Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci. 2004;117:4411–22. https://doi.org/10.1242/jcs.01307.
Article
CAS
Google Scholar
Bae KS, Park JB, Kim HS, Kim DS, Park DJ, Kang SJ. Neuron-like differentiation of bone marrow-derived mesenchymal stem cells. Yonsei Med J. 2011;52:401–12. https://doi.org/10.3349/ymj.2011.52.3.401.
Article
CAS
PubMed Central
Google Scholar
Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Peault B. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci. 2014;71:1353–74. https://doi.org/10.1007/s00018-013-1462-6.
Article
CAS
Google Scholar
Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, Shimmura S, Nagai Y, Nakagawa T, Okano H, Matsuzaki Y. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun. 2009;379:1114–9. https://doi.org/10.1016/j.bbrc.2009.01.031.
Article
CAS
Google Scholar
Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, Sanchez-Cabo F, Mendez-Ferrer S. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife. 2014;3:e03696. https://doi.org/10.7554/eLife.03696.
Article
CAS
PubMed Central
Google Scholar
Howden SE, Thomson JA, Little MH. Simultaneous reprogramming and gene editing of human fibroblasts. Nat Protoc. 2018;13:875–98. https://doi.org/10.1038/nprot.2018.007.
Article
CAS
PubMed Central
Google Scholar
Ouchi T, Morikawa S, Shibata S, Fukuda K, Okuno H, Fujimura T, Kuroda T, Ohyama M, Akamatsu W, Nakagawa T, Okano H. LNGFR(+)THY-1(+) human pluripotent stem cell-derived neural crest-like cells have the potential to develop into mesenchymal stem cells. Differentiation. 2016;92:270–80.
Article
CAS
Google Scholar
Zhao G, Ji H, Wang S, Gu B, Song X, Zhang J, Liu Y, Chen L, Zhang M. Cell surface proteomics analysis indicates a neural lineage bias of rat bone marrow mesenchymal stromal cells. Biomed Res Int. 2014;2014:479269. https://doi.org/10.1155/2014/479269.
Article
CAS
PubMed Central
Google Scholar
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18091852.
Article
PubMed Central
Google Scholar
Mendes-Pinheiro B, Anjo SI, Manadas B, Da Silva JD, Marote A, Behie LA, Teixeira FG, Salgado AJ. Bone marrow mesenchymal stem cells’ secretome exerts neuroprotective effects in a Parkinson’s disease rat model. Front Bioeng Biotechnol. 2019. https://doi.org/10.3389/fbioe.2019.00294.
Article
PubMed Central
Google Scholar
Qiu XC, Jin H, Zhang RY, Ding Y, Zeng X, Lai BQ, Ling EA, Wu JL, Zeng YS. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Res Ther. 2015;6:105–7. https://doi.org/10.1186/s13287-015-0100-7.
Article
CAS
PubMed Central
Google Scholar
Zeng X, Qiu XC, Ma YH, Duan JJ, Chen YF, Gu HY, Wang JM, Ling EA, Wu JL, Wu W, Zeng YS. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials. 2015;53:184–201. https://doi.org/10.1016/j.biomaterials.2015.02.073.
Article
CAS
PubMed Central
Google Scholar
Geng C, Cao H, Ying X, Yu H. Effect of mesenchymal stem cells transplantation combining with hyperbaric oxygen therapy on rehabilitation of rat spinal cord injury. Asian Pac J Trop Med. 2015;8:468–73. https://doi.org/10.1016/j.apjtm.2015.05.001.
Article
CAS
Google Scholar
Li Z, Zhao W, Liu W, Zhou Y, Jia J, Yang L. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury. Neural Regen Res. 2014;9:2197–204. https://doi.org/10.4103/1673-5374.147953.
Article
PubMed Central
Google Scholar
Tomita M, Mori T, Maruyama K, Zahir T, Ward M, Umezawa A, Young MJ. A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem cells. 2006;24:2270–8. https://doi.org/10.1634/stemcells.2005-0507.
