Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338(6105):349–54.
Article
CAS
Google Scholar
Dunlap JC. Molecular bases for circadian clocks. Cell. 1999;96(2):271–90.
Article
CAS
Google Scholar
Kato T. Molecular genetics of bipolar disorder and depression. Psychiat Clin Neuros. 2007;61(1):3–19.
Article
CAS
Google Scholar
Cai Y, Liu S, Sothern RB, Xu S, Chan P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol. 2010;17(4):550–4.
Article
CAS
Google Scholar
Petrasek T, Vojtechova I, Lobellova V, Popelikova A, Janikova M, Brozka H, Houdek P, Sladek M, Sumova A, Kristofikova Z, et al. The McGill transgenic rat model of Alzheimer’s disease displays cognitive and motor impairments, changes in anxiety and social behavior, and altered circadian activity. Front Aging Neurosci. 2018;10:250.
Article
Google Scholar
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms. 2018;5:15–36.
Article
Google Scholar
Stranahan AM. Chronobiological approaches to Alzheimer’s disease. Curr Alzheimer Res. 2012;9(1):93–8.
Article
CAS
Google Scholar
Akladious A, Azzam S, Hu Y, Feng P. Bmal1 knockdown suppresses wake and increases immobility without altering orexin A, corticotrophin-releasing hormone, or glutamate decarboxylase. Cns Neurosci Ther. 2018;24(6):549–63.
Article
CAS
Google Scholar
Hasegawa S, Fukushima H, Hosoda H, Serita T, Ishikawa R, Rokukawa T, Kawahara-Miki R, Zhang Y, Ohta M, Okada S, et al. Hippocampal clock regulates memory retrieval via Dopamine and PKA-induced GluA1 phosphorylation. Nat Commun. 2019;10(1):5766.
Article
CAS
Google Scholar
Liu D, Nanclares C, Simbriger K, Fang K, Lorsung E, Le N, Amorim IS, Chalkiadaki K, Pathak SS, Li J, et al. Autistic-like behavior and cerebellar dysfunction in Bmal1 mutant mice ameliorated by mTORC1 inhibition. Mol Psychiatr. 2022. https://doi.org/10.1038/s41380-022-01499-6.
Article
Google Scholar
Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA. Circadian variation of blood pressure and the vascular response to asynchronous stress. P Natl Acad Sci USA. 2007;104(9):3450–5.
Article
CAS
Google Scholar
Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000;103(7):1009–17.
Article
CAS
Google Scholar
Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995;14(4):697–706.
Article
CAS
Google Scholar
Colwell CS. Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci. 2011;12(10):553–69.
Article
CAS
Google Scholar
Ray S, Valekunja UK, Stangherlin A, Howell SA, Snijders AP, Damodaran G, Reddy AB. Circadian rhythms in the absence of the clock gene Bmal1. Science. 2020;367(6479):800–6.
Article
CAS
Google Scholar
Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Gene Dev. 2006;20(14):1868–73.
Article
CAS
Google Scholar
McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, Wilsbacher LD, Song EJ, Hong HK, Bradfield CA, et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science. 2006;314(5803):1304–8.
Article
CAS
Google Scholar
Bunger MK, Walisser JA, Sullivan R, Manley PA, Moran SM, Kalscheur VL, Colman RJ, Bradfield CA. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus. Genesis. 2005;41(3):122–32.
Article
CAS
Google Scholar
Benitah SA, Welz PS. Circadian regulation of adult stem cell homeostasis and aging. Cell Stem Cell. 2020;26(6):817–31.
Article
CAS
Google Scholar
Khapre RV, Kondratova AA, Patel S, Dubrovsky Y, Wrobel M, Antoch MP, Kondratov RV. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging. 2014;6(1):48–57.
Article
CAS
Google Scholar
Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324(5927):651–4.
Article
CAS
Google Scholar
Liang C, Ke Q, Liu Z, Ren J, Zhang W, Hu J, Wang Z, Chen H, Xia K, Lai X, et al. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res. 2022. https://doi.org/10.1038/s41380-022-01499-6.
Article
Google Scholar
Jiang Y, Li S, Xu W, Ying J, Qu Y, Jiang X, Zhang A, Yue Y, Zhou R, Ruan T, et al. Critical roles of the circadian transcription factor BMAL1 in reproductive endocrinology and fertility. Front EndocrinoL. 2022;13: 818272.
