Magán-Fernández A, Papay-Ramírez L, Tomás J, Marfil-Álvarez R, Rizzo M, Bravo M, Mesa F. Association of simvastatin and hyperlipidemia with periodontal status and bone metabolism markers. J Periodontol. 2014;85:1408–15.
Article
Google Scholar
Pirih F, Lu J, Ye F, Bezouglaia O, Atti E, Ascenzi MG, Tetradis S, Demer L, Aghaloo T, Tintut Y. Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res. 2012;27:309–18.
Article
CAS
Google Scholar
Keuroghlian A, Barroso AD, Kirikian G, Bezouglaia O, Tintut Y, Tetradis S, Moy P, Pirih F, Aghaloo T. The effects of hyperlipidemia on implant osseointegration in the mouse femur. J Oral Implantol. 2015;41:7–11.
Article
Google Scholar
Jin M, Wu Y, Wang J, Ye W, Wang L, Yin P, Liu W, Pan C, Hua X. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cellsto alleviate pelvic floor dysfunction by repressing elastin. Stem Cell Res Ther. 2016;7:167.
Article
Google Scholar
Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T. Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016. https://doi.org/10.1155/2016/6285620.
Article
PubMed
PubMed Central
Google Scholar
Ahmed HM, Miller M, Nasir K, McEvoy JW, Herrington D, Blumenthal RS, Blaha MJ. Primary low level of high-density lipoprotein cholesterol and risks of coronary heart disease, cardiovascular disease, and death: results from the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2016;183:875–83.
Article
Google Scholar
Matziolis D, Tuischer J, Matziolis G, Kasper G, Duda G, Perka C. Osteogenic predifferentiation of human bone marrow-derived stem cells by short-term mechanical stimulation. Open Orthop J. 2011;5:1–6.
Article
Google Scholar
Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc. 2009;84:893–902.
Article
CAS
Google Scholar
Xu QC, Hao PJ, Yu XB, Chen SL, Yu MJ, Zhang J, Yang PS. Hyperlipidemia compromises homing efficiency of systemically transplanted BMSCs and inhibits bone regeneration. Int J Clin Exp Pathol. 2014;7:1580–7.
PubMed
PubMed Central
Google Scholar
Yu ZD, Gauthier P, Tran QT, El-Ayachi I, Bhatti FU, Bahabri R, Al-Habib M, Huang GT. Differential properties of human ALP+ periodontal ligament stem cells vs their ALP− counterparts. J Stem Cell Res Ther. 2015;5:292.
PubMed
PubMed Central
Google Scholar
Komaki M, Iwasaki K, Arzate H, Narayanan AS, Izumi Y, et al. Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteogenic differentiation in periodontal ligament cells. J Cell Physiol. 2012;227:649–57.
Article
CAS
Google Scholar
Tsai MT, Li WJ, Tuan RS, Chang WH. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res. 2009;27:1169–74.
Article
Google Scholar
Liu J, Jin T, Ritchie HH, Smith AJ, Clarkson BH. In vitro differentiation and mineralization of human dental pulp cells induced by dentin extract. Vitro Cell Dev Biol Anim. 2005;41:232–8.
Article
Google Scholar
Trotter TN, Li M, Pan Q, Peker D, Rowan PD, Li J, Zhan F, Suva LJ, Javed A, Yang Y. Myeloma cell-derived Runx2 promotes myeloma progression in bone. Blood. 2015;125:3598–608.
Article
CAS
Google Scholar
Bruderer M, Richards RG, Alini M, Stoddart MJ. Role and regulation of Runx2 in osteogenesis. Eur Cell Mater. 2014;28:269–86.
Article
CAS
Google Scholar
Pan H, Li X, Wang J, Zhang K, Yang H, Li Z, Zheng Z, Liu H. LIM mineralization protein-1 enhances bone morphogenetic protein-2-mediated osteogenesis through activation of ERK1/2 MAPK pathway and upregualtion of Runx2 transactivity. J Bone Miner Res. 2015;30:1523–35.
