Mayne K, White JA, McMurran CE, Rivera FJ, de la Fuente AG. Aging and neurodegenerative disease: is the adaptive immune system a friend or foe? Front Aging Neurosci. 2020;12:572090. https://doi.org/10.3389/fnagi.2020.572090.
Article
CAS
Google Scholar
Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell. 2021;184(1000–1016):e1027. https://doi.org/10.1016/j.cell.2020.12.040.
Article
CAS
Google Scholar
Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9. https://doi.org/10.1084/jem.20142290.
Article
CAS
Google Scholar
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41. https://doi.org/10.1038/nature14432.
Article
CAS
Google Scholar
Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, Wall M, et al. Meningeal lymphatics affect microglia responses and anti-abeta immunotherapy. Nature. 2021;593:255–60. https://doi.org/10.1038/s41586-021-03489-0.
Article
CAS
Google Scholar
Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med. 2021;27:411–8. https://doi.org/10.1038/s41591-020-01198-1.
Article
CAS
Google Scholar
Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229–43. https://doi.org/10.1038/s41422-020-0287-8.
Article
CAS
Google Scholar
Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun. 2020;11:4524. https://doi.org/10.1038/s41467-020-18113-4.
Article
CAS
Google Scholar
Da Mesquita S, Herz J, Wall M, Dykstra T, de Lima KA, Norris GT, et al. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and beta-amyloid pathology. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abe4601.
Article
Google Scholar
Hsu M, Rayasam A, Kijak JA, Choi YH, Harding JS, Marcus SA, et al. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat Commun. 2019;10:229. https://doi.org/10.1038/s41467-018-08163-0.
Article
CAS
Google Scholar
Chen S, Shao L, Ma L. Cerebral edema formation after stroke: emphasis on blood-brain barrier and the lymphatic drainage system of the brain. Front Cell Neurosci. 2021;15:716825. https://doi.org/10.3389/fncel.2021.716825.
Article
CAS
Google Scholar
Albayram MS, Smith G, Tufan F, Tuna IS, Bostanciklioglu M, Zile M, et al. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun. 2022;13:203. https://doi.org/10.1038/s41467-021-27887-0.
Article
CAS
Google Scholar
Kuo PH, Stuehm C, Squire S, Johnson K. Meningeal lymphatic vessel flow runs countercurrent to venous flow in the superior sagittal sinus of the human brain. Tomography. 2018;4:99–104. https://doi.org/10.1838/j.tom.2018.00013.
Article
Google Scholar
Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560:185–91. https://doi.org/10.1038/s41586-018-0368-8.
Article
CAS
Google Scholar
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. Cell. 2020;182:270–96. https://doi.org/10.1016/j.cell.2020.06.039.
Article
CAS
Google Scholar
Bucchieri F, Farina F, Zummo G, Cappello F. Lymphatic vessels of the dura mater: a new discovery? J Anat. 2015;227:702–3. https://doi.org/10.1111/joa.12381.
Article
Google Scholar
Lukic IK, Gluncic V, Ivkic G, Hubenstorf M, Marusic A. Virtual dissection: a lesson from the 18th century. Lancet. 2003;362:2110–3. https://doi.org/10.1016/S0140-6736(03)15114-8.
Article
Google Scholar
Lecco V. Probable modification of the lymphatic fissures of the walls of the venous sinuses of the dura mater. Arch Ital Otol Rinol Laringol. 1953;64:287–96.
CAS
Google Scholar
Foldi M, Gellert A, Kozma M, Poberai M, Zoltan OT, Csanda E. New contributions to the anatomical connections of the brain and the lymphatic system. Acta Anat. 1966;64:498–505. https://doi.org/10.1159/000142849.
Article
CAS
Google Scholar
Andres KH, von During M, Muszynski K, Schmidt RF. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol. 1987;175:289–301. https://doi.org/10.1007/BF00309843.
Article
CAS
Google Scholar
Gausas RE, Daly T, Fogt F. D2–40 expression demonstrates lymphatic vessel characteristics in the dural portion of the optic nerve sheath. Ophthalmic Plast Reconstr Surg. 2007;23:32–6. https://doi.org/10.1097/01.iop.0000249431.04116.a8.
