Frith M, Bailey T, Kasukawa T, Mignone F, Kummerfeld S, Madera M, et al. Discrimination of non-protein-coding transcripts from protein-coding mRNA. RNA Biol. 2006;3:40–8.
Article
PubMed
CAS
Google Scholar
Mattick J, Makunin I. Non-coding RNA. Hum Mol Genet. 2006;15 Spec(1):R17–R29.
Article
CAS
Google Scholar
Dinger M, Pang K, Mercer T, Mattick J. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol. 2008. https://doi.org/10.1371/journal.pcbi.1000176.
Article
PubMed
PubMed Central
Google Scholar
Tomari Y, Zamore P. Perspective: machines for RNAi. Genes Dev. 2005;19:517–29.
Article
PubMed
CAS
Google Scholar
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455:1193–7.
Article
PubMed
CAS
Google Scholar
Ambros V, Lee R, Lavanway A, Williams P, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 2003;13:807–18.
Article
PubMed
CAS
Google Scholar
Aravin A, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003;5:337–50.
Article
PubMed
CAS
Google Scholar
Xie Z, Johansen L, Gustafson A, Kasschau K, Lellis A, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004. https://doi.org/10.1371/journal.pbio.0020104.
Article
PubMed
PubMed Central
Google Scholar
Carthew R, Sontheimer E. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sontheimer E, Carthew R. Silence from within: endogenous siRNAs and miRNAs. Cell. 2005;122:9–12.
Article
PubMed
CAS
Google Scholar
Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta. 2012;1819:137–48.
Article
PubMed
CAS
Google Scholar
Vaucheret H, Vazquez F, Crété P, Bartel D. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 2004;18:1187–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diederichs S, Haber D. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell. 2007;131:1097–108.
Article
PubMed
CAS
Google Scholar
O'Carroll D, Mecklenbrauker I, Das P, Santana A, Koenig U, Enright A, et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 2007;21:1999–2004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim V, Han J, Siomi M. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10:126–39.
Article
CAS
PubMed
Google Scholar
Napoli C, Lemieux C, Jorgensen R. Introduction of a chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279–89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Waterhouse P, Graham M, Wang M. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA. 1998;95:13959–64.
Article
PubMed
CAS
PubMed Central
Google Scholar
Baulcombe D. RNA silencing in plants. Nature. 2004;431:356–63.
Article
PubMed
CAS
Google Scholar
Tan G, Garchow B, Liu X, Yeung J, Morris J 4th, Cuellar TL, et al. Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res. 2009;37:7533–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel D. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature. 2008;456:921–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janas M, Wang B, Harris A, Aguiar M, Shaffer J, Subrahmanyam Y, et al. Alternative RISC assembly: Binding and repression of microRNA–mRNA duplexes by human Ago proteins. RNA. 2012;18:2041–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang B, Pan X, Wang Q, Cobb G, Anderson T. Identification and characterization of new plant microRNAs using EST analysis. Cell Res. 2005;15:336–60.
Article
PubMed
Google Scholar
Wang D, Pajerowska-Mukhtar K, Hendrickson Culler A, Dong X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol. 2007;17:1784–90.
Article
PubMed
CAS
Google Scholar
Schommer C, Palatnik J, Aggarwal P, Chételat A, Cubas P, Farmer E, et al. Control of jasmonate biosynthesis and senescence by miR319 targets. Plos Biol. 2008. https://doi.org/10.1371/journal.pbio.0060230.
Article
PubMed
PubMed Central
Google Scholar
Millar A, Waterhouse P. Plant and animal microRNAs: similarities and differences. Funct Integr Genomics. 2005;5:129–35.
Article
PubMed
CAS
Google Scholar
Zhang Y, Yun Z, Gong L, Qu H, Duan X, Jiang Y, et al. Comparison of miRNA evolution and function in plants and animals. MicroRNA. 2018. https://doi.org/10.2174/2211536607666180126163031.
Article
PubMed
Google Scholar
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25:2383–99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.