Article
CAS
Google Scholar
Nagel AK, Ball LE. O-GlcNAc modification of the runt-related transcription factor 2 (Runx2) links osteogenesis and nutrient metabolism in bone marrow mesenchymal stem cells. Mol Cell Proteomics. 2014;13:3381–95.
Article
CAS
Google Scholar
Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis. 2015;35:3–11.
Article
CAS
Google Scholar
van Solingen C, Bijkerk R, de Boer HC, Rabelink TJ, van Zonneveld AJ. The role of microRNA-126 in vascular homeostasis. Curr Vasc Pharmacol. 2015;13:341–51.
Article
Google Scholar
Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284:15676–84.
Article
CAS
Google Scholar
Zhou Q, Zhao ZN, Cheng JT, Zhang B, Xu J, Huang F, Zhao RN, Chen YJ. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs. Biochem Biophys Res Commun. 2011;404:127–32.
Article
CAS
Google Scholar
Liu Y, Liu W, Hu C, Xue Z, Wang G, Ding B, Luo H, Tang L, Kong X, Chen X, Liu N, Ding Y, Jin Y. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells. 2011;29:1804–16.
Article
CAS
Google Scholar
Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA. 2010;107:19879–84.
Article
CAS
Google Scholar
Wang LL, Huang Y, Wang G, Chen SD. The potential role of microRNA-146 in Alzheimer’s disease: biomarker or therapeutic target? Med Hypotheses. 2012;78:398–401.
Article
CAS
Google Scholar
Materozzi M, Merlotti D, Gennari L, Bianciardi S. The potential role of miRNAs as new biomarkers for osteoporosis. Int J Endocrinol. 2018;6:e2342860.
Google Scholar
Le LT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA, Clark IM. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl). 2016;94:583–96.
Article
CAS
Google Scholar
Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem. 2009;108:216–24.
Article
CAS
Google Scholar
Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;15(492):1–18.
Article
Google Scholar
Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang WB. Biglycan mediates suture expansion osteogenesis via potentiation of Wnt/β-catenin signaling. J Biomech. 2015;48:432–40.
Article
Google Scholar
Zhang H, Li H. Tricin enhances osteoblastogenesis through the regulation of Wnt/β-catenin signaling in human mesenchymal stem cells. Mech Dev. 2018;152:38–43.
Article
CAS
Google Scholar
Gao X, Ge J, Li W, Zhou W, Xu L. LncRNA KCNQ1OT1 promotes osteogenic differentiation to relieve osteolysis via Wnt/β-catenin activation. Cell Biosci. 2018;8:19.
Article
Google Scholar
Yang C, Yifan L, Dan L, Qian Y, Ming-yan J. Bamboo leaf flavones and tea polyphenols show a lipid-lowering effect in a rat model of hyperlipidemia. Drug Res (Stuttg). 2015;65:668–71.
Article
CAS
Google Scholar
Dong X, Wang Z, Wang H, Lan J. The research of dishevelled-2 in dental implant osseointegration of hyperlipidemic rats. Int J Oral Maxillofac Implants. 2018;33:351–6.
Article
Google Scholar
Li Y, He S, Hua Y, Hu J. Effect of osteoporosis on fixation of osseointegrated implants in rats. J Biomed Mater Res B Appl Biomater. 2017;105:2426–32.
Article
CAS
Google Scholar
Eto S, Miyamoto H, Shobuike T, Noda I, Akiyama T, Tsukamoto M, Ueno M, Someya S, Kawano S, Sonohata M, Mawatari M. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur. J Orthop Res. 2015;33:1391–7.
Article
CAS
Google Scholar
Melissa V, Gammons MV, Rutherford TJ, Steinhart Z, Angers S, Bienz M. Essential role of the dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. J Cell Sci. 2016;129:3892–902.
Article
Google Scholar
Mahuzier A, Gaudé HM, Grampa V, Anselme I, Silbermann F, Leroux-Berger M, Delacour D, Ezan J, Montcouquiol M, Saunier S, Schneider-Maunoury S, Vesque C. Dishevelled stabilization by the ciliopathy protein Rpgrip1 l is essential for planar cell polarity. J Cell Biol. 2012;198:927–40.