Article
Google Scholar
Furukawa M, Shimoda H, Kajiwara T, Kato S, Yanagisawa S. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed Res. 2008;29:289–96. https://doi.org/10.2220/biomedres.29.289.
Article
CAS
Google Scholar
Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010;7:9. https://doi.org/10.1186/1743-8454-7-9.
Article
Google Scholar
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147. https://doi.org/10.1126/scitranslmed.3003748.
Article
CAS
Google Scholar
Neuroscience NM. Garbage truck of the brain. Science. 2013;340:1529–30. https://doi.org/10.1126/science.1240514.
Article
Google Scholar
Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke. 2013;44:S93-95. https://doi.org/10.1161/STROKEAHA.112.678698.
Article
Google Scholar
Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife. 2017. https://doi.org/10.7554/eLife.29738.
Article
Google Scholar
Naganawa S, Ito R, Taoka T, Yoshida T, Sone M. The space between the pial sheath and the cortical venous wall may connect to the meningeal lymphatics. Magn Reson Med Sci. 2020;19:1–4. https://doi.org/10.2463/mrms.bc.2019-0099.
Article
Google Scholar
Goodman JR, Adham ZO, Woltjer RL, Lund AW, Iliff JJ. Characterization of dural sinus-associated lymphatic vasculature in human Alzheimer’s dementia subjects. Brain Behav Immun. 2018;73:34–40. https://doi.org/10.1016/j.bbi.2018.07.020.
Article
Google Scholar
Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 2010;140:460–76. https://doi.org/10.1016/j.cell.2010.01.045.
Article
CAS
Google Scholar
Oliver G, Srinivasan RS. Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell. Development. 2010;137:363–72. https://doi.org/10.1242/dev.035360.
Article
CAS
Google Scholar
Escobedo N, Oliver G. Lymphangiogenesis: origin, specification, and cell fate determination. Annu Rev Cell Dev Biol. 2016;32:677–91. https://doi.org/10.1146/annurev-cellbio-111315-124944.
Article
CAS
Google Scholar
Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456:643–7. https://doi.org/10.1038/nature07391.
Article
CAS
Google Scholar
Lin FJ, Chen X, Qin J, Hong YK, Tsai MJ, Tsai SY. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest. 2010;120:1694–707. https://doi.org/10.1172/JCI40101.
Article
CAS
Google Scholar
Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21:1505–13. https://doi.org/10.1093/emboj/21.7.1505.
Article
CAS
Google Scholar
Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M, et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 2010;24:696–707. https://doi.org/10.1101/gad.1859310.
Article
CAS
Google Scholar
Oliver G. Lymphatic vasculature development. Nat Rev Immunol. 2004;4:35–45. https://doi.org/10.1038/nri1258.
Article
CAS
Google Scholar
Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5:74–80. https://doi.org/10.1038/ni1013.
Article
CAS
Google Scholar
Karpanen T, Alitalo K. Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol. 2008;3:367–97. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151515.
Article
CAS
Google Scholar
Yoshimatsu Y, Miyazaki H, Watabe T. Roles of signaling and transcriptional networks in pathological lymphangiogenesis. Adv Drug Deliv Rev. 2016;99:161–71. https://doi.org/10.1016/j.addr.2016.01.020.
Article
CAS
Google Scholar
Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, et al. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214:3645–67. https://doi.org/10.1084/jem.20170391.
Article
CAS
Google Scholar
Izen RM, Yamazaki T, Nishinaka-Arai Y, Hong YK, Mukouyama YS. Postnatal development of lymphatic vasculature in the brain meninges. Dev Dyn. 2018;247:741–53. https://doi.org/10.1002/dvdy.24624.
Article
CAS
Google Scholar
Balint L, Ocskay Z, Deak BA, Aradi P, Jakus Z. Lymph flow induces the postnatal formation of mature and functional meningeal lymphatic vessels. Front Immunol. 2019;10:3043. https://doi.org/10.3389/fimmu.2019.03043.