Article
Google Scholar
Ratajczak CK, Boehle KL, Muglia LJ. Impaired steroidogenesis and implantation failure in Bmal1-/- mice. Endocrinology. 2009;150(4):1879–85.
Article
CAS
Google Scholar
Schoeller EL, Clark DD, Dey S, Cao NV, Semaan SJ, Chao LW, Kauffman AS, Stowers L, Mellon PL. Bmal1 is required for normal reproductive behaviors in male mice. Endocrinology. 2016;157(12):4914–29.
Article
CAS
Google Scholar
Early JO, Menon D, Wyse CA, Cervantes-Silva MP, Zaslona Z, Carroll RG, Palsson-McDermott EM, Angiari S, Ryan DG, Corcoran SE, et al. Circadian clock protein BMAL1 regulates IL-1beta in macrophages via NRF2. P Natl Acad Sci USA. 2018;115(36):E8460–8.
Article
CAS
Google Scholar
Hong H, Cheung YM, Cao X, Wu Y, Li C, Tian XY. REV-ERBalpha agonist SR9009 suppresses IL-1beta production in macrophages through BMAL1-dependent inhibition of inflammasome. Biochem Pharmacol. 2021;192: 114701.
Article
CAS
Google Scholar
Timmons GA, Carroll RG, O’Siorain JR, Cervantes-Silva MP, Fagan LE, Cox SL, Palsson-McDermott E, Finlay DK, Vincent EE, Jones N, et al. The circadian clock protein BMAL1 acts as a metabolic sensor in macrophages to control the production of pro IL-1beta. Front Immunol. 2021;12: 700431.
Article
CAS
Google Scholar
Curtis AM, Bellet MM, Sassone-Corsi P, O’Neill LA. Circadian clock proteins and immunity. Immunity. 2014;40(2):178–86.
Article
CAS
Google Scholar
Pan X, Hussain MM. Bmal1 regulates production of larger lipoproteins by modulating cAMP-responsive element-binding protein H and apolipoprotein AIV. Hepatology. 2022;76(1):78–93.
Article
CAS
Google Scholar
Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627–31.
Article
CAS
Google Scholar
Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. Plos Biol. 2004;2(11): e377.
Article
Google Scholar
Greco CM, Koronowski KB, Smith JG, Shi J, Kunderfranco P, Carriero R, Chen S, Samad M, Welz PS, Zinna VM, et al. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Sci Adv. 2021;7(39): i7828.
Article
Google Scholar
Gabriel BM, Altintas A, Smith J, Sardon-Puig L, Zhang X, Basse AL, Laker RC, Gao H, Liu Z, Dollet L, et al. Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle. Sci Adv. 2021;7(43): i9654.
Article
Google Scholar
Moreno-Smith M, Milazzo G, Tao L, Fekry B, Zhu B, Mohammad MA, Di Giacomo S, Borkar R, Reddy K, Capasso M, et al. Restoration of the molecular clock is tumor suppressive in neuroblastoma. Nat Commun. 2021;12(1):4006.
Article
CAS
Google Scholar
Tang Q, Cheng B, Xie M, Chen Y, Zhao J, Zhou X, Chen L. Circadian clock gene Bmal1 inhibits tumorigenesis and increases paclitaxel sensitivity in tongue squamous cell carcinoma. Cancer Res. 2017;77(2):532–44.
Article
CAS
Google Scholar
Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, Katchy CA, Lee C, Moore DD, Fu L. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell. 2016;30(6):909–24.
Article
CAS
Google Scholar
Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, Bartlebaugh J, Vander HM, Jacks T. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24(2):324–31.
Article
CAS
Google Scholar
Puram RV, Kowalczyk MS, de Boer CG, Schneider RK, Miller PG, McConkey M, Tothova Z, Tejero H, Heckl D, Jaras M, et al. Core circadian clock genes regulate leukemia stem cells in AML. Cell. 2016;165(2):303–16.
Article
CAS
Google Scholar
Janich P, Pascual G, Merlos-Suarez A, Batlle E, Ripperger J, Albrecht U, Cheng HY, Obrietan K, Di Croce L, Benitah SA. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature. 2011;480(7376):209–14.