Article
CAS
Google Scholar
Bai W, Zhang Y, Xu W, Li W, Li M, Yuan F, Luo X, Zhang M. Isolation and characterization of neural progenitor cells from bone marrow in cell replacement therapy of brain injury. Front Cell Neurosci. 2020;14:49. https://doi.org/10.3389/fncel.2020.00049.
Article
CAS
PubMed Central
Google Scholar
Kruminis-Kaszkiel E, Osowski A, Bejer-Oleńska E, Dziekoński M, Wojtkiewicz J. Differentiation of human mesenchymal stem cells from Wharton’s Jelly towards neural stem cells using a feasible and repeatable protocol. Cells. 2020. https://doi.org/10.3390/cells9030739.
Article
PubMed Central
Google Scholar
Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis. 2017;8:e3108. https://doi.org/10.1038/cddis.2017.504.
Article
CAS
PubMed Central
Google Scholar
Huat TJ, Khan AA, Pati S, Mustafa Z, Abdullah JM, Jaafar H. IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci. 2014;15:91. https://doi.org/10.1186/1471-2202-15-91.
Article
CAS
PubMed Central
Google Scholar
Messerli M, Wagner A, Sager R, Mueller M, Baumann M, Surbek DV, Schoeberlein A. Stem cells from umbilical cord Wharton’s jelly from preterm birth have neuroglial differentiation potential. Reprod Sci. 2013;20:1455–64. https://doi.org/10.1177/1933719113488443.
Article
PubMed Central
Google Scholar
Faghih H, Javeri A, Amini H, Taha MF. Directed differentiation of human adipose tissue-derived stem cells to dopaminergic neurons in low-serum and serum-free conditions. Neurosci Lett. 2019;708:134353. https://doi.org/10.1016/j.neulet.2019.134353.
Article
CAS
Google Scholar
Rahimi-Sherbaf F, Nadri S, Rahmani A, Dabiri OA. Placenta mesenchymal stem cells differentiation toward neuronal-like cells on nanofibrous scaffold. Bioimpacts. 2020;10:117–22. https://doi.org/10.34172/bi.2020.14.
Article
PubMed Central
Google Scholar
Mukai T, Nagamura-Inoue T, Shimazu T, Mori Y, Takahashi A, Tsunoda H, Yamaguchi S, Tojo A. Neurosphere formation enhances the neurogenic differentiation potential and migratory ability of umbilical cord-mesenchymal stromal cells. Cytotherapy. 2016;18:229–41. https://doi.org/10.1016/j.jcyt.2015.10.012.
Article
CAS
Google Scholar
Leite C, Silva NT, Mendes S, Ribeiro A, de Faria JP, Lourenco T, dos Santos F, Andrade PZ, Cardoso CM, Vieira M, Paiva A, da Silva CL, Cabral JM, Relvas JB, Graos M. Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS ONE. 2014;9:e111059. https://doi.org/10.1371/journal.pone.0111059.
Article
CAS
PubMed Central
Google Scholar
Zhang Q, Nguyen P, Xu Q, Park W, Lee S, Furuhashi A, Le AD. Neural progenitor-like cells induced from human gingiva-derived mesenchymal stem cells regulate myelination of schwann cells in rat sciatic nerve regeneration. Stem Cells Transl Med. 2017;6:458–70. https://doi.org/10.5966/sctm.2016-0177.
Article
CAS
Google Scholar
Peng C, Li Y, Lu L, Zhu J, Li H, Hu J. Efficient one-step induction of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) produces msc-derived neurospheres (MSC-NS) with unique transcriptional profile and enhanced neurogenic and angiogenic secretomes. Stem Cells Int. 2019;2019:9208173. https://doi.org/10.1155/2019/9208173.
Article
CAS
PubMed Central
Google Scholar
Huat TJ, Khan AA, Abdullah JM, Idris FM, Jaafar H. MicroRNA expression profile of neural progenitor-like cells derived from rat bone marrow mesenchymal stem cells under the influence of IGF-1, bFGF and EGF. Int J Mol Sci. 2015;16:9693–718. https://doi.org/10.3390/ijms16059693.
