Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.
Article
CAS
PubMed
Google Scholar
Chan GK, Jablonski SA, Sudakin V, Hittle JC, Yen TJ. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol. 1999;146(5):941–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, et al. Mutations of mitotic checkpoint genes in human cancers. Nature. 1998;392(6673):300–3.
Article
CAS
PubMed
Google Scholar
Lampson MA, Kapoor TM. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol. 2005;7(1):93–8.
Article
CAS
PubMed
Google Scholar
Fang G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell. 2002;13(3):755–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis RL. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci U S A. 2001;98(8):4492–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuura S, Matsumoto Y, Morishima K, Izumi H, Matsumoto H, Ito E, et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A. 2006;140(4):358–67.
Article
PubMed
CAS
Google Scholar
Suijkerbuijk SJ, van Osch MH, Bos FL, Hanks S, Rahman N, Kops GJ. Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res. 2010;70(12):4891–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet. 2004;36(11):1159–61.
Article
CAS
PubMed
Google Scholar
Rao CV, Yang YM, Swamy MV, Liu T, Fang Y, Mahmood R, et al. Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proc Natl Acad Sci U S A. 2005;102(12):4365–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weaver BA, Bonday ZQ, Putkey FR, Kops GJ, Silk AD, Cleveland DW. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol. 2003;162(4):551–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker DJ, Dawlaty MM, Wijshake T, Jeganathan KB, Malureanu L, van Ree JH, et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol. 2013;15(1):96–102.
Article
CAS
PubMed
Google Scholar
Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet. 2004;36(7):744–9.
Article
CAS
PubMed
Google Scholar
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 2007;8(5):379–93.
Article
CAS
PubMed
Google Scholar
Rieder CL, Cole RW, Khodjakov A, Sluder G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol. 1995;130(4):941–8.
Article
CAS
PubMed
Google Scholar
He E, Kapuy O, Oliveira RA, Uhlmann F, Tyson JJ, Novak B. System-level feedbacks make the anaphase switch irreversible. Proc Natl Acad Sci U S A. 2011;108(24):10016–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 2001;154(5):925–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang G, Yu H, Kirschner MW. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 1998;12(12):1871–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bloom K, Yeh E. Tension management in the kinetochore. Curr Biol. 2010;20(23):R1040–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Yao J, Joshi HC. Attachment and tension in the spindle assembly checkpoint. J Cell Sci. 2002;115(Pt 18):3547–55.
Article
CAS
PubMed
Google Scholar
Waters JC, Chen RH, Murray AW, Salmon ED. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol. 1998;141(5):1181–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letort G, Nedelec F, Blanchoin L, Thery M. Centrosome centering and decentering by microtubule network rearrangement. Mol Biol Cell. 2016;27(18):2833–43.
Article
PubMed
PubMed Central
Google Scholar
Zhai Y, Kronebusch PJ, Borisy GG. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol. 1995;131(3):721–34.
Article
CAS
PubMed
Google Scholar
Amaro AC, Samora CP, Holtackers R, Wang E, Kingston IJ, Alonso M, et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat Cell Biol. 2010;12(4):319–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hafner J, Mayr MI, Mockel MM, Mayer TU. Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1 and PP1 on Kif18A. Nat Commun. 2014;5:4397.
Article
PubMed
CAS
Google Scholar
Skibbens RV, Skeen VP, Salmon ED. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol. 1993;122(4):859–75.
Article
CAS
PubMed
Google Scholar
Elowe S, Hummer S, Uldschmid A, Li X, Nigg EA. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 2007;21(17):2205–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuijpers SAG, Vertegaal ACO. Guiding mitotic progression by crosstalk between post-translational modifications. Trends Biochem Sci. 2018;43(4):251–68.
Article
CAS
PubMed
Google Scholar
Lara-Gonzalez P, Scott MI, Diez M, Sen O, Taylor SS. BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J Cell Sci. 2011;124(Pt 24):4332–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz-Martinez LA, Tian W, Li B, Warrington R, Jia L, Brautigam CA, et al. The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis. J Biol Chem. 2015;290(4):2431–43.
Article
CAS
PubMed
Google Scholar
Lischetti T, Zhang G, Sedgwick GG, Bolanos-Garcia VM, Nilsson J. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing. Nat Commun. 2014;5:5563.
