Asellius G. De lactibus, sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento Gasparis Asellii Cremo. Dissertatio. (MDCXXIIX), Milan; 1628.
Chiu NT, Lee BF, Hwang SJ, Chang JM, Liu GC, Yu HS. Protein-losing enteropathy: diagnosis with (99m)Tc-labeled human serum albumin scintigraphy. Radiology. 2001;219:86–90. https://doi.org/10.1148/radiology.219.1.r01ap2986.
Article
CAS
PubMed
Google Scholar
Hokari R, Kitagawa N, Watanabe C, Komoto S, Kurihara C, Okada Y, et al. Changes in regulatory molecules for lymphangiogenesis in intestinal lymphangiectasia with enteric protein loss. J Gastroenterol Hepatol. 2008;23:e88-95. https://doi.org/10.1111/j.1440-1746.2007.05225.x.
Article
PubMed
Google Scholar
Valasek P, Macharia R, Neuhuber WL, Wilting J, Becker DL, Patel K. Lymph heart in chick–somitic origin, development and embryonic oedema. Dev Camb Engl. 2007;134:4427–36. https://doi.org/10.1242/dev.004697.
Article
CAS
Google Scholar
Wagner T, Fahham D, Frumkin A, Shaag A, Yagel S, Yanai N, et al. The many etiologies of nonimmune hydrops fetalis diagnosed by exome sequencing. Prenat Diagn. 2021. https://doi.org/10.1002/pd.5977.
Article
PubMed
Google Scholar
Rutscher K, Wilting J. Transcription factor FOXC2 demarcates the jugular lymphangiogenic region in avian embryos. Lymphology. 2008;41:11–7.
CAS
PubMed
Google Scholar
Fang J, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet. 2000;67:1382–8. https://doi.org/10.1086/316915.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dale RF. The inheritance of primary lymphoedema. J Med Genet. 1985;22:274–8. https://doi.org/10.1136/jmg.22.4.274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smeltzer DM, Stickler GB, Schirger A. Primary lymphedema in children and adolescents: a follow-up study and review. Pediatrics. 1985;76:206–18.
CAS
PubMed
Google Scholar
Neuhüttler S, Brenner E. Beitrag zur Epidemiologie des Lymphödems. Phlebologie. 2006;35:181–7. https://doi.org/10.1055/s-0037-1622142.
Article
Google Scholar
Franke FE, Steger K, Marks A, Kutzner H, Mentzel T. Hobnail hemangiomas (targetoid hemosiderotic hemangiomas) are true lymphangiomas. J Cutan Pathol. 2004;31:362–7. https://doi.org/10.1111/j.0303-6987.2004.00192.x.
Article
PubMed
Google Scholar
Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol. 1999;154:385–94. https://doi.org/10.1016/S0002-9440(10)65285-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogt T, Brockmeyer N, Kutzner H, Schöfer H. Brief S1 guidelines–cutaneous angiosarcoma and Kaposi sarcoma. J Dtsch Dermatol Ges J Ger Soc Dermatol JDDG. 2013;11(S3):2–10. https://doi.org/10.1111/ddg.12015_2.
Article
Google Scholar
Mankey CC, McHugh JB, Thomas DG, Lucas DR. Can lymphangiosarcoma be resurrected? A clinicopathological and immunohistochemical study of lymphatic differentiation in 49 angiosarcomas. Histopathology. 2010;56:364–71. https://doi.org/10.1111/j.1365-2559.2010.03484.x.
Article
PubMed
Google Scholar
Pavlakovic H, Becker J, Albuquerque R, Wilting J, Ambati J. Soluble VEGFR-2: an anti-lymphangiogenic variant of VEGF receptors. Ann N Y Acad Sci. 2010;1207(Suppl 1):E7-15. https://doi.org/10.1111/j.1749-6632.2010.05714.x.
Article
PubMed
PubMed Central
Google Scholar
Wilting J, Chao TI. Integrated anatomy of the vascular system. In: Peter L, editor. PanVascular medicine. 2nd ed. New York: Springer; 2015.
Google Scholar
Rudbeck O. Nova Exercitatio anatomica, exhibens ductos hepaticos aquosos, et vasa glandularum serosa (1653). Uppsala: Almquist and Wiksells; 1930.
Google Scholar
Vajda J, Tomcsik M, van Doorenmaalen WJ. Connections between the venous system of the heart and the epicardiac lymphatic network. Cells Tissues Organs. 1972;83:262–74.
Article
CAS
Google Scholar
Wilting J, Buttler K, Schulte I, Papoutsi M, Schweigerer L, Männer J. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart. Dev Biol. 2007;305:451–9. https://doi.org/10.1016/j.ydbio.2007.02.026.
Article
CAS
PubMed
Google Scholar
Silvester CF. On the presence of permanent communications between the lymphatic and the venous system at the level of the renal veins in adult South American monkeys. Am J Anat. 1912;12:447–71.
Article
Google Scholar
Robichaux JL, Tanno E, Rappleye JW, Ceballos M, Stallcup WB, Schmid-Schönbein GW, et al. Lymphatic/blood endothelial cell connections at the capillary level in adult rat mesentery. Anat Rec Adv Integr Anat Evol Biol. 2010;293:1629–38.
Article
Google Scholar
von Recklinghausen FD. Die Lymphgefäße und ihre Beziehung zum Bindegewebe. 1862. https://archive.org/details/dielymphgefsseu00reckgoog/page/n9. Accessed 11 Sept 2022.