Article
CAS
Google Scholar
Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005;201:1089–99. https://doi.org/10.1084/jem.20041896.
Article
CAS
Google Scholar
Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev. 2002;82:673–700. https://doi.org/10.1152/physrev.00005.2002.
Article
CAS
Google Scholar
Pfeiffer F, Kumar V, Butz S, Vestweber D, Imhof BA, Stein JV, et al. Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur J Immunol. 2008;38:2142–55. https://doi.org/10.1002/eji.200838140.
Article
CAS
Google Scholar
Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16:209–21. https://doi.org/10.1016/j.devcel.2009.01.004.
Article
CAS
Google Scholar
Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science. 2020. https://doi.org/10.1126/science.aax4063.
Article
Google Scholar
Danussi C, Spessotto P, Petrucco A, Wassermann B, Sabatelli P, Montesi M, et al. Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol Cell Biol. 2008;28:4026–39. https://doi.org/10.1128/MCB.02062-07.
Article
CAS
Google Scholar
Ahn JH, Cho H, Kim JH, Kim SH, Ham JS, Park I, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572:62–6. https://doi.org/10.1038/s41586-019-1419-5.
Article
CAS
Google Scholar
Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380–91. https://doi.org/10.1038/s41593-018-0227-9.
Article
CAS
Google Scholar
Chen J, Wang L, Xu H, Wang Y, Liang Q. The lymphatic drainage system of the CNS plays a role in lymphatic drainage, immunity, and neuroinflammation in stroke. J Leukoc Biol. 2021;110:283–91. https://doi.org/10.1002/JLB.5MR0321-632R.
Article
CAS
Google Scholar
Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: an active and dynamic player in cancer progression. Med Res Rev. 2022;42:576–614. https://doi.org/10.1002/med.21855.
Article
Google Scholar
Cho KO, Kim JY, Jeong KH, Lee MY, Kim SY. Increased expression of vascular endothelial growth factor-C and vascular endothelial growth factor receptor-3 after pilocarpine-induced status epilepticus in mice. Korean J Physiol Pharmacol. 2019;23:281–9. https://doi.org/10.4196/kjpp.2019.23.4.281.
Article
CAS
Google Scholar
Li Q, Chen Y, Feng W, Cai J, Gao J, Ge F, et al. Drainage of senescent astrocytes from brain via meningeal lymphatic routes. Brain Behav Immun. 2022;103:85–96. https://doi.org/10.1016/j.bbi.2022.04.005.
Article
CAS
Google Scholar
Alves de Lima K, Rustenhoven J, Da Mesquita S, Wall M, Salvador AF, Smirnov I, et al. Meningeal gammadelta T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat Immunol. 2020;21:1421–9. https://doi.org/10.1038/s41590-020-0776-4.
Article
CAS
Google Scholar
Zhou C, Ma L, Xu H, Huo Y, Luo J. Meningeal lymphatics regulate radiotherapy efficacy through modulating anti-tumor immunity. Cell Res. 2022. https://doi.org/10.1038/s41422-022-00639-5.
Article
Google Scholar
Radjavi A, Smirnov I, Derecki N, Kipnis J. Dynamics of the meningeal CD4(+) T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry. 2014;19:531–3. https://doi.org/10.1038/mp.2013.79.
Article
CAS
Google Scholar
Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, et al. Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Prog Neurobiol. 2018;163–164:118–43. https://doi.org/10.1016/j.pneurobio.2017.08.007.
Article
Google Scholar
Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature. 2020;577:689–94. https://doi.org/10.1038/s41586-019-1912-x.
Article
CAS
Google Scholar
Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13:206–18. https://doi.org/10.1038/nri3391.
Article
CAS
Google Scholar
Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: a new player in neurophysiology. Neuron. 2018;100:375–88. https://doi.org/10.1016/j.neuron.2018.09.022.
Article
CAS
Google Scholar
Weller RO. Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol. 1998;57:885–94. https://doi.org/10.1097/00005072-199810000-00001.