Article
CAS
Google Scholar
Wang YS, Chang H, Rattner A, Nathans J. Frizzled receptors in development and disease. Curr Top Dev Biol. 2016;117:113–39.
Article
Google Scholar
Chen YJ, Zhang Y, Tang JJ, Liu F, Hu Q, Luo CX, Tang JP, Feng H, Zhang JH. Norrin protected blood brain barrier via frizzled 4/β-catenin pathway after subarachnoid hemorrhage in rats. Stroke. 2015;46:529–36.
Article
CAS
Google Scholar
Huang X, Li DD, Wang ZF, Huang ZF, Dong XF, Li CH, Lan J. Study of microRNAs targeted Dvl2 on the osteoblasts differentiation of rat BMSCs in hyperlipidemia environment. J Cell Phsiol. 2018;233:6758–66.
Article
CAS
Google Scholar
Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;24:278–91.
Article
CAS
Google Scholar
Yavropoulou MP, Anastasilakis AD, Makras P, Tsalikakis DG, Grammatiki M, Yovos JG. Expression of microRNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Eur J Endocrinol. 2017;176:169–76.
Article
CAS
Google Scholar
Mei G, Zou ZL, Fu S, Xia LH, Zhou J, Zhang YT, Tuo YH, Wang Z, Jin D. Substance P activates the Wnt signal transduction pathway and enhances the differentiation of mouse preosteoblastic MC3T3-E1 cells. Int J Mol Sci. 2014;15:6224–40.
Article
CAS
Google Scholar
Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ, Kuhstoss SA, Thomas CC, Schipani E, Baron R. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010;11:161–71.
Article
CAS
Google Scholar
Tamura M, Sato MM, Nashimoto M. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells. Int J Biochem Cell Biol. 2011;43:760–7.
Article
CAS
Google Scholar
Georgiou KR, King TJ, Scherer MA, Zhou H, Foster BK, Xian CJ. Attenuated Wnt/β-catenin signalling mediates methotrexate chemotherapy-induced bone loss and marrow adiposity in rats. Bone. 2012;50:1223–33.
Article
CAS
Google Scholar
Maser RE, Lenhard MJ, Pohlig RT, Balagopale PB. Osteopontin and osteoprotegerin levels in type 2 diabetes and their association with cardiovascular autonomic function. J Diabetes Complicat. 2016;30:507–10.
Article
Google Scholar
Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of frizzled 4. Science. 2003;301:1391–4.
Article
CAS
Google Scholar
Lee YN, Gao Y, Wang HY. Differential mediation of the Wnt canonical pathway by mammalian dishevelleds-1, -2, and -3. Cell Signal. 2008;20:443–52.
Article
CAS
Google Scholar
Zhang LH, Luan L, Ma YY. Dishevelled-2 modulates osteogenic differentiation of human synovial fibroblasts in osteoarthritis. Mol Med Rep. 2018;18:292–8.
CAS
PubMed
PubMed Central
Google Scholar
Gao C, Chen YG. Dishevelled: the hub of Wnt signaling. Cell Signal. 2010;22:717–27.
Article
CAS
Google Scholar
Kafka A, Bašić-Kinda S, Pećina-Šlaus N. The cellular story of dishevelleds. Croat Med J. 2014;55:459–67.
Article
CAS
Google Scholar
Long HT, Sun BH, Cheng L, Zhao SS, Zhu Y, Zhao RB, Zhu JX. miR-139-5p represses BMSC osteogenesis via targeting Wnt/b-catenin signaling pathway. DNA Cell Biol. 2017;36:715–24.
Article
CAS
Google Scholar
Fu HD, Wang BK, Wan ZQ, Lin H, Chang ML, Han GL. Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension forceinduced bone formation. J Mol Histol. 2016;47:455–66.
Article
CAS
Google Scholar