Rusznyák I, Földi M, Szabó G. Lymphologie: Physiologie und Pathologie der Lymphgefäße und des Lymphkreislaufes. Stuttgart: Akademia Kiado; 1969.
Google Scholar
Castenholz A. Zur Frage der funktionsmorphologischen Eigenschaften initialer Lymphgefäße. Erlangen: Odem; 1988. p. 89–94.
Google Scholar
Leak LV, Burke JF. Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol. 1968;36:129–49.
Article
PubMed
PubMed Central
Google Scholar
Rossi A, Gabbrielli E, Villano M, Messina M, Ferrara F, Weber E. Human microvascular lymphatic and blood endothelial cells produce fibrillin: deposition patterns and quantitative analysis. J Anat. 2010;217:705–14. https://doi.org/10.1111/j.1469-7580.2010.01306.x.
Article
PubMed
PubMed Central
Google Scholar
Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schonbein GW. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 2001;15:1711–7. https://doi.org/10.1096/fj.01-0067com.
Article
CAS
PubMed
Google Scholar
Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62. https://doi.org/10.1084/jem.20062596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasmussen JC, Tan I-C, Marshall MV, Fife CE, Sevick-Muraca EM. Lymphatic imaging in humans with near-infrared fluorescence. Curr Opin Biotechnol. 2009;20:74–82. https://doi.org/10.1016/j.copbio.2009.01.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groenlund JH, Telinius N, Skov SN, Hjortdal V. A validation study of near-infrared fluorescence imaging of lymphatic vessels in humans. Lymphat Res Biol. 2017;15:227–34.
Article
PubMed
Google Scholar
Belgrado J-P, Vandermeeren L, Vankerckhove S, Valsamis J-B, Malloizel-Delaunay J, Moraine J-J, et al. Near-infrared fluorescence lymphatic imaging to reconsider occlusion pressure of superficial lymphatic collectors in upper extremities of healthy volunteers. Lymphat Res Biol. 2016;14:70–7. https://doi.org/10.1089/lrb.2015.0040.
Article
PubMed
PubMed Central
Google Scholar
Hasselhof V, Sperling A, Buttler K, Strobel P, Becker J, Aung T, et al. Morphological and molecular characterization of human dermal lymphatic collectors. PLoS ONE. 2016;11: e0164964. https://doi.org/10.1371/journal.pone.0164964.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hewson W. Experimental inquiries part the first. London: T. Cadell; 1772.
Google Scholar
Kenney HM, Bell RD, Masters EA, Xing L, Ritchlin CT, Schwarz EM. Lineage tracing reveals evidence of a popliteal lymphatic muscle progenitor cell that is distinct from skeletal and vascular muscle progenitors. Sci Rep. 2020;10:18088. https://doi.org/10.1038/s41598-020-75190-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tammela T, Saaristo A, Holopainen T, Lyytikkä J, Kotronen A, Pitkonen M, et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med. 2007;13:1458–66. https://doi.org/10.1038/nm1689.
Article
CAS
PubMed
Google Scholar
Tatin F, Taddei A, Weston A, Fuchs E, Devenport D, Tissir F, et al. Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev Cell. 2013;26:31–44. https://doi.org/10.1016/j.devcel.2013.05.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCloskey KD, Toland HM, Hollywood MA, Thornbury KD, McHale NG. Hyperpolarisation-activated inward current in isolated sheep mesenteric lymphatic smooth muscle. J Physiol. 1999;521:2. https://doi.org/10.1111/j.1469-7793.1999.00201.x.
Article
Google Scholar
Boedtkjer DB, Rumessen J, Baandrup U, Mikkelsen MS, Telinius N, Pilegaard H, et al. Identification of interstitial Cajal-like cells in the human thoracic duct. Cells Tissues Organs. 2013;197:145–58. https://doi.org/10.1159/000342437.
Article
CAS
Google Scholar
Rizzo FM, Palmirotta R, Marzullo A, Resta N, Cives M, Tucci M, et al. Parallelism of DOG1 expression with recurrence risk in gastrointestinal stromal tumors bearing KIT or PDGFRA mutations. BMC Cancer. 2016;16:1–7. https://doi.org/10.1186/s12885-016-2111-x.
Article
CAS
Google Scholar
Zawieja SD, Castorena JA, Gui P, Li M, Bulley SA, Jaggar JH, et al. Ano1 mediates pressure-sensitive contraction frequency changes in mouse lymphatic collecting vessels. J Gen Physiol. 2019;151:532–54. https://doi.org/10.1085/jgp.201812294.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGeown JG, McHale NG, Thornbury KD. The effect of electrical stimulation of the sympathetic chain on peripheral lymph flow in the anaesthetized sheep. J Physiol. 1987;393:123–33. https://doi.org/10.1113/jphysiol.1987.sp016814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witte MH, Jones K, Wilting J, Dictor M, Selg M, McHale N, et al. Structure function relationships in the lymphatic system and implications for cancer biology. Cancer Metastasis Rev. 2006;25:159–84. https://doi.org/10.1007/s10555-006-8496-2.
Article
PubMed
Google Scholar
Schad H. Innervation der Lymphgefasse und neuronale Regulation des Lymphtransports. LymphForsch. 2007;11:14–24.
Google Scholar
Ji R-C, Kato S. Histochemical analysis of lymphatic endothelial cells in lymphostasis. Microsc Res Tech. 2001;55:70–80. https://doi.org/10.1002/jemt.1158.
Article
CAS
PubMed
Google Scholar
Nizamutdinova IT, Maejima D, Nagai T, Bridenbaugh E, Thangaswamy S, Chatterjee V, et al. Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels. Microcirculation. 2014;21:640–8. https://doi.org/10.1111/micc.12143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456:643–7. https://doi.org/10.1038/nature07391.