Article
CAS
Google Scholar
Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8:1434. https://doi.org/10.1038/s41467-017-01484-6.
Article
CAS
Google Scholar
Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127:3210–9. https://doi.org/10.1172/JCI90603.
Article
Google Scholar
Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: current understanding significance and controversy. Front Neuroanat. 2017;11:101. https://doi.org/10.3389/fnana.2017.00101.
Article
CAS
Google Scholar
Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife. 2018. https://doi.org/10.7554/eLife.40070.
Article
Google Scholar
Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu Rev Immunol. 2020;38:597–620. https://doi.org/10.1146/annurev-immunol-102319-103410.
Article
CAS
Google Scholar
Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol. 2020;87:357–69. https://doi.org/10.1002/ana.25670.
Article
CAS
Google Scholar
Wu CH, Lirng JF, Ling YH, Wang YF, Wu HM, Fuh JL, et al. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood-brain barrier leakage. Ann Neurol. 2021;89:111–24. https://doi.org/10.1002/ana.25928.
Article
CAS
Google Scholar
Kipnis J. Multifaceted interactions between adaptive immunity and the central nervous system. Science. 2016;353:766–71. https://doi.org/10.1126/science.aag2638.
Article
CAS
Google Scholar
Wang L, Zhang Y, Zhao Y, Marshall C, Wu T, Xiao M. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol. 2019;29:176–92. https://doi.org/10.1111/bpa.12656.
Article
CAS
Google Scholar
Wen YR, Yang JH, Wang X, Yao ZB. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen Res. 2018;13:709–16. https://doi.org/10.4103/1673-5374.230299.
Article
CAS
Google Scholar
Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36:569–77. https://doi.org/10.1016/j.it.2015.08.006.
Article
CAS
Google Scholar
Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016;132:317–38. https://doi.org/10.1007/s00401-016-1606-5.
Article
CAS
Google Scholar
Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, et al. T cells become licensed in the lung to enter the central nervous system. Nature. 2012;488:675–9. https://doi.org/10.1038/nature11337.
Article
CAS
Google Scholar
Murphy MP, LeVine H 3rd. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimer’s Dis. 2010;19:311–23. https://doi.org/10.3233/JAD-2010-1221.
Article
CAS
Google Scholar
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2012;2:a006270. https://doi.org/10.1101/cshperspect.a006270.
Article
CAS
Google Scholar
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(1276–1290):e1217. https://doi.org/10.1016/j.cell.2017.05.018.
Article
CAS
Google Scholar
Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774. https://doi.org/10.1126/science.1197623.
Article
CAS
Google Scholar
Attier-Zmudka J, Serot JM, Valluy J, Saffarini M, Macaret AS, Diouf M, et al. Decreased cerebrospinal fluid flow is associated with cognitive deficit in elderly patients. Front Aging Neurosci. 2019;11:87. https://doi.org/10.3389/fnagi.2019.00087.
Article
Google Scholar
Wu KM, Zhang YR, Huang YY, Dong Q, Tan L, Yu JT. The role of the immune system in Alzheimer’s disease. Ageing Res Rev. 2021;70:101409. https://doi.org/10.1016/j.arr.2021.101409.
Article
CAS
Google Scholar
Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117:1–14. https://doi.org/10.1007/s00401-008-0457-0.
Article
CAS
Google Scholar
Louveau A, Da Mesquita S, Kipnis J. Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer’s disease? Neuron. 2016;91:957–73. https://doi.org/10.1016/j.neuron.2016.08.027.
Article
CAS
Google Scholar
Mentis AA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry. 2021;26:1075–97. https://doi.org/10.1038/s41380-020-0731-7.
Article
CAS
Google Scholar
Choi C, Park J, Kim H, Chang KT, Park J, Min KT. DSCR1 upregulation enhances dural meningeal lymphatic drainage to attenuate amyloid pathology of Alzheimer’s disease. J Pathol. 2021. https://doi.org/10.1002/path.5767.