Article
CAS
PubMed Central
Google Scholar
El-Serafi AT, Sandeep D, Abdallah S, Lozansson Y, Hamad M, Khan AA. Paradoxical effects of the epigenetic modifiers 5-aza-deoxycytidine and suberoylanilide hydroxamic acid on adipogenesis. Differentiation. 2019;106:1–8. https://doi.org/10.1016/j.diff.2019.02.003.
Article
CAS
Google Scholar
Bushnell B. https://sourceforge.net/projects/bbmap/. https://jgi.doe.gov/data-and-tools/bbtools/.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed Central
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W, Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–3. https://doi.org/10.1093/bioinformatics/btp101.
Article
CAS
PubMed Central
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005;102:15545–50.
Article
CAS
Google Scholar
Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP. Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener 2014;9:26. https://doi.org/10.1186/1750-1326-9-26.
Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, D’Eustachio P, Stein L, Hermjakob H. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics. 2017;18:142. https://doi.org/10.1186/s12859-017-1559-2.
Article
CAS
PubMed Central
Google Scholar
Chawla K, Tripathi S, Thommesen L, Lægreid A, Kuiper M. TFcheckpoint: a curated compendium of specific DNA-binding RNA polymerase II transcription factors. Bioinformatics. 2013;29:2519–20. https://doi.org/10.1093/bioinformatics/btt432.
Article
CAS
Google Scholar
Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, Jagodnik KM, Kropiwnicki E, Wang Z, Ma’ayan A. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47:W212–24. https://doi.org/10.1093/nar/gkz446.
Article
CAS
PubMed Central
Google Scholar
Supeno NE, Pati S, Hadi RA, Ghani ARI, Mustafa Z, Abdullah JM, Idris FM, Han X, Jaafar H. IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci. 2013;10:522–31. https://doi.org/10.7150/ijms.5325.
Article
CAS
PubMed Central
Google Scholar
Yoo K, Lee K, Oh J, Lee H, Park H, Park YS, Kim HK. Postsynaptic density protein 95 (PSD-95) is transported by KIF5 to dendritic regions. Mol Brain. 2019;12:97. https://doi.org/10.1186/s13041-019-0520-x.
Article
CAS
PubMed Central
Google Scholar
Patel A, Harker N, Moreira-Santos L, Ferreira M, Alden K, Timmis J, Foster K, Garefalaki A, Pachnis P, Andrews P, Enomoto H, Milbrandt J, Pachnis V, Coles MC, Kioussis D, Veiga-Fernandes H. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci Signal. 2012;5:ra55. https://doi.org/10.1126/scisignal.2002734.
Article
CAS
Google Scholar
Lucini C, D’Angelo L, Patruno M, Mascarello F, de Girolamo P, Castaldo L. GDNF family ligand RET receptor in the brain of adult zebrafish. Neurosci Lett. 2011;502:214–8. https://doi.org/10.1016/j.neulet.2011.07.047.
Article
CAS
Google Scholar
Watanabe Y, Harada T, Ito T, Ishiguro Y, Ando H, Seo T, Kobayashi S, Takahashi M, Nimura Y. ret Proto-oncogene product is a useful marker of lineage determination in the development of the enteric nervous system in rats. J Pediatr Surg. 1997;32:28–33. https://doi.org/10.1016/s0022-3468(97)90086-5.
Article
CAS
Google Scholar
Bengoa-Vergniory N, Kypta RM. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci. 2015;72:4157–72. https://doi.org/10.1007/s00018-015-2028-6.
Article
CAS
Google Scholar
Inestrosa NC, Varela-Nallar L. Wnt signalling in neuronal differentiation and development. Cell Tissue Res. 2015;359:215–23. https://doi.org/10.1007/s00441-014-1996-4.
Article
CAS
Google Scholar
Maisel M, Habisch HJ, Royer L, Herr A, Milosevic J, Hermann A, Liebau S, Brenner R, Schwarz J, Schroeder M, Storch A. Genome-wide expression profiling and functional network analysis upon neuroectodermal conversion of human mesenchymal stem cells suggest HIF-1 and miR-124a as important regulators. Exp Cell Res. 2010;316:2760–78. https://doi.org/10.1016/j.yexcr.2010.06.012.