Article
CAS
PubMed
Google Scholar
Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–78. https://doi.org/10.1016/s0092-8674(00)81511-1.
Article
CAS
PubMed
Google Scholar
Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140:460–76. https://doi.org/10.1016/j.cell.2010.01.045.
Article
CAS
PubMed
Google Scholar
Petrova TV, Koh GY. Organ-specific lymphatic vasculature: from development to pathophysiology. J Exp Med. 2018;215:35–49. https://doi.org/10.1084/jem.20171868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell. 2020;182:270–96. https://doi.org/10.1016/j.cell.2020.06.039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lutze G, Haarmann A, Demanou Toukam JA, Buttler K, Wilting J, Becker J. Non-canonical WNT-signaling controls differentiation of lymphatics and extension lymphangiogenesis via RAC and JNK signaling. Sci Rep. 2019;9:4739. https://doi.org/10.1038/s41598-019-41299-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, et al. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214:3645–67. https://doi.org/10.1084/jem.20170391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1902;1:367–89.
Article
Google Scholar
Srinivasan RS, Dillard ME, Lagutin OV, Lin F-J, Tsai S, Tsai M-J, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 2007;21:2422–32. https://doi.org/10.1101/gad.1588407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 2013;32:629–44. https://doi.org/10.1038/emboj.2012.340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kampmeier OF. The value of the injection method in the study of lymphatic development. Anat Rec. 1912;6:223–32.
Article
Google Scholar
Van der Jagt ER. Memoirs: the origin and development of the anterior lymph-sacs in the sea-turtle (Thalassochelys caretta). J Cell Sci. 1932;2:151–63.
Article
Google Scholar
Schneider M, Othman-Hassan K, Christ B, Wilting J. Lymphangioblasts in the avian wing bud. Dev Dyn. 1999;216:311–9. https://doi.org/10.1002/(SICI)1097-0177(199912)216:4/5%3c311::AID-DVDY1%3e3.0.CO;2-M.
Article
CAS
PubMed
Google Scholar
Wilting J, Aref Y, Huang R, Tomarev SI, Schweigerer L, Christ B, et al. Dual origin of avian lymphatics. Dev Biol. 2006;292:165–73. https://doi.org/10.1016/j.ydbio.2005.12.043.
Article
CAS
PubMed
Google Scholar
Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med. 2005;11:998–1004. https://doi.org/10.1038/nm1285.
Article
CAS
PubMed
Google Scholar
Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dubé KN, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62–7. https://doi.org/10.1038/nature14483.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Corral I, Ulvmar MH, Stanczuk L, Tatin F, Kizhatil K, John SW, et al. Nonvenous origin of dermal lymphatic vasculature. Circ Res. 2015;116:1649–54. https://doi.org/10.1161/CIRCRESAHA.116.306170.
Article
CAS
PubMed
Google Scholar
Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Laviña B, Fruttiger M, et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 2015;10:1708–21. https://doi.org/10.1016/j.celrep.2015.02.026.
Article
CAS
PubMed
Google Scholar
Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Dev Camb Engl. 1996;122:1363–71. https://doi.org/10.1242/dev.122.5.1363.
Article
CAS
Google Scholar
Wilting J, Christ B. Embryonic angiogenesis: a review. Naturwissenschaften. 1996;83:153–64.
Article
CAS
PubMed
Google Scholar
Lempereur A, Canto PY, Richard C, Martin S, Thalgott J, Raymond K, et al. The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. Dev Biol. 2018;434:292–303. https://doi.org/10.1016/j.ydbio.2017.12.006.
Article
CAS
PubMed
Google Scholar
Mäkinen T, Boon LM, Vikkula M, Alitalo K. Lymphatic malformations: genetics, mechanisms and therapeutic strategies. Circ Res. 2021;129:136–54. https://doi.org/10.1161/CIRCRESAHA.121.318142.
Article
CAS
PubMed
Google Scholar
Dellinger MT, Hunter RJ, Bernas MJ, Witte MH, Erickson RP. Chy-3 mice are Vegfc haploinsufficient and exhibit defective dermal superficial to deep lymphatic transition and dermal lymphatic hypoplasia. Dev Dyn Off Publ Am Assoc Anat. 2007;236:2346–55. https://doi.org/10.1002/dvdy.21208.
Article
CAS
Google Scholar
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev. 2021;101:1809–71. https://doi.org/10.1152/physrev.00006.2020.
Article
CAS
PubMed
Google Scholar
Lin Y, Yang Y, Zhang X, Li W, Li H, Mu D. Manual lymphatic drainage for breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials. Clin Breast Cancer. 2022;S1526–8209(22):00034–9. https://doi.org/10.1016/j.clbc.2022.01.013.
Article
Google Scholar
Takhellambam L, Yadav TD, Kumar H, Gupta V, Tandup C, Gorsi U, et al. Prophylactic ligation of the opacified thoracic duct in minimally invasive esophagectomy—feasibility and safety. Langenbecks Arch Surg. 2021;406:2515–20. https://doi.org/10.1007/s00423-021-02300-y.
Article
PubMed
Google Scholar
Hägerling R, Hoppe E, Dierkes C, Stehling M, Makinen T, Butz S, et al. Distinct roles of VE-cadherin for development and maintenance of specific lymph vessel beds. EMBO J. 2018;37: e98271. https://doi.org/10.15252/embj.201798271.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Putte SC, van Limborgh J. The embryonic development of the main lymphatics in man. Acta Morphol Neerl Scand. 1980;18:323–35.