Article
CAS
PubMed
Google Scholar
Taylor SS, Ha E, McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol. 1998;142(1):1–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overlack K, Primorac I, Vleugel M, Krenn V, Maffini S, Hoffmann I, et al. A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. Elife. 2015;4:e05269.
Article
PubMed
PubMed Central
Google Scholar
Beaufils S, Grossmann JG, Renault A, Bolanos-Garcia VM. Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity. J Phys Chem B. 2008;112(27):7984–91.
Article
CAS
PubMed
Google Scholar
Bolanos-Garcia VM, Beaufils S, Renault A, Grossmann JG, Brewerton S, Lee M, et al. The conserved N-terminal region of the mitotic checkpoint protein BUBR1: a putative TPR motif of high surface activity. Biophys J. 2005;89(4):2640–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suijkerbuijk SJ, Vleugel M, Teixeira A, Kops GJ. Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell. 2012;23(4):745–55.
Article
CAS
PubMed
Google Scholar
Li W, Lan Z, Wu H, Wu S, Meadows J, Chen J, et al. BUBR1 phosphorylation is regulated during mitotic checkpoint activation. Cell Growth Differ. 1999;10(11):769–75.
CAS
PubMed
Google Scholar
Minguez P, Letunic I, Parca L, Bork P. PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins. Nucleic Acids Res. 2013;41(Database issue):D306–11.
CAS
PubMed
Google Scholar
Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, et al. Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol. 2012;8:599.
Article
PubMed
PubMed Central
CAS
Google Scholar
Izumi H, Matsumoto Y, Ikeuchi T, Saya H, Kajii T, Matsuura S. BubR1 localizes to centrosomes and suppresses centrosome amplification via regulating Plk1 activity in interphase cells. Oncogene. 2009;28(31):2806–20.
Article
CAS
PubMed
Google Scholar
Elowe S, Dulla K, Uldschmid A, Li X, Dou Z, Nigg EA. Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci. 2010;123(Pt 1):84–94.
Article
CAS
PubMed
Google Scholar
Huang H, Hittle J, Zappacosta F, Annan RS, Hershko A, Yen TJ. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J Cell Biol. 2008;183(4):667–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nijenhuis W, Vallardi G, Teixeira A, Kops GJ, Saurin AT. Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol. 2014;16(12):1257–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Wang Z, Yu T, Yang H, Virshup DM, Kops GJ, et al. Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization. Protein Cell. 2016;7(7):516–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cordeiro MH, Smith RJ, Saurin AT. Kinetochore phosphatases suppress autonomous Polo-like kinase 1 activity to control the mitotic checkpoint. J Cell Biol. 2020;219(12):e202002020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nurse P. Universal control mechanism regulating onset of M-phase. Nature. 1990;344(6266):503–8.
Article
CAS
PubMed
Google Scholar
Nousiainen M, Sillje HH, Sauer G, Nigg EA, Korner R. Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A. 2006;103(14):5391–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, et al. Targets of the cyclin-dependent kinase Cdk1. Nature. 2003;425(6960):859–64.
Article
CAS
PubMed
Google Scholar
Park JE, Soung NK, Johmura Y, Kang YH, Liao C, Lee KH, et al. Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol Life Sci. 2010;67(12):1957–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia L, Li B, Yu H. The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun. 2016;7:10818.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kruse T, Zhang G, Larsen MS, Lischetti T, Streicher W, Kragh Nielsen T, et al. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J Cell Sci. 2013;126(Pt 5):1086–92.
Article
CAS
PubMed
Google Scholar
Hayward D, Alfonso-Perez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett. 2019;593(20):2889–907.
Article
CAS
PubMed
Google Scholar
Vallardi G, Allan LA, Crozier L, Saurin AT. Division of labour between PP2A-B56 isoforms at the centromere and kinetochore. Elife. 2019;8:e42619.
