Evans KV, Lee JH. Alveolar wars: the rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med. 2020;9(8):867–81. https://doi.org/10.1002/sctm.19-0433.
Article
PubMed
PubMed Central
Google Scholar
Wu H, Tang N. Stem cells in pulmonary alveolar regeneration. Development. 2021;148(2):dev193458. https://doi.org/10.1242/dev.193458.
Article
CAS
PubMed
Google Scholar
Beers MF, Morrisey EE. The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest. 2011;121(6):2065–73. https://doi.org/10.1172/JCI45961.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Agnillo F, Walters KA, Xiao Y, Sheng ZM, Scherler K, Park J, et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci Transl Med. 2021;13(620):eabj7790. https://doi.org/10.1126/scitranslmed.abj7790.
Article
CAS
PubMed
Google Scholar
Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52. https://doi.org/10.1016/S0140-6736(17)30866-8.
Article
PubMed
Google Scholar
Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014;507(7491):190–4. https://doi.org/10.1038/nature12930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wansleeben C, Barkauskas CE, Rock JR, Hogan BL. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. Wiley Interdiscip Rev Dev Biol. 2013;2(1):131–48. https://doi.org/10.1002/wdev.58.
Article
CAS
PubMed
Google Scholar
Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123(7):3025–36. https://doi.org/10.1172/JCI68782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Q, Liu Y. Heterogeneous groups of alveolar type II cells in lung homeostasis and repair. Am J Physiol Cell Physiol. 2020;319(6):C991–6. https://doi.org/10.1152/ajpcell.00341.2020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Perl AK, Li R, Bell SM, Sajti E, Kalinichenko VV, et al. A census of the lung: cell cards from LungMAP. Dev Cell. 2022;57(1):112-45.e2. https://doi.org/10.1016/j.devcel.2021.11.007.
Article
CAS
PubMed
Google Scholar
Frank DB, Peng T, Zepp JA, Snitow M, Vincent TL, Penkala IJ, et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep. 2016;17(9):2312–25. https://doi.org/10.1016/j.celrep.2016.11.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 2018;359(6380):1118–23. https://doi.org/10.1126/science.aam6603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdelwahab EMM, Rapp J, Feller D, Csongei V, Pal S, Bartis D, et al. Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respir Res. 2019;20(1):204. https://doi.org/10.1186/s12931-019-1176-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, et al. Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest. 2011;91(3):363–78. https://doi.org/10.1038/labinvest.2010.187.
Article
CAS
PubMed
Google Scholar
Corti M, Brody AR, Harrison JH. Isolation and primary culture of murine alveolar type II cells. Am J Respir Cell Mol Biol. 1996;14(4):309–15. https://doi.org/10.1165/ajrcmb.14.4.8600933.
Article
CAS
PubMed
Google Scholar
Chen J, Chen Z, Narasaraju T, Jin N, Liu L. Isolation of highly pure alveolar epithelial type I and type II cells from rat lungs. Lab Invest. 2004;84(6):727–35. https://doi.org/10.1038/labinvest.3700095.
Article
PubMed
Google Scholar
Wunderlich S, Gruh I, Winkler ME, Beier J, Radtke K, Schmiedl A, et al. Type II pneumocyte-restricted green fluorescent protein expression after lentiviral transduction of lung epithelial cells. Hum Gene Ther. 2008;19(1):39–52. https://doi.org/10.1089/hum.2006.0180.
Article
CAS
PubMed
Google Scholar
Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 2015. https://doi.org/10.7554/eLife.05098.
Article
PubMed
PubMed Central
Google Scholar
Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14(2):518–40. https://doi.org/10.1038/s41596-018-0104-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu N, Zhang H, Deng F, Li R, Zhang W, Chen X, et al. Overexpression of Ad5 precursor terminal protein accelerates recombinant adenovirus packaging and amplification in HEK-293 packaging cells. Gene Ther. 2014;21(7):629–37. https://doi.org/10.1038/gt.2014.40.
Article
CAS
PubMed
Google Scholar
Wei Q, Fan J, Liao J, Zou Y, Song D, Liu J, et al. Engineering the rapid adenovirus production and amplification (RAPA) cell line to expedite the generation of recombinant adenoviruses. Cell Physiol Biochem. 2017;41(6):2383–98. https://doi.org/10.1159/000475909.