PubMed
Google Scholar
Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med. 2006;12:230–4. https://doi.org/10.1038/nm1340.
Article
CAS
PubMed
Google Scholar
Barozzi P, Luppi M, Facchetti F, Mecucci C, Alù M, Sarid R, et al. Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med. 2003;9:554–61. https://doi.org/10.1038/nm862.
Article
CAS
PubMed
Google Scholar
Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26. https://doi.org/10.1113/jphysiol.1896.sp000596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Starling EH. The production and absorption of lymph. Textb Physiol. 1898;1:285–311.
Google Scholar
Schad H. Gilt die Starling’sche Hypothese noch. LymphForsch. 2009;13:71–7.
Google Scholar
Levick JR, Michel CC. Microvascular fluid exchange and the revised starling principle. Cardiovasc Res. 2010;87:198–210.
Article
CAS
PubMed
Google Scholar
Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61. https://doi.org/10.1038/nature09522.
Article
CAS
PubMed
Google Scholar
Knox P, Pflug JJ. The effect of the canine popliteal node on the composition of lymph. J Physiol. 1983;345:1–14. https://doi.org/10.1113/jphysiol.1983.sp01496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franksson C, Lundgren G, Magnusson G, Ringdén O. Drainage of thoracic duct lymph in renal transplant patients. Transplantation. 1976;21:133–40. https://doi.org/10.1097/00007890-197602000-00008.
Article
CAS
PubMed
Google Scholar
Witte MH, Dumont AE, Clauss RH, Rader B, Levine N, Breed ES. Lymph circulation in congestive heart failure: effect of external thoracic duct drainage. Circulation. 1969;39:723–33.
Article
CAS
PubMed
Google Scholar
Vreim CE, Ohkuda K, Staub NC. Proportions of dog lung lymph in the thoracic and right lymph ducts. J Appl Physiol. 1977;43:894–8.
Article
CAS
PubMed
Google Scholar
Ionac M. One technique, two approaches, and results: thoracic duct cannulation in small laboratory animals. Microsurgery. 2003;23:239–45.
Article
PubMed
Google Scholar
Schulz T, Schumacher U, Prehm P. Hyaluronan export by the ABC transporter MRP5 and its modulation by intracellular cGMP. J Biol Chem. 2007;282:20999–1004.
Article
CAS
PubMed
Google Scholar
Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27–33.
Article
CAS
PubMed
Google Scholar
Jackson DG. The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med. 2003;13:1–7.
Article
CAS
PubMed
Google Scholar
Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem. 2001;276:19420–30. https://doi.org/10.1074/jbc.M011004200.
Article
CAS
PubMed
Google Scholar
Liu NF, Zhang LR. Changes of tissue fluid hyaluronan (hyaluronic acid) in peripheral lymphedema. Lymphology. 1998;31:173–9.
CAS
PubMed
Google Scholar
Murray G, Convery C, Walker L, Davies E. Guideline for the safe use of hyaluronidase in aesthetic medicine, including modified high-dose protocol. J Clin Aesthetic Dermatol. 2021;14:E69.
Google Scholar
Schwartz MS. Use of hyaluronidase by iontophoresis in treatment of lymphedema. AMA Arch Intern Med. 1955;95:662–8.
Article
CAS
PubMed
Google Scholar
Solti F, Jellinek H, Schneider F, Lengyel Y. Lymphostatische Venopathie im Tierexperiment und beim Menschen. In: Clodius L, Baumeister RGH, Földi E, Kubik S, Partsch H, Stöberl C, Weissleder H, editors. Lymphologica Jahresband Ausgewählte Vorträge der Lymphologica. München: Medicon Verlag; 1988. p. 111–2.
Google Scholar
Jiang X, Tian W, Granucci EJ, Tu AB, Kim D, Dahms P, et al. Decreased lymphatic HIF-2α accentuates lymphatic remodeling in lymphedema. J Clin Invest. 2020;130:5562–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholson C, Hrabětová S. Brain extracellular space: the final frontier of neuroscience. Biophys J. 2017;113:2133–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilhelm I, Nyúl-Tóth Á, Suciu M, Hermenean A, Krizbai IA. Heterogeneity of the blood-brain barrier. Tissue Barriers. 2016;4: e1143544. https://doi.org/10.1080/21688370.2016.1143544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lüllmann-Rauch R, Asan E. Taschenlehrbuch Histologie. Stuttgart: Thieme; 2019.
Book
Google Scholar
Schläger C, Körner H, Krueger M, Vidoli S, Haberl M, Mielke D, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530:349–53. https://doi.org/10.1038/nature16939.
Article
CAS
PubMed
Google Scholar
Proulx ST, Engelhardt B. Central nervous system zoning: How brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J Intern Med. 2022;292:47–67. https://doi.org/10.1111/joim.13469.
Article
PubMed
PubMed Central
Google Scholar
Földi E, Földi M. Lymphostatische Krankheitsbilder. Lehrbuch Lymphologie für Ärzte Physiotherapeuten Masseure und medizinische Bademeister. 2010;7:175–263.
Google Scholar
Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78:2429–57. https://doi.org/10.1007/s00018-020-03706-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khasawneh AH, Garling RJ, Harris CA. Cerebrospinal fluid circulation: what do we know and how do we know it? Brain Circ. 2018;4:14–8.
Article
PubMed
PubMed Central
Google Scholar
Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today. 1992;13:507–12.
Article
CAS
PubMed
Google Scholar
Kida S, Pantazis A, Weller RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993;19:480–8.
