org/10.1002/alz.037231.
Article
PubMed
PubMed Central
Google Scholar
Iansante V, Choy PM, Fung SW, Liu Y, Chai JG, Dyson J, et al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun. 2015;6(1):1–15.
Article
Google Scholar
Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci. 2008. https://doi.org/10.1016/j.tins.2008.06.005.
Article
PubMed
PubMed Central
Google Scholar
Mastorci K, Montico B, Faè DA, Sigalotti L, Ponzoni M, Inghirami G, et al. Phospholipid scramblase 1 as a critical node at the crossroad between autophagy and apoptosis in mantle cell lymphoma. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.9630.
Article
PubMed
PubMed Central
Google Scholar
Witt SH, Streit F, Jungkunz M, Frank J, Awasthi S, Reinbold CS, et al. Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. Transl Psychiatry. 2017. https://doi.org/10.1016/j.euroneuro.2016.09.524.
Article
PubMed
PubMed Central
Google Scholar
Conde MA, Alza NP, Iglesias González PA, Scodelaro Bilbao PG, Sánchez Campos S, Uranga RM, et al. Phospholipase D1 downregulation by α-synuclein: Implications for neurodegeneration in Parkinson’s disease. Biochim Biophys Acta - Mol Cell Biol Lipids. 2018;1863(6):639–50.
Article
CAS
PubMed
Google Scholar
Kon T, Miki Y, Tanji K, Mori F, Tomiyama M, Toyoshima Y, et al. Localization of nuclear receptor subfamily 4, group A, member 3 (NR4A3) in Lewy body disease and multiple system atrophy. Neuropathology. 2015. https://doi.org/10.1111/neup.12210.
Article
PubMed
Google Scholar
Goizet C, Boukhris A, Durr A, Beetz C, Truchetto J, Tesson C, et al. CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5. Brain. 2009. https://doi.org/10.1093/brain/awp073.
Article
PubMed
Google Scholar
Chen JY, Wu JF, Kimura A, Nittono H, Liou BY, Lee CS, et al. AKR1D1 and CYP7B1 mutations in patients with inborn errors of bile acid metabolism: possibly underdiagnosed diseases. Pediatr Neonatol. 2020. https://doi.org/10.1016/j.pedneo.2019.06.009.
Article
PubMed
PubMed Central
Google Scholar
Goldsmith AP, Gossage SJ, Ffrench-Constant C. ADAM23 is a cell-surface glycoprotein expressed by central nervous system neurons. J Neurosci Res. 2004. https://doi.org/10.1002/jnr.20320.
Article
PubMed
Google Scholar
McGrath-Morrow SA, Ndeh R, Collaco JM, Rothblum-Oviatt C, Wright J, O’Reilly MA, et al. Inflammation and transcriptional responses of peripheral blood mononuclear cells in classic ataxia telangiectasia. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0209496.
Article
PubMed
PubMed Central
Google Scholar
Sakharkar MK, Singh SKK, Rajamanickam K, Essa MM, Yang J, Chidambaram SB. A systems biology approach towards the identification of candidate therapeutic genes and potential biomarkers for Parkinson’s disease. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0220995.
Article
PubMed
PubMed Central
Google Scholar
Pflieger LT, Dansithong W, Paul S, Scoles DR, Figueroa KP, Meera P, et al. Gene co-expression network analysis for identifying modules and functionally enriched pathways in SCA2. Hum Mol Genet. 2017. https://doi.org/10.1093/hmg/ddx191.
Article
PubMed
PubMed Central
Google Scholar
Lan Y, Han J, Wang Y, Wang J, Yang G, Li K, et al. STK17B promotes carcinogenesis and metastasis via AKT/GSK-3β/Snail signaling in hepatocellular carcinoma. Cell Death Dis. 2018. https://doi.org/10.1038/s41419-018-0262-1.
Article
PubMed
PubMed Central
Google Scholar
Prasad GR, Jho E hoon. A concise review of human brain methylome during aging and neurodegenerative diseases. BMB Rep. 2019;52(10).
Ali F, Josephs KA. Corticobasal degeneration: key emerging issues. J Neurol. 2018;265(2):439–45.