Article
CAS
PubMed
Google Scholar
Wang X, Zhao L, Wu X, Luo H, Wu D, Zhang M, et al. Development of a simplified and inexpensive RNA depletion method for plasmid DNA purification using size selection magnetic beads (SSMBs). Genes Dis. 2021;8(3):298–306. https://doi.org/10.1016/j.gendis.2020.04.013.
Article
CAS
PubMed
Google Scholar
Yan S, Zhang R, Wu K, Cui J, Huang S, Ji X, et al. Characterization of the essential role of bone morphogenetic protein 9 (BMP9) in osteogenic differentiation of mesenchymal stem cells (MSCs) through RNA interference. Genes Dis. 2018;5(2):172–84. https://doi.org/10.1016/j.gendis.2018.04.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang B, Huang LF, Zhao L, Zeng Z, Wang X, Cao D, et al. Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells. Genes Dis. 2020;7(2):225–34. https://doi.org/10.1016/j.gendis.2019.04.005.
Article
CAS
PubMed
Google Scholar
Westerman KA, Leboulch P. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci USA. 1996;93(17):8971–6. https://doi.org/10.1073/pnas.93.17.8971.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu S, Wang J, Ye J, Zou Y, Zhu Y, Wei Q, et al. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells. Am J Transl Res. 2016;8(9):3710–30.
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Li Z, Zhang H, He F, Qiao M, Luo H, et al. Modeling colorectal tumorigenesis using the organoids derived from conditionally immortalized mouse intestinal crypt cells (ciMICs). Genes Dis. 2021;8(6):814–26. https://doi.org/10.1016/j.gendis.2021.01.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shu Y, Yang C, Ji X, Zhang L, Bi Y, Yang K, et al. Reversibly immortalized human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are responsive to BMP9-induced osteogenic and adipogenic differentiation. J Cell Biochem. 2018;119(11):8872–86. https://doi.org/10.1002/jcb.27140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao Y, Ni N, Huang L, Fan J, Wang H, He F, et al. Argonaute (AGO) proteins play an essential role in mediating BMP9-induced osteogenic signaling in mesenchymal stem cells (MSCs). Genes Dis. 2021;8(6):918–30. https://doi.org/10.1016/j.gendis.2021.04.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo W, Zhang L, Huang B, Zhang H, Zhang Y, Zhang F, et al. BMP9-initiated osteogenic/odontogenic differentiation of mouse tooth germ mesenchymal cells (TGMCS) requires Wnt/beta-catenin signalling activity. J Cell Mol Med. 2021;25(5):2666–78. https://doi.org/10.1111/jcmm.16293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Chen L, Wu K, Yan S, Zhang R, Zhao C, et al. Establishment and functional characterization of the reversibly immortalized mouse glomerular podocytes (imPODs). Genes Dis. 2018;5(2):137–49. https://doi.org/10.1016/j.gendis.2018.04.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamplot JD, Liu B, Yin L, Zhang W, Wang Z, Luther G, et al. Reversibly immortalized mouse articular chondrocytes acquire long-term proliferative capability while retaining chondrogenic phenotype. Cell Transplant. 2015;24(6):1053–66. https://doi.org/10.3727/096368914X681054.
Article
PubMed
Google Scholar
Li M, Chen Y, Bi Y, Jiang W, Luo Q, He Y, et al. Establishment and characterization of the reversibly immortalized mouse fetal heart progenitors. Int J Med Sci. 2013;10(8):1035–46. https://doi.org/10.7150/ijms.6639.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denduluri SK, Scott B, Lamplot JD, Yin L, Yan Z, Wang Z, et al. Immortalized mouse achilles tenocytes demonstrate long-term proliferative capacity while retaining tenogenic properties. Tissue Eng Part C Methods. 2016;22(3):280–9. https://doi.org/10.1089/ten.tec.2015.0244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang K, Chen J, Jiang W, Huang E, Cui J, Kim SH, et al. Conditional immortalization establishes a repertoire of mouse melanocyte progenitors with distinct melanogenic differentiation potential. J Invest Dermatol. 2012;132(10):2479–83. https://doi.org/10.1038/jid.2012.145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumanian ZP, Tollemar V, Ye J, Lu M, Zhu Y, Liao J, et al. Repair of critical sized cranial defects with BMP9-transduced calvarial cells delivered in a thermoresponsive scaffold. PLoS ONE. 2017;12(3): e0172327. https://doi.org/10.1371/journal.pone.0172327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang E, Bi Y, Jiang W, Luo X, Yang K, Gao JL, et al. Conditionally immortalized mouse embryonic fibroblasts retain proliferative activity without compromising multipotent differentiation potential. PLoS ONE. 2012;7(2): e32428. https://doi.org/10.1371/journal.pone.0032428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bi Y, He Y, Huang J, Su Y, Zhu GH, Wang Y, et al. Functional characteristics of reversibly immortalized hepatic progenitor cells derived from mouse embryonic liver. Cell Physiol Biochem. 2014;34(4):1318–38. https://doi.org/10.1159/000366340.