Article
CAS
PubMed
Google Scholar
Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M. Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol Regul Integr Comp Physiol. 1999;276:R818–23.
Article
CAS
Google Scholar
Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin M-F, et al. How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood. 2006;107:806–12.
Article
CAS
PubMed
Google Scholar
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:1–32.
Article
CAS
Google Scholar
Andres KH, Von Düring M, Muszynski K, Schmidt RF. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl). 1987;175:289–301.
Article
CAS
Google Scholar
Mascagni P. Vasorum lymphaticorum corporis humani historia et ichnographia. Siena: Ex typographia Pazzini Carli; 1787.
Google Scholar
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41. https://doi.org/10.1038/nature14432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lüdemann W, Berens von Rautenfeld D, Samii M, Brinker T. Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst. 2005;21:96–103. https://doi.org/10.1007/s00381-004-1040-1.
Article
PubMed
Google Scholar
Ma Q, Decker Y, Müller A, Ineichen BV, Proulx ST. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. J Exp Med. 2019;216:2492–502. https://doi.org/10.1084/jem.20190351.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu M, Laaker C, Sandor M, Fabry Z. Neuroinflammation-driven Lymphangiogenesis in CNS diseases. Front Cell Neurosci. 2021;15: 683676. https://doi.org/10.3389/fncel.2021.683676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilting J, Chao TI. Lymphe und Gehirn. In: Cornely M, Marsch E, Brenner E, editors. Angewandte Lmphologie. Newyork: Springer; 2022. p. 1–9.
Google Scholar
Brindle R, Williams OM, Barton E, Featherstone P. Assessment of antibiotic treatment of cellulitis and erysipelas: a systematic review and meta-analysis. JAMA Dermatol. 2019;155:1033–40.
Article
PubMed
PubMed Central
Google Scholar
Leak LV, Liotta LA, Krutzsch H, Jones M, Fusaroa VA, Ross SJ, et al. Proteomic analysis of lymph. Proteomics. 2004;4:753–65.
Article
CAS
PubMed
Google Scholar
Park J-H, Park G-T, Cho IH, Sim S-M, Yang J-M, Lee D-Y. An antimicrobial protein, lactoferrin exists in the sweat: proteomic analysis of sweat. Exp Dermatol. 2011;20:369–71. https://doi.org/10.1111/j.1600-0625.2010.01218.x.
Article
CAS
PubMed
Google Scholar
Harmsen MC, Swart PJ, de Béthune MP, Pauwels R, De Clercq E, The TH, et al. Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J Infect Dis. 1995;172:380–8. https://doi.org/10.1093/infdis/172.2.380.
Article
CAS
PubMed
Google Scholar
Wilting J, Becker J, Buttler K, Weich HA. Lymphatics and inflammation. Curr Med Chem. 2009;16:4581–92. https://doi.org/10.2174/092986709789760751.
Article
CAS
PubMed
Google Scholar
Ji R-C. Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci. 2012;69:897–914. https://doi.org/10.1007/s00018-011-0848-6.
Article
CAS
PubMed
Google Scholar
Jackson DG. Leucocyte trafficking via the lymphatic vasculature- mechanisms and consequences. Front Immunol. 2019;10:471. https://doi.org/10.3389/fimmu.2019.00471.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature. 2006;443:993–7. https://doi.org/10.1038/nature05249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15:1023–30. https://doi.org/10.1038/nm.2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Hamrah P, Cursiefen C, Zhang Q, Pytowski B, Streilein JW, et al. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med. 2004;10:813–5.
Article
CAS
PubMed
Google Scholar
Vassileva G, Soto H, Zlotnik A, Nakano H, Kakiuchi T, Hedrick JA, et al. The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J Exp Med. 1999;190:1183–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Permanyer M, Bošnjak B, Förster R. Dendritic cells, T cells and lymphatics: dialogues in migration and beyond. Curr Opin Immunol. 2018;53:173–9.
Article
CAS
PubMed
Google Scholar
Saeki H, Moore AM, Brown MJ, Hwang ST. Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol. 1999;162:2472–5.
CAS
PubMed
Google Scholar
Brinkman CC, Iwami D, Hritzo MK, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:1–16.
Article
Google Scholar
Lu T, Browning J. Role of the lymphotoxin/LIGHT system in the development and maintenance of reticular networks and vasculature in lymphoid tissues. Front Immunol. 2014. https://doi.org/10.3389/fimmu.2014.00047.
Article
PubMed
PubMed Central
Google Scholar
MacPherson GG, Jenkins CD, Stein MJ, Edwards C. Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J Immunol. 1995;154:1317–22.
CAS
PubMed
Google Scholar
Randolph GJ, Ivanov S, Zinselmeyer BH, Scallan JP. The lymphatic system: integral roles in immunity. Annu Rev Immunol. 2017;35:31–52. https://doi.org/10.1146/annurev-immunol-041015-055354.
Article
CAS
PubMed
Google Scholar
Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med. 2010;207:17–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol. 2012;30:69–94.
Article
CAS
PubMed
Google Scholar
Hait NC, Maiti A. The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. Mediators Inflamm. 2017;2017:4806541. https://doi.org/10.1155/2017/4806541.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu C-K, Lee I-T, Lin C-C, Hsiao L-D, Yang C-M. Sphingosine-1-phosphate mediates COX-2 expression and PGE2/IL-6 secretion via c-Src-dependent AP-1 activation. J Cell Physiol. 2015;230:702–15.
