Roy A, Roberts I, Norton A, Vyas P. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br J Haematol. 2009;147:3–12.
Article
CAS
PubMed
Google Scholar
Bidwai-Bhattacharjee M, Shome DK, Srinivas M, Ghosh K, Verma S, Mohanty D, et al. Acute megakaryoblastic leukaemia–an underdiagnosed entity. Indian J Cancer. 1986;23:75–82.
CAS
PubMed
Google Scholar
Cairney AE, McKenna R, Arthur DC, Nesbit ME Jr, Woods WG. Acute megakaryoblastic leukaemia in children. Br J Haematol. 1986;63:541–54.
Article
CAS
PubMed
Google Scholar
Hama A, Yagasaki H, Takahashi Y, Nishio N, Muramatsu H, Yoshida N, et al. Acute megakaryoblastic leukaemia (AMKL) in children: a comparison of AMKL with and without Down syndrome. Br J Haematol. 2008;140:552–61.
Article
PubMed
Google Scholar
Hitzler JK, Cheung J, Li Y, Scherer SW, Zipursky A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood. 2003;101:4301–4.
Article
CAS
PubMed
Google Scholar
Harigae H, Xu G, Sugawara T, Ishikawa I, Toki T, Ito E. The GATA1 mutation in an adult patient with acute megakaryoblastic leukemia not accompanying Down syndrome. Blood. 2004;103:3242–3.
Article
CAS
PubMed
Google Scholar
Mercher T, Busson-Le Coniat M, Nguyen Khac F, Ballerini P, Mauchauffe M, Bui H, et al. Recurrence of OTT-MAL fusion in t(1;22) of infant AML-M7. Genes Chromosom Cancer. 2002;33:22–8.
Article
CAS
PubMed
Google Scholar
Thiollier C, Lopez CK, Gerby B, Ignacimouttou C, Poglio S, Duffourd Y, et al. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J Exp Med. 2012;209:2017–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruber TA, Larson Gedman A, Zhang J, Koss CS, Marada S, Ta HQ, et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell. 2012;22:683–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma S, Nangia A, Jain Malhotra S, Narayan S, Harbhajanka A, Singh S. Clinico-haematological profile of acute megakaryoblastic leukaemia: report of five cases. Adv Hematol. 2009;2009:461912.
Article
PubMed
PubMed Central
Google Scholar
Al-Ahmari A, Shah N, Sung L, Zipursky A, Hitzler J. Long-term results of an ultra low-dose cytarabine-based regimen for the treatment of acute megakaryoblastic leukaemia in children with Down syndrome. Br J Haematol. 2006;133:646–8.
Article
CAS
PubMed
Google Scholar
Ninomiya H, Nakazawa M, Shibuya A, Aoki Y, Nagasawa T, Abe T. Successful treatment of acute megakaryoblastic leukaemia. Scand J Haematol. 1986;36:147–53.
Article
CAS
PubMed
Google Scholar
Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z, et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell. 2012;150:575–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev. 2009;35:57–68.
Article
CAS
PubMed
Google Scholar
Kim DH, Hossain MA, Kang YJ, Jang JY, Lee YJ, Im E, et al. Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced colon cancer in mice. Int J Oncol. 2013;43(5):1652–8.
CAS
PubMed
Google Scholar
Lee JH, Li YC, Ip SW, Hsu SC, Chang NW, Tang NY, et al. The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway. Anticancer Res. 2008;28:1701–11.
CAS
PubMed
Google Scholar
Lee HZ, Leung HW, Lai MY, Wu CH. Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res. 2005;25:959–64.
CAS
PubMed
Google Scholar
Ma Z, Otsuyama K, Liu S, Abroun S, Ishikawa H, Tsuyama N, et al. Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood. 2005;105:3312–8.
Article
CAS
PubMed
Google Scholar
Takahashi H, Chen MC, Pham H, Angst E, King JC, Park J, et al. Baicalein, a component of Scutellaria baicalensis, induces apoptosis by Mcl-1 down-regulation in human pancreatic cancer cells. Biochim Biophys Acta. 2011;1813:1465–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chao JI, Su WC, Liu HF. Baicalein induces cancer cell death and proliferation retardation by the inhibition of CDC2 kinase and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT. Mol Cancer Ther. 2007;6:3039–48.
Article
CAS
PubMed
Google Scholar
Lee DH, Kim C, Zhang L, Lee YJ. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem Pharmacol. 2008;75:2020–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang AM, Ku HH, Liang YC, Chen YC, Hwu YM, Yeh TS. The autonomous notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells. J Cell Biochem. 2009;106:682–92.
Article
CAS
PubMed
Google Scholar
Ling Y, Chen Y, Chen P, Hui H, Song X, Lu Z, et al. Baicalein potently suppresses angiogenesis induced by vascular endothelial growth factor through the p53/Rb signaling pathway leading to G1/S cell cycle arrest. Exp Biol Med (Maywood). 2011;236:851–8.
Article
CAS
Google Scholar
Lu HF, Hsueh SC, Ho YT, Kao MC, Yang JS, Chiu TH, et al. ROS mediates baicalin-induced apoptosis in human promyelocytic leukemia HL-60 cells through the expression of the Gadd153 and mitochondrial-dependent pathway. Anticancer Res. 2007;27:117–25.
CAS
PubMed
Google Scholar
Yu JQ, Liu HB, Tian DZ, Liu YW, Lei JC, Zou GL. Changes in mitochondrial membrane potential and reactive oxygen species during wogonin-induced cell death in human hepatoma cells. Hepatol Res. 2007;37:68–76.
Article
CAS
PubMed
Google Scholar
Chen Y, Hui H, Yang H, Zhao K, Qin Y, Gu C, et al. Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood. 2013;121:3682–91.
Article
CAS
PubMed
Google Scholar
Mercher T, Raffel GD, Moore SA, Cornejo MG, Baudry-Bluteau D, Cagnard N, et al. The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. J Clin Investig. 2009;119:852–64.
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Ma Z, Cai H, Li Q, Rong W, Kawano M. Inhibitory effect of baicalein on IL-6-mediated signaling cascades in human myeloma cells. Eur J Haematol. 2010;84:137–44.
Article
CAS
PubMed
Google Scholar
Zhang HW, Yang Y, Zhang K, Qiang L, Yang L, Yang L, et al. Wogonin induced differentiation and G1 phase arrest of human U-937 leukemia cells via PKCdelta phosphorylation. Eur J Pharmacol. 2008;591:7–12.
Article
CAS
PubMed
Google Scholar
Shieh DE, Cheng HY, Yen MH, Chiang LC, Lin CC. Baicalin-induced apoptosis is mediated by Bcl-2-dependent, but not p53-dependent, pathway in human leukemia cell lines. Am J Chin Med. 2006;34:245–61.
Article
CAS
PubMed
Google Scholar
Lee WR, Shen SC, Lin HY, Hou WC, Yang LL, Chen YC. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca(2 +)-dependent endonuclease. Biochem Pharmacol. 2002;63:225–36.
Article
CAS
PubMed
Google Scholar
Huang Z, Richmond TD, Muntean AG, Barber DL, Weiss MJ, Crispino JD. STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice. J Clin Investig. 2007;117:3890–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Wen Q, Gong R, Gilles L, Stankiewicz MJ, Li W, et al. PSTPIP2 dysregulation contributes to aberrant terminal differentiation in GATA-1-deficient megakaryocytes by activating LYN. Cell Death Dis. 2014;5:e988.
Article
CAS
PubMed
PubMed Central
Google Scholar