Article
CAS
Google Scholar
Chan HY, Stanton LW. A pharmacogenomic profile of human neural progenitors undergoing differentiation in the presence of the traditional Chinese medicine NeuroAiD. Pharmacogenomics J. 2016;16:461–71. https://doi.org/10.1038/tpj.2016.21.
Article
CAS
Google Scholar
Song Y, Tang Y, Song J, Lei M, Liang P, Fu T, Su X, Zhou P, Yang L, Huang E. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int Orthop. 2018;42:947–55. https://doi.org/10.1007/s00264-018-3796-z.
Article
Google Scholar
Liu L, Luo Q, Sun J, Song G. Cytoskeletal control of nuclear morphology and stiffness are required for OPN-induced bone-marrow-derived mesenchymal stem cell migration. Biochem Cell Biol. 2019;97:463–70. https://doi.org/10.1139/bcb-2018-0263.
Article
CAS
Google Scholar
Peng KY, Lee YW, Hsu PJ, Wang HH, Wang Y, Liou JY, Hsu SH, Wu KK, Yen BL. Human pluripotent stem cell (PSC)-derived mesenchymal stem cells (MSCs) show potent neurogenic capacity which is enhanced with cytoskeletal rearrangement. 2016;7:43949–43959. https://doi.org/10.18632/oncotarget.9947.
Compagnucci C, Piemonte F, Sferra A, Piermarini E, Bertini E. The cytoskeletal arrangements necessary to neurogenesis. 2016;7:19414–29. https://doi.org/10.18632/oncotarget.6838.
Article
Google Scholar
Hao J, Zhang Y, Jing D, Shen Y, Tang G, Huang S, Zhao Z. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomater. 2015;20:1–9. https://doi.org/10.1016/j.actbio.2015.04.008.
Article
Google Scholar
Lopes HB, Freitas GP, Elias CN, Tye C, Stein JL, Stein GS, Lian JB, Rosa AL, Beloti MM. Participation of integrin β3 in osteoblast differentiation induced by titanium with nano or microtopography. J Biomed Mater Res A. 2019;107:1303–13. https://doi.org/10.1002/jbm.a.36643.
Article
CAS
PubMed Central
Google Scholar
Shan H. Zhang L [Effects of integrin on differentiation of mesenchymal stem cells]. Sheng Li Xue Bao. 2017;69:498–508.
Google Scholar
Bi H, Ming L, Cheng R, Luo H, Zhang Y, Jin Y. Liver extracellular matrix promotes BM-MSCs hepatic differentiation and reversal of liver fibrosis through activation of integrin pathway. J Tissue Eng Regen Med. 2017;11:2685–98. https://doi.org/10.1002/term.2161.
Article
CAS
Google Scholar
Janoštiak R, Pataki AC, Brábek J, Rösel D. Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol. 2014;93:445–54. https://doi.org/10.1016/j.ejcb.2014.07.002.
Article
CAS
Google Scholar
Docheva D, Popov C, Mutschler W, Schieker M. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med. 2007;11:21–38. https://doi.org/10.1111/j.1582-4934.2007.00001.x.
Article
CAS
PubMed Central
Google Scholar
Elosegui-Artola A, Bazellières E, Allen MD, Andreu I, Oria R, Sunyer R, Gomm JJ, Marshall JF, Jones JL, Trepat X, Roca-Cusachs P. Rigidity sensing and adaptation through regulation of integrin types. Nat Mater. 2014;13:631–7. https://doi.org/10.1038/nmat3960.
Article
CAS
PubMed Central
Google Scholar
Ali D, Alshammari H, Vishnubalaji R, Chalisserry EP, Hamam R, Alfayez M, Kassem M, Aldahmash A, Alajez NM. CUDC-907 promotes bone marrow adipocytic differentiation through inhibition of histone deacetylase and regulation of cell cycle. Stem Cells Dev. 2017;26:353–62. https://doi.org/10.1089/scd.2016.0183.
Article
CAS
Google Scholar
Ullah M, Stich S, Notter M, Eucker J, Sittinger M, Ringe J. Transdifferentiation of mesenchymal stem cells-derived adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and have a correlation with cell cycle arresting and driving genes. Differentiation. 2013;85:78–90. https://doi.org/10.1016/j.diff.2013.02.001.