Article
PubMed
CAS
Google Scholar
Budak H, Akpinar BA. Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomic. 2015;15:523–31.
Article
CAS
Google Scholar
Xie Z, Allen E, Fahlgren N, Calamar A, Givan S, Carrington J. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005;138:2145–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Borchert G, Lanier W, Davidson B. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101.
Article
PubMed
CAS
Google Scholar
Park M, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig R. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA. 2005;102:3691–6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Song L, Han M, Lesicka J, Fedoroff N. Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA. 2007;104:5437–42.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett R, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307:932–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol. 2005;15:1501–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baumberger N, Baulcombe D. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA. 2005;102:11928–33.
Article
PubMed
CAS
PubMed Central
Google Scholar
Qi Y, Denli A, Hannon G. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell. 2005;19:421–8.
Article
PubMed
CAS
Google Scholar
Okamura K, Hagen J, Duan H, Tyler D, Lai E. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130:89–100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ruby J, Stark A, Johnston W, Kellis M, Bartel D, Lai E. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 2007;17:1850–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rajagopalan R, Vaucheret H, Trejo J, Bartel D. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006;20:3407–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dunoyer P, Brosnan C, Schott G, Wang Y, Jay F, Alioua A, et al. An endogenous, systemic RNAi pathway in plants. EMBO J. 2010;29:1699–712.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ameres S, Horwich M, Hung J, Xu J, Ghildiyal M, Weng Z, et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science. 2010;328:1534–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie J, Ameres S, Friedline R, Hung J, Zhang Y, Xie Q, et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat Methods. 2012;9:403–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chatterjee S, Grosshans H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature. 2009;461:546–9.
Article
CAS
PubMed
Google Scholar
Chatterjee S, Fasler M, Bussing I, Grosshans H. Target-mediated protection of endogenous microRNAs in C. elegans. Dev Cell. 2011;20:388–96.
Article
PubMed
CAS
Google Scholar
La Rocca G, Olejniczak SH, González AJ, Briskin D, Vidigal JA, Spraggon L, et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci USA. 2015;112:767–72.
Article
PubMed
CAS
PubMed Central
Google Scholar
Enright A, John B, Gaul U, Tuschl T, Sander C, Marks D. MicroRNA targets in Drosophila. Genome Biol. 2003; https://genomebiology.com/2003/5/1/R1
Stark A, Brennecke J, Russell R, Cohen S. Identification of Drosophila microRNA targets. PLOS Biol. 2003. https://doi.org/10.1371/journal.pbio.0000060.
Article
PubMed
PubMed Central
Google Scholar
Wang MB, Metzlaff M. RNA silencing and antiviral defense in plants. Curr Opin Plant Biol. 2005;8:216–22.
Article
PubMed
CAS
Google Scholar
Palatnik J, Allen E, Wu X, Schommer C, Schwab R, Carrington J, et al. Control of leaf morphogenesis by microRNAs. Nature. 2003;425:257–63.
Article
PubMed
CAS
Google Scholar
Jones-Rhoades M, Bartel D. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004;14:787–99.
Article
PubMed
CAS
Google Scholar
Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell. 2005;17:2204–16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bartel B, Bartel D. MicroRNAs: at the root of plant development? Plant Physiol. 2003;132:709–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Floyd SK, Bowman JL. Gene regulation: ancient microRNA target sequences in plants. Nature. 2004;428:485–6.
Article
PubMed
CAS
Google Scholar
Voinnet O. Origin, biogenesis and activity of plant microRNAs. Cell. 2009;136:669–87.
Article
PubMed
CAS
Google Scholar
Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ. MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA. 2008;105:2946–50.
Article
PubMed
PubMed Central
Google Scholar
Guerra-Assunção JA, Enright AJ. Large-scale analysis of microRNA evolution. BMC Genomics. 2012;13:218.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010;24:992–1009.