Article
CAS
Google Scholar
Kinouchi K, Sassone-Corsi P. Metabolic rivalry: circadian homeostasis and tumorigenesis. Nat Rev Cancer. 2020;20(11):645–61.
Article
CAS
Google Scholar
Qiu P, Jiang J, Liu Z, Cai Y, Huang T, Wang Y, Liu Q, Nie Y, Liu F, Cheng J, et al. BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. Natl Sci Rev. 2019;6(1):87–100.
Article
CAS
Google Scholar
Antle MC, Silver R. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 2005;28(3):145–51.
Article
CAS
Google Scholar
Park J, Zhu H, O’Sullivan S, Ogunnaike BA, Weaver DR, Schwaber JS, Vadigepalli R. Single-cell transcriptional analysis reveals novel neuronal phenotypes and interaction networks involved in the central circadian clock. Front Neurosci-Switz. 2016;10:481.
Google Scholar
Freeman GJ, Krock RM, Aton SJ, Thaben P, Herzog ED. GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron. 2013;78(5):799–806.
Article
CAS
Google Scholar
Moore RY, Speh JC. GABA is the principal neurotransmitter of the circadian system. Neurosci Lett. 1993;150(1):112–6.
Article
CAS
Google Scholar
Belenky MA, Yarom Y, Pickard GE. Heterogeneous expression of gamma-aminobutyric acid and gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus. J Comp Neurol. 2008;506(4):708–32.
Article
CAS
Google Scholar
Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri TD. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun. 2017;8:14336.
Article
CAS
Google Scholar
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19(8):453–69.
Article
CAS
Google Scholar
Green DJ, Gillette R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 1982;245(1):198–200.
Article
CAS
Google Scholar
de Jeu M, Hermes M, Pennartz C. Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. NeuroReport. 1998;9(16):3725–9.
Article
Google Scholar
Groos G, Hendriks J. Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett. 1982;34(3):283–8.
Article
CAS
Google Scholar
Kuhlman SJ, McMahon DG. Rhythmic regulation of membrane potential and potassium current persists in SCN neurons in the absence of environmental input. Eur J Neurosci. 2004;20(4):1113–7.
Article
Google Scholar
Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature. 2002;416(6878):286–90.
Article
CAS
Google Scholar
Kononenko NI, Kuehl-Kovarik MC, Partin KM, Dudek FE. Circadian difference in firing rate of isolated rat suprachiasmatic nucleus neurons. Neurosci Lett. 2008;436(3):314–6.
Article
CAS
Google Scholar
Flourakis M, Kula-Eversole E, Hutchison AL, Han TH, Aranda K, Moose DL, White KP, Dinner AR, Lear BC, Ren D, et al. A conserved bicycle model for circadian clock control of membrane excitability. Cell. 2015;162(4):836–48.
Article
CAS
Google Scholar
Whitt JP, Montgomery JR, Meredith AL. BK channel inactivation gates daytime excitability in the circadian clock. Nat Commun. 2016;7:10837.
Article
CAS
Google Scholar
Hermanstyne TO, Granados-Fuentes D, Mellor RL, Herzog ED, Nerbonne JM. Acute knockdown of Kv4.1 regulates repetitive firing rates and clock gene expression in the suprachiasmatic nucleus and daily rhythms in locomotor behavior. eNeuro. 2017. https://doi.org/10.1523/ENEURO.0377-16.2017.
Article
Google Scholar
Granados-Fuentes D, Hermanstyne TO, Carrasquillo Y, Nerbonne JM, Herzog ED. IA channels encoded by Kv1.4 and Kv4.2 regulate circadian period of PER2 expression in the suprachiasmatic nucleus. J Biol Rhythm. 2015;30(5):396–407.
Article
CAS
Google Scholar
Myung J, Hong S, DeWoskin D, De Schutter E, Forger DB, Takumi T. GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. P Natl Acad Sci USA. 2015;112(29):E3920–9.
Article
CAS
Google Scholar
Nitabach MN, Holmes TC, Blau J. Membranes, ions, and clocks: testing the Njus-Sulzman-Hastings model of the circadian oscillator. Method Enzymol. 2005;393:682–93.
Article
CAS
Google Scholar
Ikeda M, Sugiyama T, Wallace CS, Gompf HS, Yoshioka T, Miyawaki A, Allen CN. Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron. 2003;38(2):253–63.