Article
CAS
PubMed
Google Scholar
Kowalski GM, Carey AL, Selathurai A, Kingwell BA, Bruce CR. Plasma sphingosine-1-phosphate is elevated in obesity. PLoS ONE. 2013;8: e72449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao E, Watt MJ, Nowell CJ, Quach T, Simpson JS, De Melo FV, et al. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nat Metab. 2021;3:1175–88.
Article
CAS
PubMed
Google Scholar
Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, et al. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol Baltim Md. 1950;2010(184):535–9. https://doi.org/10.4049/jimmunol.0903180.
Article
CAS
Google Scholar
Nibbs RJ, Kriehuber E, Ponath PD, Parent D, Qin S, Campbell JD, et al. The β-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol. 2001;158:867–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee KM, Danuser R, Stein JV, Graham D, Nibbs RJB, Graham GJ. The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density. EMBO J. 2014;33:2564–80. https://doi.org/10.15252/embj.201488887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonavita O, Mollica Poeta V, Setten E, Massara M, Bonecchi R. ACKR2: an atypical chemokine receptor regulating lymphatic biology. Front Immunol. 2016;7:691. https://doi.org/10.3389/fimmu.2016.00691.
Article
CAS
PubMed
Google Scholar
Borroni EM, Cancellieri C, Vacchini A, Benureau Y, Lagane B, Bachelerie F, et al. β-arrestin–dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6. Sci Signal. 2013. https://doi.org/10.1126/scisignal.2003627.
Article
PubMed
Google Scholar
Becker J, Schwoch S, Zelent C, Sitte M, Salinas G, Wilting J. Transcriptome analysis of hypoxic lymphatic endothelial cells indicates their potential to contribute to extracellular matrix rearrangement. Cells. 2021;10:1008. https://doi.org/10.3390/cells10051008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milovanovic M, Volarevic V, Radosavljevic G, Jovanovic I, Pejnovic N, Arsenijevic N, et al. IL-33/ST2 axis in inflammation and immunopathology. Immunol Res. 2012;52:89–99. https://doi.org/10.1007/s12026-012-8283-9.
Article
CAS
PubMed
Google Scholar
Komai-Koma M, Xu D, Li Y, McKenzie ANJ, McInnes IB, Liew FY. IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol. 2007;37:2779–86. https://doi.org/10.1002/eji.200737547.
Article
CAS
PubMed
Google Scholar
Aebischer D, Iolyeva M, Halin C. The inflammatory response of lymphatic endothelium. Angiogenesis. 2014;17:383–93. https://doi.org/10.1007/s10456-013-9404-3.
Article
CAS
PubMed
Google Scholar
Card CM, Shann SY, Swartz MA. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J Clin Invest. 2014;124:943–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP, et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood J Am Soc Hematol. 2012;120:4772–82.
CAS
Google Scholar
Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M, et al. Programmed death-1–induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med. 2010;16:452–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol. 2013;4:129. https://doi.org/10.3389/fimmu.2013.00129.
Article
PubMed
PubMed Central
Google Scholar
Tso P, Balint JA. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am J Physiol-Gastrointest Liver Physiol. 1986;250:G715–26.
Article
CAS
Google Scholar
Sabesin SM, Frase S. Electron microscopic studies of the assembly, intracellular transport, and secretion of chylomicrons by rat intestine. J Lipid Res. 1977;18:496–511.
Article
CAS
PubMed
Google Scholar
Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kambhampati S, Rockson S. Causes and classification of lymphatic disorders. In: Neligan PC, Masia J, Piller NN, editors. Lymphedema: complete medical ans surgical management. Boca Raton: CRC Press; 2016. p. 277–89.
Google Scholar
Holt PR. Dietary treatment of protein loss in intestinal lymphangiectasia: the effect of eliminating dietary long chain triglycerides on albumin metabolism in this condition. Pediatrics. 1964;34:629–35.
Article
CAS
PubMed
Google Scholar
Nurmi H, Saharinen P, Zarkada G, Zheng W, Robciuc MR, Alitalo K. VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol Med. 2015;7:1418–25. https://doi.org/10.15252/emmm.201505731.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller GJ, Howarth DJ, Attfield JC, Cooke CJ, Nanjee MN, Olszewski WL, et al. Haemostatic factors in human peripheral afferent lymph. Thromb Haemost. 2000;83:427–32.
Article
CAS
PubMed
Google Scholar
Kaiserling E. Morphologische Befunde beim Lymphödem. In: Földi M, Földi E, editors. Lehrbuch Lymphologie. Amsterdam: Urban and Fischer Elsevier; 2010. p. 266–320.
Google Scholar
Zhang W, Li J, Liang J, Qi X, Tian J, Liu J. Coagulation in lymphatic system. Front Cardiovasc Med. 2021. https://doi.org/10.3389/fcvm.2021.762648.
Article
PubMed
PubMed Central
Google Scholar
Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Jackson DG, et al. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci. 2002;99:16069–74. https://doi.org/10.1073/pnas.242401399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson GM, Padera TP, Garkavtsev I, Shioda T, Jain RK. Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia. 2007;9:1038–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan J, Dinh TT, Rajaraman A, Lee M, Scholz A, Czupalla CJ, et al. Patterns of expression of factor VIII and von Willebrand factor by endothelial cell subsets in vivo. Blood J Am Soc Hematol. 2016;128:104–9.
CAS
Google Scholar
Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Ren Physiol. 2000;278:F585–95.
Article
CAS
Google Scholar
Titze J, Lang R, Ilies C, Schwind KH, Kirsch KA, Dietsch P, et al. Osmotically inactive skin Na+ storage in rats. Am J Physiol Ren Physiol. 2003;285:F1108–17.