Article
CAS
PubMed
Google Scholar
He F, Ni N, Zeng Z, Wu D, Feng Y, Li AJ, et al. FAMSi: a synthetic biology approach to the fast assembly of multiplex sirnas for silencing gene expression in mammalian cells. Mol Ther Nucleic Acids. 2020;22:885–99. https://doi.org/10.1016/j.omtn.2020.10.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan J, Feng Y, Zhang R, Zhang W, Shu Y, Zeng Z, et al. A simplified system for the effective expression and delivery of functional mature microRNAs in mammalian cells. Cancer Gene Ther. 2020;27(6):424–37. https://doi.org/10.1038/s41417-019-0113-y.
Article
CAS
PubMed
Google Scholar
Shu Y, Wu K, Zeng Z, Huang S, Ji X, Yuan C, et al. A Simplified system to express circularized inhibitors of miRNA for stable and potent suppression of miRNA functions. Mol Ther Nucleic Acids. 2018;13:556–67. https://doi.org/10.1016/j.omtn.2018.09.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha M, Lowell CA. Isolation of highly pure primary mouse alveolar epithelial type II cells by flow cytometric cell sorting. Bio Protoc. 2016. https://doi.org/10.21769/BioProtoc.2013.
Article
PubMed
Google Scholar
He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A. 1998;95(5):2509–14. https://doi.org/10.1073/pnas.95.5.2509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2007;2(5):1236–47. https://doi.org/10.1038/nprot.2007.135.
Article
CAS
PubMed
Google Scholar
Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–63. https://doi.org/10.1016/j.gendis.2017.04.001.
Article
PubMed
PubMed Central
Google Scholar
Ni N, Deng F, He F, Wang H, Shi D, Liao J, et al. A one-step construction of adenovirus (OSCA) system using the Gibson DNA Assembly technology. Mol Ther Oncolytics. 2021;23:602–11. https://doi.org/10.1016/j.omto.2021.11.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng F, Chen X, Liao Z, Yan Z, Wang Z, Deng Y, et al. A simplified and versatile system for the simultaneous expression of multiple siRNAs in mammalian cells using Gibson DNA Assembly. PLoS ONE. 2014;9(11): e113064. https://doi.org/10.1371/journal.pone.0113064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Yuan C, Huang B, Fan J, Feng Y, Li AJ, et al. Developing a versatile shotgun cloning strategy for single-vector-based multiplex expression of short interfering RNAs (siRNAs) in mammalian cells. ACS Synth Biol. 2019;8(9):2092–105. https://doi.org/10.1021/acssynbio.9b00203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao J, Wei Q, Fan J, Zou Y, Song D, Liu J, et al. Characterization of retroviral infectivity and superinfection resistance during retrovirus-mediated transduction of mammalian cells. Gene Ther. 2017;24(6):333–41. https://doi.org/10.1038/gt.2017.24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Wang J, Deng F, Yan Z, Xia Y, Wang Z, et al. TqPCR: a touchdown qPCR assay with significantly improved detection sensitivity and amplification efficiency of SYBR Green qPCR. PLoS ONE. 2015;10(7): e0132666. https://doi.org/10.1371/journal.pone.0132666.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong J, Kang Q, Cao Y, He B, Zhao P, Gou Y, et al. BMP4 augments the survival of hepatocellular carcinoma (HCC) cells under hypoxia and hypoglycemia conditions by promoting the glycolysis pathway. Am J Cancer Res. 2021;11(3):793–811.