Article
CAS
Google Scholar
Lundkvist GB, Kwak Y, Davis EK, Tei H, Block GD. A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J Neurosci. 2005;25(33):7682–6.
Article
CAS
Google Scholar
Kon N, Yoshikawa T, Honma S, Yamagata Y, Yoshitane H, Shimizu K, Sugiyama Y, Hara C, Kameshita I, Honma K, et al. CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms. Gene Dev. 2014;28(10):1101–10.
Article
CAS
Google Scholar
O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science. 2008;320(5878):949–53.
Article
CAS
Google Scholar
Ferreyra GA, Golombek DA. Cyclic AMP and protein kinase A rhythmicity in the mammalian suprachiasmatic nuclei. Brain Res. 2000;858(1):33–9.
Article
CAS
Google Scholar
Hastings MH, Maywood ES, O’Neill JS. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol. 2008;18(17):R805–15.
Article
CAS
Google Scholar
Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ. Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science. 2010;327(5964):463–6.
Article
CAS
Google Scholar
Kobayashi Y, Ye Z, Hensch TK. Clock genes control cortical critical period timing. Neuron. 2015;86(1):264–75.
Article
CAS
Google Scholar
Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr Biol. 2017;27(7):1055–61.
Article
CAS
Google Scholar
Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron. 2017;93(6):1420–35.
Article
CAS
Google Scholar
Ali A, Schwarz-Herzke B, Rollenhagen A, Anstotz M, Holub M, Lubke J, Rose CR, Schnittler HJ, von Gall C. Bmal1-deficiency affects glial synaptic coverage of the hippocampal mossy fiber synapse and the actin cytoskeleton in astrocytes. Glia. 2020;68(5):947–62.
Article
Google Scholar
Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science. 2003;302(5649):1408–12.
Article
CAS
Google Scholar
Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996;382(6594):810–3.
Article
CAS
Google Scholar
Maywood ES, Chesham JE, O’Brien JA, Hastings MH. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. P Natl Acad Sci USA. 2011;108(34):14306–11.
Article
CAS
Google Scholar
Colwell CS. Rhythmic coupling among cells in the suprachiasmatic nucleus. J Neurobiol. 2000;43(4):379–88.
Article
CAS
Google Scholar
Webb AB, Angelo N, Huettner JE, Herzog ED. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. P Natl Acad Sci USA. 2009;106(38):16493–8.
Article
CAS
Google Scholar
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–77.
Article
CAS
Google Scholar
Moldavan M, Cravetchi O, Williams M, Irwin RP, Aicher SA, Allen CN. Localization and expression of GABA transporters in the suprachiasmatic nucleus. Eur J Neurosci. 2015;42(12):3018–32.
Article
Google Scholar
Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaule C. Circadian regulation of ATP release in astrocytes. J Neurosci. 2011;31(23):8342–50.
Article
CAS
Google Scholar
Burkeen JF, Womac AD, Earnest DJ, Zoran MJ. Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. J NEUROSCI. 2011;31(23):8432–40.
Article
CAS
Google Scholar
Schwarz Y, Zhao N, Kirchhoff F, Bruns D. Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways. Nat Neurosci. 2017;20(11):1529–39.
Article
CAS
Google Scholar
Shinohara K, Honma S, Katsuno Y, Abe H, Honma K. Circadian release of amino acids in the suprachiasmatic nucleus in vitro. NeuroReport. 1998;9(1):137–40.
Article
CAS
Google Scholar
Castaneda TR, de Prado BM, Prieto D, Mora F. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res. 2004;36(3):177–85.
Article
CAS
Google Scholar
Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science. 1994;266(5191):1713–7.
Article
CAS
Google Scholar
Mintz EM, Albers HE. Microinjection of NMDA into the SCN region mimics the phase shifting effect of light in hamsters. Brain Res. 1997;758(1–2):245–9.
Article
CAS
Google Scholar
van den Pol AN, Finkbeiner SM, Cornell-Bell AH. Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci. 1992;12(7):2648–64.
Article
Google Scholar
Chi-Castaneda D, Waliszewski SM, Zepeda RC, Hernandez-Kelly LC, Caba M, Ortega A. Glutamate-dependent BMAL1 regulation in cultured bergmann glia cells. Neurochem Res. 2015;40(5):961–70.
Article
CAS
Google Scholar
Hastings MH, Brancaccio M, Maywood ES. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. J Neuroendocrinol. 2014;26(1):2–10.