Article
PubMed
PubMed Central
Google Scholar
Smith RJ, Cordeiro MH, Davey NE, Vallardi G, Ciliberto A, Gross F, et al. PP1 and PP2A Use Opposite Phospho-dependencies to Control Distinct Processes at the Kinetochore. Cell Rep. 2019;28(8):2206-19.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Raetz EA, Kitagawa M, Virshup DM, Lee SH. BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression. Biol Open. 2013;2(5):479–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taveras C, Liu C, Mao Y. A tension-independent mechanism reduces Aurora B-mediated phosphorylation upon microtubule capture by CENP-E at the kinetochore. Cell Cycle. 2019;18(12):1349–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Bajaj R, Bollen M, Peti W, Page R. Expanding the PP2A interactome by defining a B56-specific SLiM. Structure. 2016;24(12):2174–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo Y, Kim C, Ahmad S, Zhang J, Mao Y. CENP-E–dependent BubR1 autophosphorylation enhances chromosome alignment and the mitotic checkpoint. J Cell Biol. 2012;198(2):205–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ. CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol. 1997;139(6):1373–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Legal T, Hayward D, Gluszek-Kustusz A, Blackburn EA, Spanos C, Rappsilber J, et al. The C-terminal helix of BubR1 is essential for CENP-E-dependent chromosome alignment. J Cell Sci. 2020;133(16):jcs246025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao Y, Desai A, Cleveland DW. Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J Cell Biol. 2005;170(6):873–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dick AE, Gerlich DW. Kinetic framework of spindle assembly checkpoint signalling. Nat Cell Biol. 2013;15(11):1370–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collin P, Nashchekina O, Walker R, Pines J. The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat Cell Biol. 2013;15(11):1378–85.
Article
CAS
PubMed
Google Scholar
Mao Y, Abrieu A, Cleveland DW. Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell. 2003;114(1):87–98.
Article
CAS
PubMed
Google Scholar
Rago F, Gascoigne KE, Cheeseman IM. Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr Biol. 2015;25(5):671–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Yu H. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol. 2015;208(2):181–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y, Holland AJ, Lan W, Cleveland DW. Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell. 2010;142(3):444–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaqaman K, King EM, Amaro AC, Winter JR, Dorn JF, Elliott HL, et al. Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J Cell Biol. 2010;188(5):665–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suijkerbuijk SJ, van Dam TJ, Karagoz GE, von Castelmur E, Hubner NC, Duarte AM, et al. The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell. 2012;22(6):1321–9.
Article
CAS
PubMed
Google Scholar
Huang Y, Lin L, Liu X, Ye S, Yao PY, Wang W, et al. BubR1 phosphorylates CENP-E as a switch enabling the transition from lateral association to end-on capture of spindle microtubules. Cell Res. 2019;29(7):562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang H, Yen TJ. BubR1 is an effector of multiple mitotic kinases that specifies kinetochore: microtubule attachments and checkpoint. Cell Cycle. 2009;8(8):1164–7.
Article
CAS
PubMed
Google Scholar
Matsumura S, Toyoshima F, Nishida E. Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J Biol Chem. 2007;282(20):15217–27.
Article
CAS
PubMed
Google Scholar
Hanisch A, Wehner A, Nigg EA, Sillje HH. Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol Biol Cell. 2006;17(1):448–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali I, Conrad RJ, Verdin E, Ott M. Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem Rev. 2018;118(3):1216–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004;23(24):4225–31.
Article
CAS
PubMed
Google Scholar
Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004;32(3):959–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.
Article
CAS
PubMed
Google Scholar
Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26(37):5420–32.
Article
CAS
PubMed
Google Scholar
North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11(2):437–44.
Article
CAS
PubMed
Google Scholar
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011–5.
Article
CAS
PubMed
Google Scholar
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–63.
Article
CAS
PubMed
Google Scholar
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149–59.
Article
CAS
PubMed
Google Scholar
North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004;5(5):224.
Article
PubMed
PubMed Central
Google Scholar
Choi E, Choe H, Min J, Choi JY, Kim J, Lee H. BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. Embo J. 2009;28(14):2077–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
North BJ, Rosenberg MA, Jeganathan KB, Hafner AV, Michan S, Dai J, et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 2014;33(13):1438–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park I, Lee HO, Choi E, Lee YK, Kwon MS, Min J, et al. Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol. 2013;202(2):295–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park I, Kwon MS, Paik S, Kim H, Lee HO, Choi E, et al. HDAC2/3 binding and deacetylation of BubR1 initiates spindle assembly checkpoint silencing. FEBS J. 2017;284(23):4035–50.