Article
CAS
PubMed
Google Scholar
Patron M, Sprenger HG, Langer T. M-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration. Cell Res. 2018. https://doi.org/10.1038/cr.2018.17.
Article
PubMed
PubMed Central
Google Scholar
Martinelli P, Rugarli EI. Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta Bioenerg. 2010. https://doi.org/10.1016/j.bbabio.2009.07.013.
Article
Google Scholar
You WD, Tang QL, Wang L, Lei J, Feng JF, Mao Q, et al. Alteration of microRNA expression in cerebrospinal fluid of unconscious patients after traumatic brain injury and a bioinformatic analysis of related single nucleotide polymorphisms. Chin J Traumatol. 2016. https://doi.org/10.1016/j.cjtee.2016.01.004.
Article
PubMed
PubMed Central
Google Scholar
Kong W, Mou X, Liu Q, Chen Z, Vanderburg CR, Rogers JT, et al. Independent component analysis of Alzheimer’s DNA microarray gene expression data. Mol Neurodegener. 2009. https://doi.org/10.1186/1750-1326-4-5.
Article
PubMed
PubMed Central
Google Scholar
Jiang D, Zhang Y, Hart RP, Chen J, Herrup K, Li J. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain. 2015. https://doi.org/10.1093/brain/awv284.
Article
PubMed
PubMed Central
Google Scholar
Droppelmann CA, Campos-Melo D, Volkening K, Strong MJ, Volkening K, Strong MJ. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases. Front Cell Neurosci. 2014. https://doi.org/10.3389/fncel.2014.00282.
Article
PubMed
PubMed Central
Google Scholar
Miyamoto Y, Yamauchi J. Cellular signaling of Dock family proteins in neural function. Cell Signal. 2010. https://doi.org/10.1016/j.cellsig.2009.09.036.
Article
PubMed
Google Scholar
Detera-Wadleigh SD, Liu CY, Maheshwari M, Cardona I, Corona W, Akula N, et al. Sequence variation in DOCK9 and heterogeneity in bipolar disorder. Psychiatr Genet. 2007. https://doi.org/10.1097/YPG.0b013e328133f352.
Article
PubMed
Google Scholar
Sanchez-Pulido L, Ponting CP. TMEM132: An ancient architecture of cohesin and immunoglobulin domains define a new family of neural adhesion molecules. Bioinformatics. 2018. https://doi.org/10.1093/bioinformatics/btx689.
Article
PubMed
Google Scholar
Davis CA, Dhawan IK, Johnson MK, Barber MJ. Heterologous expression of an endogenous rat cytochrome b5/cytochrome b5 reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands. Arch Biochem Biophys. 2002;400(1):63–75.
Article
CAS
PubMed
Google Scholar
Bewley MC, Marohnic CC, Barber MJ. The structure and biochemistry of NADH-dependent cytochrome b5 reductase are now consistent. Biochemistry. 2001. https://doi.org/10.1021/bi0106336.
Article
PubMed
Google Scholar
Hyun DH, Lee GH. Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics. Age (Omaha). 2015. https://doi.org/10.1007/s11357-015-9859-9.
Article
PubMed Central
Google Scholar
Samhan-Arias AK, Fortalezas S, Cordas CM, Moura I, Moura JJG, Gutierrez-Merino C. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c. Redox Biol. 2018. https://doi.org/10.1016/j.redox.2017.11.021.
Article
PubMed
Google Scholar
Valencia A, Morán J. Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med. 2004. https://doi.org/10.1016/j.freeradbiomed.2004.02.013.
Article
PubMed
Google Scholar
Yokoyama JS, Karch CM, Fan CC, Bonham LW, Kouri N, Ross OA, et al. Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol. 2017. https://doi.org/10.1007/s00401-017-1693-y.
Article
PubMed
PubMed Central
Google Scholar
Foguem C, Kamsu-Foguem B. Neurodegeneration in tauopathies and synucleinopathies. Rev Neurol (Paris). 2016. https://doi.org/10.1016/j.neurol.2016.05.002.