Article
CAS
Google Scholar
Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol. 2005;15(10):886–93.
Article
CAS
Google Scholar
Allen Brain MAP. https://portal.brain-map.org/. Accessed 17 Aug 2022
Li F, Huang QY, Liu SJ, Guo Z, Xiong XX, Gui L, Shu HJ, Huang SM, Tan G, Liu YY. The role of Bmal1 in neuronal radial migration and axonal projection of the embryonic mouse cerebral cortex. Yi Chuan. 2019;41(6):524–33.
Google Scholar
Morioka N, Sugimoto T, Sato K, Okazaki S, Saeki M, Hisaoka-Nakashima K, Nakata Y. The induction of Per1 expression by the combined treatment with glutamate, 5-hydroxytriptamine and dopamine initiates a ripple effect on Bmal1 and Cry1 mRNA expression via the ERK signaling pathway in cultured rat spinal astrocytes. Neurochem Int. 2015;90:9–19.
Article
CAS
Google Scholar
Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell. 2018;174(4):1015–30.
Article
CAS
Google Scholar
Frederick A, Goldsmith J, de Zavalia N, Amir S. Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain. PLoS ONE. 2017;12(4): e176279.
Article
Google Scholar
Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary PV, Cartagena P, Barchas JD, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. P Natl Acad Sci USA. 2013;110(24):9950–5.
Article
CAS
Google Scholar
Cermakian N, Lamont EW, Boudreau P, Boivin DB. Circadian clock gene expression in brain regions of Alzheimer ’s disease patients and control subjects. J Biol Rhythm. 2011;26(2):160–70.
Article
Google Scholar
Wu YH, Fischer DF, Kalsbeek A, Garidou-Boof ML, van der Vliet J, van Heijningen C, Liu RY, Zhou JN, Swaab DF. Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the “master clock.” FASEB J. 2006;20(11):1874–6.
Article
CAS
Google Scholar
Yang S, Van Dongen HP, Wang K, Berrettini W, Bucan M. Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol Psychiatr. 2009;14(2):143–55.
Article
CAS
Google Scholar
Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, Aron L, Rietschel M, Wellek S, Soronen P, et al. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med. 2007;39(3):229–38.
Article
CAS
Google Scholar
Chen Q, Huang CQ, Hu XY, Li SB, Zhang XM. Functional CLOCK gene rs1554483 G/C polymorphism is associated with susceptibility to Alzheimer’s disease in the Chinese population. J Int Med Res. 2013;41(2):340–6.
Article
CAS
Google Scholar
Chen HF, Huang CQ, You C, Wang ZR, Si-qing H. Polymorphism of CLOCK gene rs 4580704 C > G is associated with susceptibility of Alzheimer’s disease in a Chinese population. Arch Med Res. 2013;44(3):203–7.
Article
CAS
Google Scholar
Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, Escott-Price V. Analysis of shared heritability in common disorders of the brain. Science. 2018;360(6395):eaap8757.
Article
Google Scholar
Consortium BDAS. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173(7):1705–15.
Article
Google Scholar
Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, McElroy SL, Keck PJ, Schork NJ, Kelsoe JR. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B. 2006;141B(3):234–41.
Article
CAS
Google Scholar
Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonkar VL. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 2006;5(2):150–7.
Article
CAS
Google Scholar
Bengesser SA, Reininghaus EZ, Lackner N, Birner A, Fellendorf FT, Platzer M, Kainzbauer N, Tropper B, Hormanseder C, Queissner R, et al. Is the molecular clock ticking differently in bipolar disorder? Methylation analysis of the clock gene ARNTL. World J Biol Psychia. 2018;19(sup2):S21–9.
Article
Google Scholar
Cronin P, McCarthy MJ, Lim A, Salmon DP, Galasko D, Masliah E, De Jager PL, Bennett DA, Desplats P. Circadian alterations during early stages of Alzheimer’s disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimers Dement. 2017;13(6):689–700.
Article
Google Scholar
Bunney BG, Bunney WE. Mechanisms of rapid antidepressant effects of sleep deprivation therapy: clock genes and circadian rhythms. Biol Psychiat. 2013;73(12):1164–71.