Article
CAS
Google Scholar
Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, et al. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res. 2011;21:203–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moran Y, Fredman D, Praher D, Li X, Wee L, Rentzsch F, et al. Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 2014;24:651–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boero F, Schierwater B, Piraino S. Cnidarian milestones in metazoan evolution. Integr Comp Biol. 2007;47:693–700.
Article
PubMed
Google Scholar
Mauri M, Kirchner M, Aharoni R, Ciolli Mattioli C, van den Bruck D, Gutkovitch N, et al. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Res. 2017;45:938–50.
Article
PubMed
CAS
Google Scholar
Guerra-Assunção JA, Enright AJ. MapMi: automated mapping of microRNA loci. BMC Bioinformatics. 2010;11:133.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22:107–26.
Article
PubMed
CAS
Google Scholar
Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, et al. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem. 2014;26:505–12.
Article
CAS
Google Scholar
Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, et al. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem. 2015;26:505–12.
Article
PubMed
CAS
Google Scholar
Luo Y, Wang P, Wang X, Wang Y, Mu Z, Li Q, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-00488-y.
Article
PubMed
PubMed Central
Google Scholar
Lukasik A, Zielenkiewicz P. Plant MicroRNAs-novel players in natural medicine? Int J Mol Sci. 2016. https://doi.org/10.3390/ijms18010009.
Article
PubMed
PubMed Central
Google Scholar
Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, et al. The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0051009.
Article
PubMed
PubMed Central
Google Scholar
Lukasik A, Zielenkiewicz P. In silico identification of plant miRNAs in mammalian breast milk exosomes—a small step forward? PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0099963.62.
Article
PubMed
PubMed Central
Google Scholar
Lukasik A, Brzozowska I, Zielenkiewicz U, Zielenkiewicz P. Detection of plant miRNAs abundance in human breast milk. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms19010037.
Article
PubMed
PubMed Central
Google Scholar
Ma J, Wang C, Long K, Zhang H, Zhang J, Jin L, et al. Exosomal microRNAs in giant panda (Ailuropoda melanoleuca) breast milk: potential maternal regulators for the development of newborn cubs. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-03707-8.
Article
PubMed
PubMed Central
Google Scholar
Jia L, Zhang DY, Xiang ZH, He NJ. Nonfunctional ingestion of plant miRNAs in silkworm revealed by digital droplet PCR and transcriptome analysis. Sci Rep. 2015;5:12290.
Article
PubMed
PubMed Central
Google Scholar
Hou D, He F, Ma L, Cao M, Zhou Z, Wei Z, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem. 2018;57:197–205.
Article
PubMed
CAS
Google Scholar
Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016;26:217–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mlotshwa S, Pruss G, MacArthur J, Endres M, Davis C, Hofseth L, et al. Novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res. 2015;25:521–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cavalieri D, Rizzetto L, Tocci N, Rivero D, Asquini E, Siammour A, et al. Plant microRNAs as novel immunomodulatory agents. Sci Rep. 2016;6:25761.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015;25:39–49.
Article
PubMed
CAS
Google Scholar
Du J, Liang Z, Xu J, Zhao Y, Li X, Zhang Y, et al. Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7. Sci China Life Sci. 2019;62:309–20.
Article
PubMed
CAS
Google Scholar
Yang J, Farmer LM, Agyekum AAA, Elbaz-Younes I, Hirschi KD. Detection of an abundant plant-based small RNA in healthy consumers. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0137516.
Article
PubMed
PubMed Central
Google Scholar
Yang LM, Farmer AAA, Agyekum KD, Hirschi K. Detection of dietary plant-based small RNAs in animals. Cell Res. 2015;5:517–20. https://doi.org/10.1038/cr.2015.26.
Article
CAS
Google Scholar
Munch EM, Harris RA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, et al. Transcriptome profiling of microRNA by Next Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS ONE. 2013;8:e50564.
Article
PubMed
PubMed Central
CAS
Google Scholar
Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey. PLoS ONE. 2014;9:e88843.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sedykh SE, Purvinish LV, Monogarova AS, Burkova EE, Grigor'eva AE, Bulgakov DV, et al. Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochimie Open. 2017;4:61–72.