CAS
PubMed
PubMed Central
Google Scholar
Zhong J, Wang H, Yang K, Wang H, Duan C, Ni N, et al. Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: potential applications in cell-based skin tissue engineering. Bioact Mater. 2022;9:523–40. https://doi.org/10.1016/j.bioactmat.2021.07.022.
Article
CAS
PubMed
Google Scholar
He F, Ni N, Wang H, Zeng Z, Zhao P, Shi D, et al. OUHP: an optimized universal hairpin primer system for cost-effective and high-throughput RT-qPCR-based quantification of microRNA (miRNA) expression. Nucleic Acids Res. 2021. https://doi.org/10.1093/nar/gkab1153.
Article
PubMed
PubMed Central
Google Scholar
Fan J, Wei Q, Liao J, Zou Y, Song D, Xiong D, et al. Noncanonical Wnt signaling plays an important role in modulating canonical Wnt-regulated stemness, proliferation and terminal differentiation of hepatic progenitors. Oncotarget. 2017;8(16):27105–19. https://doi.org/10.18632/oncotarget.15637.
Article
PubMed
PubMed Central
Google Scholar
Liu W, Deng Z, Zeng Z, Fan J, Feng Y, Wang X, et al. Highly expressed BMP9/GDF2 in postnatal mouse liver and lungs may account for its pleiotropic effects on stem cell differentiation, angiogenesis, tumor growth and metabolism. Genes Dis. 2020;7(2):235–44. https://doi.org/10.1016/j.gendis.2019.08.003.
Article
PubMed
Google Scholar
Huang L, Zhao L, Zhang J, He F, Wang H, Liu Q, et al. Antiparasitic mebendazole (MBZ) effectively overcomes cisplatin resistance in human ovarian cancer cells by inhibiting multiple cancer-associated signaling pathways. Aging (Albany NY). 2021;13(13):17407–27. https://doi.org/10.18632/aging.203232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Huang B, Wang H, Ni N, He F, Liu Q, et al. A functional autophagy pathway is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs). Am J Transl Res. 2021;13(5):4233–50.
CAS
PubMed
PubMed Central
Google Scholar
Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA, et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 2004;279(31):32941–9. https://doi.org/10.1074/jbc.M403344200.
Article
CAS
PubMed
Google Scholar
Peng Q, Chen B, Wang H, Zhu Y, Wu J, Luo Y, et al. Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes. Aging (Albany NY). 2019;11(23):11520–40. https://doi.org/10.18632/aging.102552.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shu Y, Wang Y, Lv WQ, Peng DY, Li J, Zhang H, et al. ARRB1-Promoted NOTCH1 degradation is suppressed by oncomiR miR-223 in T-cell acute lymphoblastic leukemia. Cancer Res. 2020;80(5):988–98. https://doi.org/10.1158/0008-5472.CAN-19-1471.
Article
CAS
PubMed
Google Scholar
Luo Q, Kang Q, Si W, Jiang W, Park JK, Peng Y, et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 2004;279(53):55958–68. https://doi.org/10.1074/jbc.M407810200.
Article
CAS
PubMed
Google Scholar
Li R, Zhang W, Cui J, Shui W, Yin L, Wang Y, et al. Targeting BMP9-promoted human osteosarcoma growth by inactivation of notch signaling. Curr Cancer Drug Targets. 2014;14(3):274–85. https://doi.org/10.2174/1568009614666140305105805.
Article
CAS
PubMed
Google Scholar
Liao Z, Nan G, Yan Z, Zeng L, Deng Y, Ye J, et al. The anthelmintic drug niclosamide inhibits the proliferative activity of human osteosarcoma cells by targeting multiple signal pathways. Curr Cancer Drug Targets. 2015;15(8):726–38. https://doi.org/10.2174/1568009615666150629132157.
Article
CAS
PubMed
Google Scholar
Cao D, Lei Y, Ye Z, Zhao L, Wang H, Zhang J, et al. Blockade of IGF/IGF-1R signaling axis with soluble IGF-1R mutants suppresses the cell proliferation and tumor growth of human osteosarcoma. Am J Cancer Res. 2020;10(10):3248–66.
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Huang L, Zhang J, Fan J, He F, Zhao X, et al. The inhibition of BRAF activity sensitizes chemoresistant human ovarian cancer cells to paclitaxel-induced cytotoxicity and tumor growth inhibition. Am J Transl Res. 2020;12(12):8084–98.