Article
PubMed
Google Scholar
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The cross-talk between sphingolipids and insulin-like growth factor signaling: significance for aging and neurodegeneration. Mol Neurobiol. 2019. https://doi.org/10.1007/s12035-018-1286-3.
Article
PubMed
PubMed Central
Google Scholar
Patten DA, Germain M, Kelly MA, Slack RS. Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimer’s Dis. 2010. https://doi.org/10.3233/JAD-2010-100498.
Article
Google Scholar
Bezprozvanny IB. Calcium signaling and neurodegeneration. Acta Nat. 2010;2(1):72–82.
Article
CAS
Google Scholar
Alzheimer’s Association Calcium Hypothesis Workgroup. Calcium Hypothesis of Alzheimer’s disease and brain aging: a framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimer’s Dement. 2017;13(2):178-182.e17.
Article
Google Scholar
Vig PJ, Subramony SH, McDaniel DO. Calcium homeostasis and spinocerebellar ataxia-1 (SCA-1). Brain Res Bull. 2018;56(3–4):221–5.
Google Scholar
Boot RG, Verhoek M, Donker-Koopman W, Strijland A, Van Marle J, Overkleeft HS, et al. Identification of the non-lysosomal glucosylceramidase as β-glucosidase 2. J Biol Chem. 2007;282(2):1305–12.
Article
CAS
PubMed
Google Scholar
Huebecker M, Moloney EB, Van Der Spoel AC, Priestman DA, Isacson O, Hallett PJ, et al. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol Neurodegener. 2019. https://doi.org/10.1186/s13024-019-0339-z.
Article
PubMed
PubMed Central
Google Scholar
Woeste MA, Stern S, Raju DN, Grahn E, Dittmann D, Gutbrod K, et al. Species-specific differences in nonlysosomal glucosylceramidase GBA2 function underlie locomotor dysfunction arising from loss-of-function mutations. J Biol Chem. 2019;294(11):3853–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gatchel J, Watase K, Thaller C, Carson J, Jafar-Nejad P. The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proc Natl Acad Sci USA. 2008. https://doi.org/10.1073/pnas.0711257105.
Article
PubMed
PubMed Central
Google Scholar
Ingram M, Wozniak EAL, Duvick L, Yang R, Bergmann P, Carson R, et al. Cerebellar transcriptome profiles of ATXN1 transgenic mice reveal SCA1 disease progression and protection pathways. Neuron. 2016;89:1194–207. https://doi.org/10.1016/j.neuron.2016.02.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serra H, Byam C, Lande J, Tousey S, Zoghbi H. Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet. 2004. https://doi.org/10.1093/hmg/ddh268.
Article
PubMed
Google Scholar
Driessen TM, Lee PJ, Lim J. Molecular pathway analysis towards understanding tissue vulnerability in spinocerebellar ataxia type 1. Elife. 2018;7:e39981.
Article
PubMed
PubMed Central
Google Scholar
Napierala JS, Li Y, Lu Y, Lin K, Hauser LA, Lynch DR, et al. Comprehensive analysis of gene expression patterns in Friedreich’s ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers. DMM Dis Model Mech. 2017;10(11):1353–69.
Article
CAS
PubMed
Google Scholar
Toonen LJA, Overzier M, Evers MM, Leon LG, Van Der Zeeuw SAJ, Mei H, et al. Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Mol Neurodegener. 2018;13(1):1–18.
Article
Google Scholar
Gerstner N, Kehl T, Lenhof K, Müller A, Mayer C, Eckhart L, et al. GeneTrail 3: advanced high-throughput enrichment analysis. Nucleic Acids Res. 2020. https://doi.org/10.1093/nar/gkaa306.
Article
PubMed
PubMed Central
Google Scholar
Morani F, Doccini S, Sirica R, Paterno M, Pezzini F, Ricca I, et al. Functional transcriptome analysis in ARSACS KO cell model reveals a role of sacsin in autophagy. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-48047-x.