Article
Google Scholar
Lin Y, Jin J, Lv R, Luo Y, Dai W, Li W, et al. Repetitive transcranial magnetic stimulation increases the brain’s drainage efficiency in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9:102. https://doi.org/10.1186/s40478-021-01198-3.
Article
CAS
Google Scholar
Laaker C, Fabry Z. The meningeal lymphatics: regulators of abeta immunotherapy? Trends Immunol. 2021;42:940–2. https://doi.org/10.1016/j.it.2021.09.011.
Article
CAS
Google Scholar
Li C, Gotz J. Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov. 2017;16:863–83. https://doi.org/10.1038/nrd.2017.155.
Article
CAS
Google Scholar
Xin SH, Tan L, Cao X, Yu JT, Tan L. Clearance of amyloid beta and tau in alzheimer’s disease: from mechanisms to therapy. Neurotox Res. 2018;34:733–48. https://doi.org/10.1007/s12640-018-9895-1.
Article
CAS
Google Scholar
Patel TK, Habimana-Griffin L, Gao X, Xu B, Achilefu S, Alitalo K, et al. Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol Neurodegener. 2019;14:11. https://doi.org/10.1186/s13024-019-0312-x.
Article
CAS
Google Scholar
Pu T, Zou W, Feng W, Zhang Y, Wang L, Wang H, et al. Persistent malfunction of glymphatic and meningeal lymphatic drainage in a mouse model of subarachnoid hemorrhage. Exp Neurobiol. 2019;28:104–18. https://doi.org/10.5607/en.2019.28.1.104.
Article
Google Scholar
Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, et al. Dopamine induces soluble alpha-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci. 2017;20:1560–8. https://doi.org/10.1038/nn.4641.
Article
CAS
Google Scholar
Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 2009;8:1150–7. https://doi.org/10.1016/S1474-4422(09)70238-8.
Article
CAS
Google Scholar
Bobela W, Aebischer P, Schneider BL. Alphalpha-synuclein as a mediator in the interplay between aging and parkinson’s disease. Biomolecules. 2015;5:2675–700. https://doi.org/10.3390/biom5042675.
Article
CAS
Google Scholar
Abeliovich A, Gitler AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature. 2016;539:207–16. https://doi.org/10.1038/nature20414.
Article
Google Scholar
Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, et al. Blocking meningeal lymphatic drainage aggravates parkinson’s disease-like pathology in mice overexpressing mutated alpha-synuclein. Transl Neurodegener. 2019;8:7. https://doi.org/10.1186/s40035-019-0147-y.
Article
Google Scholar
Wong YC, Krainc D. Alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23:1–13. https://doi.org/10.1038/nm.4269.
Article
CAS
Google Scholar
Graham MS, Mellinghoff IK. Meningeal lymphatics prime tumor immunity in glioblastoma. Cancer Cell. 2021;39:304–6. https://doi.org/10.1016/j.ccell.2021.02.012.
Article
CAS
Google Scholar
Thomas JL, Song E, Boisserand L, Iwasaki A. Meningeal lymphatics, a potential target for the treatment of brain tumors. Med Sci. 2020;36:709–13. https://doi.org/10.1051/medsci/2020141.
Article
Google Scholar
Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology. 2000;55:1158–66. https://doi.org/10.1212/wnl.55.8.1158.
Article
CAS
Google Scholar
Moretti L, Cristofori I, Weaver SM, Chau A, Portelli JN, Grafman J. Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurol. 2012;11:1103–12. https://doi.org/10.1016/S1474-4422(12)70226-0.
Article
Google Scholar
Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9. https://doi.org/10.1093/bja/aem131.
Article
CAS
Google Scholar
Wojciechowski S, Virenque A, Vihma M, Galbardi B, Rooney EJ, Keuters MH, et al. Developmental dysfunction of the central nervous system lymphatics modulates the adaptive neuro-immune response in the perilesional cortex in a mouse model of traumatic brain injury. Front Immunol. 2020;11:559810. https://doi.org/10.3389/fimmu.2020.559810.