Article
CAS
PubMed
Google Scholar
Suematsu T, Li Y, Kojima H, Nakajima K, Oshimura M, Inoue T. Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition. Biochem Biophys Res Commun. 2014;453(3):588–94.
Article
CAS
PubMed
Google Scholar
Matsumoto T, Baker DJ, d’Uscio LV, Mozammel G, Katusic ZS, van Deursen JM. Aging-associated vascular phenotype in mutant mice with low levels of BubR1. Stroke. 2007;38(3):1050–6.
Article
CAS
PubMed
Google Scholar
Cho CH, Yang Z, Yoo KH, Oliveros A, Jang MH. BubR1 insufficiency impairs affective behavior and memory function in mice. Int Neurourol J. 2018;22(Suppl 3):S122–30.
Article
PubMed
PubMed Central
Google Scholar
Yang Z, Jun H, Choi CI, Yoo KH, Cho CH, Hussaini SMQ, et al. Age-related decline in BubR1 impairs adult hippocampal neurogenesis. Aging Cell. 2017;16(3):598–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Touati SA, Buffin E, Cladiere D, Hached K, Rachez C, van Deursen JM, et al. Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest. Nat Commun. 2015;6:6946.
Article
CAS
PubMed
Google Scholar
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz MB, Sinclair DA. Why NAD(+) declines during aging: it’s destroyed. Cell Metab. 2016;23(6):965–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, et al. NAD(+) in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23(10):899–916.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdin E. NAD(+) in aging, metabolism, and neurodegeneration. Science. 2015;350(6265):1208–13.
Article
CAS
PubMed
Google Scholar
Dikic I. Proteasomal and autophagic degradation systems. Annu Rev Biochem. 2017;86:193–224.
Article
CAS
PubMed
Google Scholar
Ciechanover A. The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol. 2015;16(5):322–4.
Article
CAS
PubMed
Google Scholar
Sitry-Shevah D, Kaisari S, Teichner A, Miniowitz-Shemtov S, Hershko A. Role of ubiquitylation of components of mitotic checkpoint complex in their dissociation from anaphase-promoting complex/cyclosome. Proc Natl Acad Sci U S A. 2018;115(8):1777–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddy SK, Rape M, Margansky WA, Kirschner MW. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature. 2007;446(7138):921–5.
Article
CAS
PubMed
Google Scholar
Liu ST, Zhang H. The mitotic checkpoint complex (MCC): looking back and forth after 15 years. AIMS Mol Sci. 2016;3(4):597–634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 2010;428(2):133–45.
Article
CAS
PubMed
Google Scholar
Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010;11(12):861–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang F, Hu L, Chen C, Yu J, O’Connell CB, Khodjakov A, et al. BubR1 is modified by sumoylation during mitotic progression. J Biol Chem. 2012;287(7):4875–82.
Article
CAS
PubMed
Google Scholar
Zhang XD, Goeres J, Zhang H, Yen TJ, Porter AC, Matunis MJ. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell. 2008;29(6):729–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang F, Huang Y, Dai W. Sumoylated BubR1 plays an important role in chromosome segregation and mitotic timing. Cell Cycle. 2012;11(4):797–806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kite E, Forer A. The role of phosphorylation in the elasticity of the tethers that connect telomeres of separating anaphase chromosomes. Nucleus. 2020;11(1):19–31.
Article
PubMed
PubMed Central
Google Scholar
LaFountain JR Jr, Cole RW, Rieder CL. Partner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists poleward motion. J Cell Sci. 2002;115(Pt 7):1541–9.
CAS
PubMed
Google Scholar
Royou A, Gagou ME, Karess R, Sullivan W. BubR1- and Polo-coated DNA tethers facilitate poleward segregation of acentric chromatids. Cell. 2010;140(2):235–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murn J, Shi Y. The winding path of protein methylation research: milestones and new frontiers. Nat Rev Mol Cell Biol. 2017;18(8):517–27.
Article
CAS
PubMed
Google Scholar
Saurin AT. Kinase and phosphatase cross-talk at the kinetochore. Front Cell Dev Biol. 2018;6:62.
Article
PubMed
PubMed Central
Google Scholar