Article
PubMed
PubMed Central
Google Scholar
Esteves AR, Cardoso SM. Differential protein expression in diverse brain areas of Parkinson’s and Alzheimer’s disease patients. Sci Rep. 2020;10(1):13149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chappell S, Patel T, Guetta-Baranes T, Sang F, Francis PT, Morgan K, et al. Observations of extensive gene expression differences in the cerebellum and potential relevance to Alzheimer’s disease. BMC Res Notes. 2018;11(1):646.
Article
PubMed
PubMed Central
Google Scholar
Houck AL, Seddighi S, Driver JA. At the crossroads between neurodegeneration and cancer: a review of overlapping biology and its implications. Curr Aging Sci. 2018. https://doi.org/10.2174/1874609811666180223154436.
Article
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkv1070.
Article
PubMed
PubMed Central
Google Scholar
Hammond TR, Marsh SE, Stevens B. Immune signaling in neurodegeneration. Immunity. 2019;50:955–74. https://doi.org/10.1016/j.immuni.2019.03.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Rivero Vaccari JP, Brand FJ, Sedaghat C, Mash DC, Dietrich WD, Keane RW. RIG-1 receptor expression in the pathology of Alzheimer’s disease. J Neuroinflamm. 2014. https://doi.org/10.1186/1742-2094-11-67.
Article
Google Scholar
Nachun D, Gao F, Isaacs C, Strawser C, Yang Z, Dokuru D, et al. Peripheral blood gene expression reveals an inflammatory transcriptomic signature in Friedreich’s ataxia patients. Hum Mol Genet. 2018;27(17):2965–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delatycki MB, Bidichandani SI. Friedreich ataxia—pathogenesis and implications for therapies. Neurobiol Dis. 2019;132: 104606.
Article
CAS
PubMed
Google Scholar
Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005.
Article
PubMed
PubMed Central
Google Scholar
Hooten KG, Beers DR, Zhao W, Appel SH. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:364–75. https://doi.org/10.1007/s13311-014-0329-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saudubray JM, Garcia-Cazorla A. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders. Dialogues Clin Neurosci. 2018. https://doi.org/10.31887/DCNS.2018.20.4/jmsaudubray.
Article
PubMed
PubMed Central
Google Scholar
Dulce P-G, Christophe M, Minh Bao H, Fernando S, Ludmilla S, Diaz Julia Elisa S, et al. Glycosaminoglycans, protein aggregation and neurodegeneration. Curr Protein Pept Sci. 2011. https://doi.org/10.2174/1389211213488352037.
Article
Google Scholar
Wilkinson K, El Khoury J. Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer’s disease. Int J Alzheimer’s Dis. 2012. https://doi.org/10.1155/2012/489456.
Article
Google Scholar
Husemann J, Silverstein SC. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer’s disease brain. Am J Pathol. 2001;158(3):825–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tesseur I, Zou K, Esposito L, Bard F, Berber E, Van Can J, et al. Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest. 2006. https://doi.org/10.1172/JCI27341.
Article
PubMed
PubMed Central
Google Scholar
Estrada LD, Oliveira-Cruz L, Cabrera D. Transforming growth factor beta type I role in neurodegeneration: implications for Alzheimer’s disease. Curr Protein Pept Sci. 2018;19(12):1180–8.
Article
CAS
PubMed
Google Scholar
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020;10:1–12. https://doi.org/10.1186/s13578-020-00416-0.
Article
CAS
Google Scholar
Liu Q, Qiu J, Liang M, Golinski J, Van Leyen K, Jung JE, et al. Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis. 2014. https://doi.org/10.1038/cddis.2014.69.
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N, Arias C. PI3K signaling in neurons: a central node for the control of multiple functions. Int J Mol Sci. 2018;19:3725.
Article
PubMed Central
Google Scholar
Ribeiro M, Rosenstock TR, Oliveira AM, Oliveira CR, Rego AC. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129–44.
Article
CAS
PubMed
Google Scholar
Toonen LJA, Overzier M, Evers MM, Leon LG, Van Der Zeeuw SAJ, Mei H, et al. Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Mol Neurodegener. 2018;13(1):31. https://doi.org/10.1186/s13024-018-0261-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J. Interleukin-7 receptor signaling network: An integrated systems perspective. Cell Mol Immunol. 2008;5(2):79–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang J, Coles M. IL-7: the global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol Semin Immunol. 2012;24:190–7.