Article
CAS
Google Scholar
Schafflhuber M, Volpi N, Dahlmann A, Hilgers KF, Maccari F, Dietsch P, et al. Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. Am J Physiol-Ren Physiol. 2007;292:F1490–500. https://doi.org/10.1152/ajprenal.00300.2006.
Article
CAS
Google Scholar
Machnik A, Dahlmann A, Kopp C, Goss J, Wagner H, van Rooijen N, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertens Dallas Tex. 1979;2010(55):755–61. https://doi.org/10.1161/HYPERTENSIONAHA.109.143339.
Article
CAS
Google Scholar
Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52. https://doi.org/10.1038/nm.1960.
Article
CAS
PubMed
Google Scholar
Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013;123:2803–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schöfl C, et al. 23Na magnetic resonance imaging of tissue sodium. Hypertension. 2012;59:167–72.
Article
CAS
PubMed
Google Scholar
Crescenzi R, Marton A, Donahue PM, Mahany HB, Lants SK, Wang P, et al. Tissue sodium content is elevated in the skin and subcutaneous adipose tissue in women with lipedema. Obesity. 2018;26:310–7.
Article
CAS
PubMed
Google Scholar
Vogel WO, Claviez M. Vascular specialization in fish, but no evidence for lymphatics. Z Für Naturforschung C. 1981;36:490–2.
Article
Google Scholar
Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med. 2006;12:711–6.
Article
CAS
PubMed
Google Scholar
Jensen LDE, Cao R, Hedlund E-M, Söll I, Lundberg JO, Hauptmann G, et al. Nitric oxide permits hypoxia-induced lymphatic perfusion by controlling arterial-lymphatic conduits in zebrafish and glass catfish. Proc Natl Acad Sci. 2009;106:18408–13.
Article
CAS
Google Scholar
Rummer JL, Wang S, Steffensen JF, Randall DJ. Function and control of the fish secondary vascular system, a contrast to mammalian lymphatic systems. J Exp Biol. 2014;217:751–7.
CAS
PubMed
Google Scholar
Ishimatsu A, Iwama GK, Bentley TB, Heisler N. Contribution of the secondary circulatory system to acid-base regulation during hypercapnia in rainbow trout (Oncorhynchus mykiss). J Exp Biol. 1992;170:43–56.
Article
Google Scholar
Vogel WO. Zebrafish and lymphangiogenesis: a reply. Anat Sci Int. 2010;85:118–9.
Article
PubMed
Google Scholar
Klossner R, Groessl M, Schumacher N, Fux M, Escher G, Verouti S, et al. Steroid hormone bioavailability is controlled by the lymphatic system. Sci Rep. 2021;11(1):9666. https://doi.org/10.1038/s41598-021-88508-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kriz W, Dieterich HJ. Das lymphgefäßsystem der niere bei einigen säugetieren. Licht-und elektronenmikroskopische untersuchungen. Z Für Anat Entwicklungsgeschichte. 1970;131:111–47.
Article
CAS
Google Scholar
Lucewicz A, Wong G, Lam VW, Hawthorne WJ, Allen R, Craig JC, et al. Management of primary symptomatic lymphocele after kidney transplantation: a systematic review. Transplantation. 2011;92:663–73.
Article
PubMed
Google Scholar
Addison P, Weinstein J, Zarif D, Fahmy A, Grodstein E, Lau L. Therapeutic lymphangiography for persistent lymphatic leak after kidney transplant: a novel technique. Exp Clin Transplant. 2022;20:768–70. https://doi.org/10.6002/ect.2021.0156.
Article
PubMed
Google Scholar
Wilting J, Brand-Saberi B, Kurz H, Christ B. Development of the embryonic vascular system. Cell Mol Biol Res. 1995;41:219–32.
CAS
PubMed
Google Scholar
Meister M, Lagueux M. Drosophila blood cells. Cell Microbiol. 2003;5:573–80.
Article
CAS
PubMed
Google Scholar
Naumann U, Scheller K. Complete cDNA and gene sequence of the developmentally regulated arylphorin of Calliphora vicina and its homology to insect hemolymph proteins and arthropod hemocyanins. Biochem Biophys Res Commun. 1991;177:963–72.
Article
CAS
PubMed
Google Scholar
Destoumieux-Garzón D, Saulnier D, Garnier J, Jouffrey C, Bulet P, Bachère E. Crustacean immunity: antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J Biol Chem. 2001;276:47070–7.
Article
PubMed
Google Scholar
Beuerlein K, Ruth P, Westermann B, Löhr S, Schipp R. Hemocyanin and the branchial heart complex of Sepia officinalis: are the hemocytes involved in hemocyanin metabolism of coleoid cephalopods? Cell Tissue Res. 2002;310:373–81.
Article
PubMed
Google Scholar
Kaipainen A, Korhonen J, Mustonen T, Van Hinsbergh VW, Fang G-H, Dumont D, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci. 1995;92:3566–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kasap M. Phylogenetic analysis of vascular endothelial growth factor diversity. Turk J Biol. 2005;29:217–27.
CAS
Google Scholar
Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6:1–10.
Article
Google Scholar
Das RN, Tevet Y, Safriel S, Han Y, Moshe N, Lambiase G, et al. Generation of specialized blood vessels via lymphatic transdifferentiation. Nature. 2022. https://doi.org/10.1038/s41586-022-04766-2.