CAS
PubMed
PubMed Central
Google Scholar
Wang N, Zhang H, Zhang BQ, Liu W, Zhang Z, Qiao M, et al. Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids. PLoS ONE. 2014;9(4): e93608. https://doi.org/10.1371/journal.pone.0093608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Jiang W, Huang J, He BC, Zuo GW, Zhang W, et al. Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res. 2010;25(11):2447–59. https://doi.org/10.1002/jbmr.133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang E, Zhu G, Jiang W, Yang K, Gao Y, Luo Q, et al. Growth hormone synergizes with BMP9 in osteogenic differentiation by activating the JAK/STAT/IGF1 pathway in murine multilineage cells. J Bone Miner Res. 2012;27(7):1566–75. https://doi.org/10.1002/jbmr.1622.
Article
CAS
PubMed
Google Scholar
Liao J, Wei Q, Zou Y, Fan J, Song D, Cui J, et al. Notch signaling augments BMP9-induced bone formation by promoting the osteogenesis-angiogenesis coupling process in mesenchymal stem cells (MSCs). Cell Physiol Biochem. 2017;41(5):1905–23. https://doi.org/10.1159/000471945.
Article
CAS
PubMed
Google Scholar
Zhao C, Zeng Z, Qazvini NT, Yu X, Zhang R, Yan S, et al. Thermoresponsive citrate-based graphene oxide scaffold enhances bone regeneration from BMP9-stimulated adipose-derived mesenchymal stem cells. ACS Biomater Sci Eng. 2018;4(8):2943–55. https://doi.org/10.1021/acsbiomaterials.8b00179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui J, Zhang W, Huang E, Wang J, Liao J, Li R, et al. BMP9-induced osteoblastic differentiation requires functional Notch signaling in mesenchymal stem cells. Lab Invest. 2019;99(1):58–71. https://doi.org/10.1038/s41374-018-0087-7.
Article
CAS
PubMed
Google Scholar
Ye J, Wang J, Zhu Y, Wei Q, Wang X, Yang J, et al. A thermoresponsive polydiolcitrate-gelatin scaffold and delivery system mediates effective bone formation from BMP9-transduced mesenchymal stem cells. Biomed Mater. 2016;11(2): 025021. https://doi.org/10.1088/1748-6041/11/2/025021.
Article
CAS
PubMed
Google Scholar
Hu X, Li L, Yu X, Zhang R, Yan S, Zeng Z, et al. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget. 2017;8(67):111847–65. https://doi.org/10.18632/oncotarget.22915.
Article
PubMed
PubMed Central
Google Scholar
Lee CS, Bishop ES, Dumanian Z, Zhao C, Song D, Zhang F, et al. Bone morphogenetic protein-9-stimulated adipocyte-derived mesenchymal progenitors entrapped in a thermoresponsive nanocomposite scaffold facilitate cranial defect repair. J Craniofac Surg. 2019;30(6):1915–9. https://doi.org/10.1097/SCS.0000000000005465.
Article
PubMed
PubMed Central
Google Scholar
Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol. 2021;4(1):601. https://doi.org/10.1038/s42003-021-02118-w.
Article
PubMed
PubMed Central
Google Scholar
Barkauskas CE, Noble PW. Cellular mechanisms of tissue fibrosis. 7. New insights into the cellular mechanisms of pulmonary fibrosis. Am J Physiol Cell Physiol. 2014;306(11):987–96. https://doi.org/10.1152/ajpcell.00321.2013.
Article
CAS
Google Scholar
Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21072269.
Article
PubMed
PubMed Central
Google Scholar
Yao C, Guan X, Carraro G, Parimon T, Liu X, Huang G, et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am J Respir Crit Care Med. 2021;203(6):707–17. https://doi.org/10.1164/rccm.202004-1274OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ask K, Bonniaud P, Maass K, Eickelberg O, Margetts PJ, Warburton D, et al. Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta3. Int J Biochem Cell Biol. 2008;40(3):484–95. https://doi.org/10.1016/j.biocel.2007.08.016.
Article
CAS
PubMed
Google Scholar
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune mechanisms in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2016;55(3):309–22. https://doi.org/10.1165/rcmb.2016-0121TR.