Article
CAS
PubMed
Google Scholar
Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW, et al. Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun. 2011;2(1):1–13.
Article
Google Scholar
Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A, et al. Interleukin 7 receptor α chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet. 2007;39(9):1083–91.
Article
CAS
PubMed
Google Scholar
Li WQ, Jiang Q, Khaled AR, Keller JR, Durum SK. Interleukin-7 inactivates the pro-apoptotic protein bad promoting T cell survival. J Biol Chem. 2004;279(28):29160–6.
Article
CAS
PubMed
Google Scholar
Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci. 2016;8:303.
Article
PubMed
PubMed Central
Google Scholar
Thomas MH, Pelleieux S, Vitale N, Olivier JL. Arachidonic acid in Alzheimer’s disease. J Neurol Neuromed. 2016;1. www.jneurology.com. Accessed 27 Mar 2021.
Tang KS. Protective effect of arachidonic acid and linoleic acid on 1-methyl-4-phenylpyridinium-induced toxicity in PC12 cells. Lipids Health Dis. 2014. https://doi.org/10.1186/1476-511X-13-197.
Article
PubMed
PubMed Central
Google Scholar
Iljina M, Tosatto L, Choi ML, Sang JC, Ye Y, Hughes CD, et al. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein. Sci Rep. 2016;6(1):1–14.
Article
Google Scholar
Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, et al. ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet. 2014;95(2):209–17.
Article
PubMed
PubMed Central
Google Scholar
Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: a review. J Adv Res. 2018;11:23–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention. Med Res Rev. 2021;41(2):770–84.
Article
CAS
PubMed
Google Scholar
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci. 2019; 20. /pmc/articles/PMC6412771/.
Fricker RA, Green EL, Jenkins SI, Griffin SM. The influence of nicotinamide on health and disease in the central nervous system. Int J Tryptophan Res. 2018;11. /pmc/articles/PMC5966847/.
Balarabe SA, Watila MM. Role of vitamins and cofactors in the management of oxidative stress-induced neuromuscular diseases. NJBAS. 2015;23(2):171–7.
Google Scholar
Worgall TS. Regulation of lipid metabolism by sphingolipids. Lipids Health Dis. 2008;49:371–85.
Article
Google Scholar
Liu JP, Tang Y, Zhou S, Toh BH, McLean C, Li H. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci. 2010;43(1):33–42.
Article
CAS
PubMed
Google Scholar
Petrov AM, Kasimov MR, Zefirov AL. Brain cholesterol metabolism and its defects: linkage to neurodegenerative diseases and synaptic dysfunction. Acta Nat. 2016. https://doi.org/10.32607/20758251-2016-8-1-58-73.
Article
Google Scholar
Abdel-Khalik J, Yutuc E, Crick PJ, Gustafsson JÅ, Warner M, Roman G, et al. Defective cholesterol metabolism in amyotrophic lateral sclerosis. J Lipid Res. 2017;58(1):267–78.
Article
CAS
PubMed
Google Scholar
Nóbrega C, Mendonça L, Marcelo A, Lamazière A, Tomé S, Despres G, et al. Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathol. 2019;138(5):837–58. https://doi.org/10.1007/s00401-019-02019-7.
Article
CAS
PubMed
Google Scholar
McLoughlin HS, Moore LR, Paulson HL. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis. 2020;134: 104635.
Article
CAS
PubMed
Google Scholar
Martin LA, Kennedy BE, Karten B. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr. 2016;48(2):137–51.
Article
CAS
PubMed
Google Scholar
Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis. 2010. https://doi.org/10.1016/j.bbadis.2009.12.009.
Article
Google Scholar
Oluwaseun Fadaka A, Adeleke Ojo O, Adetutu Osukoya O, Akuboh O, Ajiboye BO. Role of p38 MAPK signaling in neurodegenerative diseases: a mechanistic perspective. Ann Neurodegener Disord. 2017;2(1):1026.
Google Scholar