Article
CAS
Google Scholar
Daglas M, Draxler DF, Ho H, McCutcheon F, Galle A, Au AE, et al. Activated CD8(+) T cells cause long-term neurological impairment after traumatic brain injury in mice. Cell Rep. 2019;29(1178–1191):e1176. https://doi.org/10.1016/j.celrep.2019.09.046.
Article
CAS
Google Scholar
Liu X, Gao C, Yuan J, Xiang T, Gong Z, Luo H, et al. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. Acta Neuropathol Commun. 2020;8:16. https://doi.org/10.1186/s40478-020-0888-y.
Article
Google Scholar
Shen D, Liu K, Wang H, Wang H. Autophagy modulation in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2022. https://doi.org/10.1093/cei/uxac017.
Article
Google Scholar
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164:1079–106. https://doi.org/10.1111/j.1476-5381.2011.01302.x.
Article
CAS
Google Scholar
Clarkson BD, Walker A, Harris MG, Rayasam A, Hsu M, Sandor M, et al. CCR7 deficient inflammatory dendritic cells are retained in the central nervous system. Sci Rep. 2017;7:42856. https://doi.org/10.1038/srep42856.
Article
CAS
Google Scholar
Collaborators GBDS. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18:439–58. https://doi.org/10.1016/S1474-4422(19)30034-1.
Article
Google Scholar
Mortality G B D, Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459-1544. https://doi.org/10.1016/S0140-6736(16)31012-1
Chandra A, Stone CR, Li WA, Geng X, Ding Y. The cerebral circulation and cerebrovascular disease II: Pathogenesis of cerebrovascular disease. Brain Circ. 2017;3:57–65. https://doi.org/10.4103/bc.bc_11_17.
Article
Google Scholar
Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier KR, Berndt M, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab. 2020;40:263–75. https://doi.org/10.1177/0271678X18822921.
Article
Google Scholar
Chen J, He J, Ni R, Yang Q, Zhang Y, Luo L. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish. Dev Cell. 2019;49(697–710):e695. https://doi.org/10.1016/j.devcel.2019.03.022.
Article
CAS
Google Scholar
Bai S, Lu X, Pan Q, Wang B, Pong UK, Yang Y, et al. Cranial bone transport promotes angiogenesis, neurogenesis, and modulates meningeal lymphatic function in middle cerebral artery occlusion rats. Stroke. 2022;53:1373–85. https://doi.org/10.1161/STROKEAHA.121.037912.
Article
CAS
Google Scholar
Semyachkina-Glushkovskaya O, Navolokin N, Shirokov A, Terskov A, Khorovodov A, Mamedova A, et al. Meningeal lymphatic pathway of brain clearing from the blood after haemorrhagic injuries. Adv Exp Med Biol. 2020;1232:63–8. https://doi.org/10.1007/978-3-030-34461-0_9.
Article
CAS
Google Scholar
Tsai HH, Hsieh YC, Lin JS, Kuo ZT, Ho CY, Chen CH, et al. Functional investigation of meningeal lymphatic system in experimental intracerebral hemorrhage. Stroke. 2022;53:987–98. https://doi.org/10.1161/STROKEAHA.121.037834.
Article
CAS
Google Scholar
Chen J, Wang L, Xu H, Xing L, Zhuang Z, Zheng Y, et al. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat Commun. 2020;11:3159. https://doi.org/10.1038/s41467-020-16851-z.
Article
CAS
Google Scholar
Nagai T, Bridenbaugh EA, Gashev AA. Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation. 2011;18:463–73. https://doi.org/10.1111/j.1549-8719.2011.00107.x.
Article
CAS
Google Scholar
Hos D, Bachmann B, Bock F, Onderka J, Cursiefen C. Age-related changes in murine limbal lymphatic vessels and corneal lymphangiogenesis. Exp Eye Res. 2008;87:427–32. https://doi.org/10.1016/j.exer.2008.07.013.
Article
CAS
Google Scholar
Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to parkinson’s disease. Cell Rep. 2018;22:930–40. https://doi.org/10.1016/j.celrep.2017.12.092.
Article
CAS
Google Scholar