Article
CAS
PubMed
Google Scholar
de Sainz J, Dost AFM, Kim CF. Alveolar progenitor cells and the origin of lung cancer. J Intern Med. 2021;289(5):629–35. https://doi.org/10.1111/joim.13201.
Article
Google Scholar
Wang Z, Li Z, Zhou K, Wang C, Jiang L, Zhang L, et al. Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing. Nat Commun. 2021;12(1):6500. https://doi.org/10.1038/s41467-021-26770-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desai TJ. Developmental insights into lung cancer. Ann Rev Cancer Biol. 2021;5(1):351–69. https://doi.org/10.1146/annurev-cancerbio-070820-032858.
Article
Google Scholar
Wang N, Zhang W, Cui J, Zhang H, Chen X, Li R, et al. The piggyBac transposon-mediated expression of SV40 T antigen efficiently immortalizes mouse embryonic fibroblasts (MEFs). PLoS ONE. 2014;9(5): e97316. https://doi.org/10.1371/journal.pone.0097316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Zhang H, Zhang W, Huang E, Wang N, Wu N, et al. Bone morphogenetic protein-9 effectively induces osteo/odontoblastic differentiation of the reversibly immortalized stem cells of dental apical papilla. Stem Cells Dev. 2014;23(12):1405–16. https://doi.org/10.1089/scd.2013.0580.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song D, Zhang F, Reid RR, Ye J, Wei Q, Liao J, et al. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients. J Cell Mol Med. 2017;21(11):2782–95. https://doi.org/10.1111/jcmm.13193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL. Lung organoids: current uses and future promise. Development. 2017;144(6):986–97. https://doi.org/10.1242/dev.140103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suezawa T, Kanagaki S, Moriguchi K, Masui A, Nakao K, Toyomoto M, et al. Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids. Stem Cell Reports. 2021;16(12):2973–87. https://doi.org/10.1016/j.stemcr.2021.10.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses. Trends Mol Med. 2021;27(12):1159–74. https://doi.org/10.1016/j.molmed.2021.09.008.
Article
CAS
PubMed
Google Scholar
Laube M, Pietsch S, Pannicke T, Thome UH, Fabian C. Development and functional characterization of fetal lung organoids. Front Med (Lausanne). 2021;8: 678438. https://doi.org/10.3389/fmed.2021.678438.
Article
Google Scholar
Gkatzis K, Panza P, Peruzzo S, Stainier DY. Differentiation of mouse fetal lung alveolar progenitors in serum-free organotypic cultures. Elife. 2021. https://doi.org/10.7554/eLife.65811.
Article
PubMed
PubMed Central
Google Scholar
McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, et al. Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells. 2009;27(3):623–33. https://doi.org/10.1634/stemcells.2008-0866.
Article
CAS
PubMed
Google Scholar
Lamers MM, van der Vaart J, Knoops K, Riesebosch S, Breugem TI, Mykytyn AZ, et al. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 2021;40(5):e105912. https://doi.org/10.15252/embj.2020105912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Haviland DL, Burns AR, Zsigmond E, Wetsel RA. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104(11):4449–54. https://doi.org/10.1073/pnas.0700052104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamo L, Hibaoui Y, Kallol S, Alves MP, Albrecht C, Hostettler KE, et al. Generation of an alveolar epithelial type II cell line from induced pluripotent stem cells. Am J Physiol Lung Cell Mol Physiol. 2018;315(6):L921–32. https://doi.org/10.1152/ajplung.00357.2017.
Article
CAS
PubMed
Google Scholar
Ostrin EJ, Little DR, Gerner-Mauro KN, Sumner EA, Rios-Corzo R, Ambrosio E, et al. beta-Catenin maintains lung epithelial progenitors after lung specification. Development. 2018. https://doi.org/10.1242/dev.160788.
Article
PubMed
PubMed Central
Google Scholar
Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, et al. Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell. 2016;19(2):217–31. https://doi.org/10.1016/j.stem.2016.05.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aspal M, Zemans RL. Mechanisms of ATII-to-ATI cell differentiation during lung regeneration. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21093188.
Article
PubMed
PubMed Central
Google Scholar
Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A. 2011;108(52):E1475–83. https://doi.org/10.1073/pnas.1117988108.
Article
PubMed
PubMed Central
Google Scholar