Article
CAS
Google Scholar
Naveen CR, Gaikwad S, Agrawal-Rajput R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine. 2016;23:736–44. https://doi.org/10.1016/j.phymed.2016.03.013.
Article
CAS
Google Scholar
Kim D, Lee J, Kang D, Lee D, Kim Y, Hwang S, Kim D, Lee C, Lee K. Multipotent neurogenic fate of mesenchymal stem cell is determined by Cdk4-mediated hypophosphorylation of Smad-STAT3. 2016;15:1787–1795. https://doi.org/10.1080/15384101.2016.1188230.
Boward B, Wu T, Dalton S. Concise review: control of cell fate through cell cycle and pluripotency networks. Stem Cells. 2016;34:1427–36. https://doi.org/10.1002/stem.2345.
Article
PubMed Central
Google Scholar
Iwafuchi-Doi M. The mechanistic basis for chromatin regulation by pioneer transcription factors. Wiley Interdiscip Rev Syst Biol Med. 2019;11:e1427. https://doi.org/10.1002/wsbm.1427.
Article
CAS
Google Scholar
Goode D, Obier N, Vijayabaskar MS, Lie-A-Ling M, Lilly A, Hannah R, Lichtinger M, Batta K, Florkowska M, Patel R, Challinor M, Wallace K, Gilmour J, Assi S, Cauchy P, Hoogenkamp M, Westhead D, Lacaud G, Kouskoff V, Göttgens B, Bonifer C. Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev Cell. 2016;36:572–87. https://doi.org/10.1016/j.devcel.2016.01.024.
Article
CAS
PubMed Central
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.
Article
CAS
Google Scholar
Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell. 2013;52:380–92. https://doi.org/10.1016/j.molcel.2013.09.002.
Article
CAS
Google Scholar
Roson-Burgo B, Sanchez-Guijo F, Del Cañizo C, De Las RJ. Transcriptomic portrait of human Mesenchymal Stromal/Stem cells isolated from bone marrow and placenta. BMC Genomics. 2014;15:910. https://doi.org/10.1186/1471-2164-15-910.
Article
PubMed Central
Google Scholar
Roson-Burgo B, Sanchez-Guijo F, Del Cañizo C, De Las RJ. Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling. BMC Genomics. 2016;17:944. https://doi.org/10.1186/s12864-016-3230-0.
Article
CAS
PubMed Central
Google Scholar
Kageyama R, Ohtsuka T, Kobayashi T. Roles of Hes genes in neural development. Dev Growth Differ. 2008;50(Suppl 1):97. https://doi.org/10.1111/j.1440-169X.2008.00993.x.
Article
CAS
Google Scholar
Pocock R, Mione M, Hussain S, Maxwell S, Pontecorvi M, Aslam S, Gerrelli D, Sowden JC, Woollard A. Neuronal function of Tbx20 conserved from nematodes to vertebrates. Dev Biol. 2008;317:671–85. https://doi.org/10.1016/j.ydbio.2008.02.015.
Article
CAS
Google Scholar
Cirnaru M, Melis C, Fanutza T, Naphade S, Tshilenge K, Muntean BS, Martemyanov KA, Plotkin JL, Ellerby LM, Ehrlich ME. Nuclear receptor Nr4a1 regulates striatal striosome development and dopamine D1 receptor signaling. ENeuro. 2019. https://doi.org/10.1523/ENEURO.0305-19.2019.
Article
PubMed Central
Google Scholar
Montelius A, Marmigère F, Baudet C, Aquino JB, Enerbäck S, Ernfors P. Emergence of the sensory nervous system as defined by Foxs1 expression. Differentiation. 2007;75:404–17. https://doi.org/10.1111/j.1432-0436.2006.00154.x.
Article
CAS
Google Scholar
Jalali A, Bassuk AG, Kan L, Israsena N, Mukhopadhyay A, McGuire T, Kessler JA. HeyL promotes neuronal differentiation of neural progenitor cells. J Neurosci Res. 2011;89:299–309. https://doi.org/10.1002/jnr.22562.
Article
CAS
PubMed Central
Google Scholar