Article
PubMed
Google Scholar
Haeckel E. Generelle Morphologie der Organismen. 1st ed. Berlin: Reimer; 1866.
Book
Google Scholar
Wilting J, Papoutsi M, Becker J. The lymphatic vascular system: secondary or primary? Lymphology. 2004;37:98–106.
CAS
PubMed
Google Scholar
Brorson H. Liposuction gives complete reduction of chronic large arm lymphedema after breast cancer. Acta Oncol. 2000;39:407–20.
Article
CAS
PubMed
Google Scholar
Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet. 2005;37:1072–81. https://doi.org/10.1038/ng1642.
Article
CAS
PubMed
Google Scholar
Ambele MA, Dhanraj P, Giles R, Pepper MS. Adipogenesis: a complex interplay of multiple molecular determinants and pathways. Int J Mol Sci. 2020;21:4283. https://doi.org/10.3390/ijms21124283.
Article
CAS
PubMed Central
Google Scholar
Kharel Y, Huang T, Salamon A, Harris TE, Santos WL, Lynch KR. Mechanism of sphingosine 1-phosphate clearance from blood. Biochem J. 2020;477:925–35.
Article
CAS
PubMed
Google Scholar
Walls SM Jr, Attle SJ, Brulte GB, Walls ML, Finley KD, Chatfield DA, et al. Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. PLoS Genet. 2013;9: e1003970. https://doi.org/10.1371/journal.pgen.1003970.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nougues J, Reyne Y, Dulor JP. Differentiation of rabbit adipocyte precursors in primary culture. Int J Obes. 1988;12:321–33.
CAS
PubMed
Google Scholar
Koc M, Wald M, Varaliová Z, Ondruujová B, Čížková T, Brychta M, et al. Lymphedema alters lipolytic, lipogenic, immune and angiogenic properties of adipose tissue: a hypothesis-generating study in breast cancer survivors. Sci Rep. 2021;11:1–17.
Article
CAS
Google Scholar
Yoshida K, Shimizugawa T, Ono M, Furukawa H. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res. 2002;43:1770–2. https://doi.org/10.1194/jlr.c200010-jlr200.
Article
CAS
PubMed
Google Scholar
Kersten S. Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism. J Lipid Res. 2021;62: 100150. https://doi.org/10.1016/j.jlr.2021.100150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374:1123–33. https://doi.org/10.1056/NEJMoa1510926.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sebag JA, Hinkle PM. Regulation of G protein-coupled receptor signaling: specific dominant-negative effects of melanocortin 2 receptor accessory protein 2. Sci Signal. 2010;3:ra28. https://doi.org/10.1126/scisignal.2000593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Branson R, Potoczna N, Kral JG, Lentes K-U, Hoehe MR, Horber FF. Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N Engl J Med. 2003;348:1096–103. https://doi.org/10.1056/NEJMoa021971.
Article
CAS
PubMed
Google Scholar
Farooqi IS, Keogh JM, Yeo GSH, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348:1085–95. https://doi.org/10.1056/NEJMoa022050.
Article
CAS
PubMed
Google Scholar
Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science. 2013;341:275–8. https://doi.org/10.1126/science.1233000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Elmquist JK, Williams KW. Mrap2: an accessory protein linked to obesity. Cell Metab. 2013;18:309–11. https://doi.org/10.1016/j.cmet.2013.08.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS, et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci U S A. 2002;99:3240–5. https://doi.org/10.1073/pnas.052706899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyages J, Cave AE, Naidoo D, Ee CC. Weight gain and lymphedema after breast cancer treatment: avoiding the catch-22? Lymphat Res Biol. 2022;20:409–16. https://doi.org/10.1089/lrb.2020.0048.
Article
CAS
PubMed
Google Scholar
Danussi C, Spessotto P, Petrucco A, Wassermann B, Sabatelli P, Montesi M, et al. Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol Cell Biol. 2008;28:4026–39. https://doi.org/10.1128/MCB.02062-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilting J, Felmerer G, Becker J. Control of the extracellular matrix by hypoxic lymphatic endothelial cells: impact on the progression of lymphedema? Dev Dyn. 2022. https://doi.org/10.1002/dvdy.460.
Article
PubMed
Google Scholar
Ryan T, Narahari SR, Vijaya B, Aggithaya MG. Dermatologic implications of secondary lymphedema of the lower leg. In: Neligan PC, Masia J, Piller NB, editors. Lymphedema: complete medical ans surgical management. Boca Raton: CRC Press; 2016. p. 195–213.
Google Scholar
Ortiz-Prado E, Dunn JF, Vasconez J, Castillo D, Viscor G. Partial pressure of oxygen in the human body: a general review. Am J Blood Res. 2019;9:1–14.
CAS
PubMed
PubMed Central
Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419. https://doi.org/10.1126/science.1260419.
Article
CAS
PubMed
Google Scholar
Wilting J, Maenner J. Vascular embryology. In: Mattassi R, Loose DA, Vaghi M, editors. Hemangiomas and vascular malformations: an atlas of diagnosis and treatment. 2nd ed. Mailand: Springer; 2015. p. 3–19.
Google Scholar
Hinrichsen KV, Beier HM, Breucker H, Christ B, Duncker H-R, Dvořák M, et al. Humanembryologie: Lehrbuch und Atlas der vorgeburtlichen Entwicklung des Menschen. Berlin: Springer; 1990.
Book
Google Scholar
Kubik S. Allgemeine Organisation des Lymphgefäßsystems der Haut. Erlangen: Ödem Jahresband Perimed Fachbuch-Verlagsgesellschaft; 1988. p. 83–8.
Google Scholar