Article
PubMed
PubMed Central
Google Scholar
Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820:940–8.
Article
PubMed
CAS
Google Scholar
Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, et al. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci. 2015;98:2920–33.
Article
PubMed
CAS
Google Scholar
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.
Article
PubMed
CAS
Google Scholar
Pieters BC, Arntz OJ, Bennink MB, Broeren M, van Caam A, Koenders M, et al. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β. PLoS ONE. 2015;10:e0121123.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21:1345–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao J, Feng S, Wang S, Long K, Luo Y, Wang Y, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. Peer J. 2018;6:e5186.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mu J, Zhuang X, Wang Q, Jiang H, Deng Z, Wang B, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res. 2014;58:1561–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesi. 2015;4:28713.
Article
CAS
Google Scholar
Teng Y, Ren R, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe. 2018;24:637–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kang W, Bang-Bertelsen CH, Holm A, Houben AJ, Müller AH, Thymann T, et al. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA. 2017;23:433–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heintz-Buschart A, Yusuf D, Kaysen A, Etheridge A, Fritz JV, May P, et al. Small RNA profiling of low biomass samples: identification and removal of contaminants. BMC Biol. 2018. https://doi.org/10.1186/s12915-018-0522-7.
Article
PubMed
PubMed Central
Google Scholar
Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol. 2013;10:1107–16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Witwer KW, McAlexander MA, Queen SE, Adams RJ. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol. 2013;10:1080–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol. 2013;31:965–7.
Article
PubMed
CAS
Google Scholar
Witwer KW, Zhang CY. Diet-derived microRNAs: unicorn or silver bullet? Genes Nutr. 2017;22:12–5.
Google Scholar
Guo X, Su S, Geir S, Li W, Li Z, Zhang S, et al. Differential expression of miRNAs related to caste differentiation in the honey bee, Apis mellifera. Apidologie. 2016;47:495–508.
Article
CAS
Google Scholar
Guo X, Su S, Skogerboe G, Dai S, Li W, Li Z, et al. Recipe for a busy bee: MicroRNAs in honey bee caste determination. PLoS ONE. 2013;8:e81661.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu K, Liu M, Fu Z, Zhou Z, Kong Y, Liang H, et al. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet. 2017;13:e1006946. https://doi.org/10.1371/journal.pgen.1006946.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ashby R, Foret S, Searle I, Maleszka R. MicroRNAs in honey bee caste determination. Sci Rep. 2016. https://doi.org/10.1038/srep18794.
Article
PubMed
PubMed Central
Google Scholar
Liu F, Peng W, Li Z, Li W, Li L, Pan J, Zhang S, et al. Next generation small RNA sequencing for microRNAs profiling in Apis mellifera: comparison between nurses and foragers. Insect Mol Biol. 2012;21:297–303.
Article
PubMed
CAS
Google Scholar
Olena A, Patton J. Genomic organization of microRNAs. J Cell Physiol. 2010;222:540–5.
PubMed
PubMed Central
CAS
Google Scholar
Schmidt MF. Drug target miRNAs: chances and challenges. Trends Biotechnol. 2014;32:578–85. https://doi.org/10.1016/j.tibtech.2014.09.002.
Article
PubMed
CAS
Google Scholar
Van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6:851–64. https://doi.org/10.15252/emmm.201100899.
Article
PubMed
PubMed Central
CAS
Google Scholar
Henry JC, Azevedo-Pouly AC, Schmittgen TD. microRNA replacement therapy for cancer. Pharm Res. 2011;28:3030–42.
Article
PubMed
CAS
Google Scholar
Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 2011;18:1111–20.
Article
PubMed
CAS
Google Scholar
Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hanna J, Hossain GS, Kocerha J. The potential for microRNA. Ther Clin Res Front Genet. 2019;10:478. https://doi.org/10.3389/fgene.2019.00478.
Article
CAS
Google Scholar