Article
CAS
Google Scholar
Mendlewicz J. Disruption of the circadian timing systems: molecular mechanisms in mood disorders. CNS Drugs. 2009;23(Suppl 2):15–26.
Article
CAS
Google Scholar
Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science. 2006;311(5763):1002–5.
Article
CAS
Google Scholar
Singla R, Mishra A, Lin H, Lorsung E, Le N, Tin S, Jin VX, Cao R. Haploinsufficiency of a Circadian Clock Gene Bmal1 (Arntl or Mop3) causes brain-wide mTOR hyperactivation and autism-like behavioral phenotypes in mice. Int J Mol Sci. 2022;23(11):6317.
Article
CAS
Google Scholar
Christiansen SL, Bouzinova EV, Fahrenkrug J, Wiborg O. Altered expression pattern of clock genes in a rat model of depression. Int J Neuropsychoph. 2016;19(11):pyw061.
Article
Google Scholar
Marti AR, Patil S, Mrdalj J, Meerlo P, Skrede S, Pallesen S, Pedersen TT, Bramham CR, Gronli J. No escaping the rat race: simulated night shift work alters the time-of-day variation in BMAL1 translational activity in the prefrontal cortex. Front Neural Circuit. 2017;11:70.
Article
Google Scholar
Chen X, Hu Q, Zhang K, Teng H, Li M, Li D, Wang J, Du Q, Zhao M. The clock-controlled chemokine contributes to neuroinflammation-induced depression. FASEB J. 2020;34(6):8357–66.
Article
CAS
Google Scholar
Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. P Natl Acad Sci USA. 2006;103(16):6386–91.
Article
CAS
Google Scholar
Guo D, Zhang S, Sun H, Xu X, Hao Z, Mu C, Xu X, Wang G, Ren H. Tyrosine hydroxylase down-regulation after loss of Abelson helper integration site 1 (AHI1) promotes depression via the circadian clock pathway in mice. J Biol Chem. 2018;293(14):5090–101.
Article
CAS
Google Scholar
Liu WW, Wei SZ, Huang GD, Liu LB, Gu C, Shen Y, Wang XH, Xia ST, Xie AM, Hu LF, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson’s disease mouse model. FASEB J. 2020;34(5):6570–81.
Article
CAS
Google Scholar
McKee CA, Lee J, Cai Y, Saito T, Saido T, Musiek ES. Astrocytes deficient in circadian clock gene Bmal1 show enhanced activation responses to amyloid-beta pathology without changing plaque burden. Sci Rep-UK. 2022;12(1):1796.
Article
CAS
Google Scholar
Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, Lee Y, Roh JH, Ortiz-Gonzalez X, Dearborn JT, Culver JP, et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest. 2013;123(12):5389–400.
Article
CAS
Google Scholar
Yoo ID, Park MW, Cha HW, Yoon S, Boonpraman N, Yi SS, Moon JS. Elevated CLOCK and BMAL1 contribute to the impairment of aerobic glycolysis from astrocytes in Alzheimer’s disease. Int J Mol Sci. 2020;21(21):7862.
Article
CAS
Google Scholar
Satou R, Sugihara N, Ishizuka Y, Matsukubo T, Onishi Y. DNA methylation of the BMAL1 promoter. Biochem Bioph Res Co. 2013;440(3):449–53.
Article
CAS
Google Scholar
Taniguchi H, Fernandez AF, Setien F, Ropero S, Ballestar E, Villanueva A, Yamamoto H, Imai K, Shinomura Y, Esteller M. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 2009;69(21):8447–54.
Article
CAS
Google Scholar
Song H, Moon M, Choe HK, Han DH, Jang C, Kim A, Cho S, Kim K, Mook-Jung I. Abeta-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer’s disease. Mol Neurodegener. 2015;10:13.
Article
Google Scholar
Sharma A, Sethi G, Tambuwala MM, Aljabali A, Chellappan DK, Dua K, Goyal R. Circadian rhythm disruption and Alzheimer’s disease: the dynamics of a vicious cycle. Curr Neuropharmacol. 2021;19(2):248–64.
Article
CAS
Google Scholar
Kondratova AA, Dubrovsky YV, Antoch MP, Kondratov RV. Circadian clock proteins control adaptation to novel environment and memory formation. Aging. 2010;2(5):285–97.
Article
CAS
Google Scholar
Landgraf D, Long JE, Proulx CD, Barandas R, Malinow R, Welsh DK. Genetic disruption of circadian rhythms in the suprachiasmatic nucleus causes helplessness, behavioral despair, and anxiety-like behavior in mice. Biol Psychiat. 2016;80(11):827–35.
Article
Google Scholar
Husse J, Zhou X, Shostak A, Oster H, Eichele G. Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN. J Biol Rhythm. 2011;26(5):379–89.
Article
CAS
Google Scholar
Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, Ikeda Y, Motoike T, Dixon S, Seinfeld JE, et al. Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron. 2015;85(5):1086–102.
Article
CAS
Google Scholar
Price K, Obrietan K. Modulation of learning and memory by the genetic disruption of circadian oscillator populations. Physiol Behav. 2018;194:387–93.
Article
Google Scholar
Snider KH, Dziema H, Aten S, Loeser J, Norona FE, Hoyt K, Obrietan K. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits. Behav Brain Res. 2016;308:222–35.
Article
CAS
Google Scholar
Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang X, Bradfield CA, Takahashi JS. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. Elife. 2014;3: e04617.
Article
Google Scholar
Weaver DR, van der Vinne V, Giannaris EL, Vajtay TJ, Holloway KL, Anaclet C. functionally complete excision of conditional alleles in the mouse suprachiasmatic nucleus by vgat-ires-cre. J Biol Rhythm. 2018;33(2):179–91.
Article
CAS
Google Scholar
de Zavalia N, Schoettner K, Goldsmith JA, Solis P, Ferraro S, Parent G, Amir S. Bmal1 in the striatum influences alcohol intake in a sexually dimorphic manner. Commun Biol. 2021;4(1):1227.
Article
Google Scholar
Schoettner K, Alonso M, Button M, Goldfarb C, Herrera J, Quteishat N, Meyer C, Bergdahl A, Amir S. Characterization of affective behaviors and motor functions in mice with a striatal-specific deletion of Bmal1 and Per2. Front Physiol. 2022;13: 922080.
Article
Google Scholar
Wu H, Liu Y, Liu L, Meng Q, Du C, Li K, Dong S, Zhang Y, Li H, Zhang H. Decreased expression of the clock gene Bmal1 is involved in the pathogenesis of temporal lobe epilepsy. Mol Brain. 2021;14(1):113.
Article
CAS
Google Scholar
Hung CJ, Yamanaka A, Ono D. Conditional knockout of Bmal1 in corticotropin-releasing factor neurons does not alter sleep-wake rhythm in mice. Front Neurosci-Switz. 2021;15: 808754.
Article
Google Scholar
Barca-Mayo O, Boender AJ, Armirotti A, De Pietri TD. Deletion of astrocytic BMAL1 results in metabolic imbalance and shorter lifespan in mice. Glia. 2020;68(6):1131–47.
Article
Google Scholar
Becker-Krail DD, Ketchesin KD, Burns JN, Zong W, Hildebrand MA, DePoy LM, Vadnie CA, Tseng GC, Logan RW, Huang YH, et al. Astrocyte molecular clock function in the nucleus accumbens is important for reward-related behavior. Biol Psychiat. 2022;92(1):68–80.
Article
CAS
Google Scholar
Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron. 2015;85(5):1103–16.
Article
CAS
Google Scholar
Wang XL, Kooijman S, Gao Y, Tzeplaeff L, Cosquer B, Milanova I, Wolff S, Korpel N, Champy MF, Petit-Demouliere B, et al. Microglia-specific knock-down of Bmal1 improves memory and protects mice from high fat diet-induced obesity. Mol Psychiatr. 2021;26(11):6336–49.
Article
CAS
Google Scholar
DropViz. http://dropviz.org/. Accessed 17 Aug 2022
Wang XL, Wolff S, Korpel N, Milanova I, Sandu C, Rensen P, Kooijman S, Cassel JC, Kalsbeek A, Boutillier AL, et al. Deficiency of the circadian clock gene Bmal1 reduces microglial immunometabolism. Front Immunol. 2020;11: 586399.
Article
CAS
Google Scholar
Jones JR, Chaturvedi S, Granados-Fuentes D, Herzog ED. Circadian neurons in the paraventricular nucleus entrain and sustain daily rhythms in glucocorticoids. Nat Commun. 2021;12(1):5763.
Article
CAS
Google Scholar