Kurian MA, Gissen P, Smith M, Heales SJR, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol. 2011;10:721–33.
Article
CAS
PubMed
Google Scholar
Ng J, Papandreou A, Heales SJ, Kurian MA. Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nat Rev Neurol. 2015;11:567–84.
Article
CAS
PubMed
Google Scholar
World Health Organization (WHO). Leading causes of death and disability worldwide: 2000–2019. https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019. 2020.
Hauser TU, Eldar E, Purg N, Moutoussis M, Dolan RJ. Distinct roles of dopamine and noradrenaline in incidental memory. J Neurosci. 2019;39:7715–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narvaes R, de Almeida RMM. Aggressive behavior and three neurotransmitters: dopamine, GABA, and serotonin—a review of the last 10 years. Psychol Neurosci. 2014;7:601–7.
Article
Google Scholar
Seo D, Patrick CJ, Kennealy PJ. Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Beh. 2008;13:383–95.
Article
Google Scholar
Hull EM, Muschamp JW, Sato S. Dopamine and serotonin: Influences on male sexual behavior. Physiol Behav. 2004;83:291–307.
Article
CAS
PubMed
Google Scholar
Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatric Dis Treat. 2011;7:9–13.
CAS
Google Scholar
Montoya A, Bruins R, Katzman MA, Blier P. The noradrenergic paradox: implications in the management of depression and anxiety. Neuropsychiatr Dis Treat. 2016;12:541–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Burgos I, Feria-Velasco A. Serotonin/dopamine interaction in memory formation. Prog Brain Res. 2008;172:603–23.
Article
PubMed
CAS
Google Scholar
Walker AJ, Card T, Bates TE, Muir K. Tricyclic antidepressants and the incidence of certain cancers: a study using the GPRD. Br J Cancer. 2011. https://doi.org/10.1038/sj.bjc.6605996.
Article
PubMed
PubMed Central
Google Scholar
Yamada M, Yasuhara H. Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology. 2004. https://doi.org/10.1016/S0161-813X(03)00097-4.
Article
PubMed
Google Scholar
Von Kleist L, Michaelis S, Bartho K, Graebner O, Schlief M, Dreger M, et al. Identification of Potential off-target toxicity liabilities of catechol-O-methyltransferase inhibitors by differential competition capture compound mass spectrometry. J Med Chem. 2016. https://doi.org/10.1021/acs.jmedchem.5b01970.
Article
Google Scholar
Scotton WJ, Hill LJ, Williams AC, Barnes NM. Serotonin syndrome: pathophysiology, clinical features, management, and potential future directions. Int J Tryptophan Res. 2019;12:117864691987392–117864691987392.
Article
Google Scholar
Low Y, Setia S, Lima G. Drug–drug interactions involving antidepressants: focus on desvenlafaxine. Neuropsychiatr Dis Treat. 2018;14:567–80.
Article
PubMed
PubMed Central
Google Scholar
Sansone RA, Sansone LA. Antidepressant adherence: are patients taking their medications? Innov Clin Neurosci. 2012;9:41–6.
PubMed
PubMed Central
Google Scholar
Ramsay RR, De Deurwaerdère P, Di Giovanni G. Updating neuropathology and neuropharmacology of monoaminergic systems. Br J Pharmacol. 2016;173:2065–2065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen LJ, Sclar DA. MAOIs: issues in treatment adherence and rates of treatment failure. J Clin Psychiatry. 2013;74:26367.
Article
Google Scholar
Ivorra JL, D’Souza UM, Jover M, Arranz MJ, Williams BP, Henry SE, et al. Association between neonatal temperament, SLC6A4, DRD4and a functional polymorphism located in TFAP2B. Genes Brain Behav. 2011;10:570–8.
Article
CAS
PubMed
Google Scholar
Hu XZ, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet. 2006;78:815–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tenhunen J. Characterization of the rat catechol-O-methyltransferase gene proximal promoter: identification of a nuclear protein-DNA interaction that contributes to the tissue-specific regulation. Larchmont: Mary Ann Liebert, Inc.; 1996.
Google Scholar
Greco D, Zellmer E, Zhang Z, Lewis E. Transcription factor AP-2 regulates expression of the dopamine beta-hydroxylase gene. J Neurochem. 1995;65:510–6.
Article
CAS
PubMed
Google Scholar
Uhl GR, Li S, Takahashi N, Itokawa K, Lin Z, Hazama M, et al. The VMAT2 gene in mice and humans: amphetamine responses, locomotion, cardiac arrhythmias, aging, and vulnerability to dopaminergic toxins. FASEB J. 2000;14:2459–65.
Article
CAS
PubMed
Google Scholar
Damberg M, Eller M, Tõnissaar M, Oreland L, Harro J. Levels of transcription factors AP-2α and AP-2β in the brainstem are correlated to monoamine turnover in the rat forebrain. Neurosci Lett. 2001;313:102–4.
Article
CAS
PubMed
Google Scholar
Damberg M, Berggård C, Farde L, Sedvall GC, Jönsson EG. Transcription factor AP-2β genotype, striatal dopamine D2 receptor density and cerebrospinal fluid monoamine metabolite concentrations in humans. J Neural Transm. 2004. https://doi.org/10.1007/s00702-003-0097-4.
Article
PubMed
Google Scholar
Damberg M, Berggård C, Mattila-Evenden M, Rylander G, Forslund K, Garpenstrand H, et al. Transcription factor AP-2β genotype associated with anxiety-related personality traits in women: a replication study. Neuropsychobiology. 2003;48:169–75.
Article
CAS
PubMed
Google Scholar
Damberg M, Garpenstrand H, Alfredsson J, Ekblom J, Forslund K, Rylander G, et al. A polymorphic region in the human transcription factor AP-2β gene is associated with specific personality traits. Mol Psychiatry. 2000;5:220–4.
Article
CAS
PubMed
Google Scholar
Nordquist N, Göktürk C, Comasco E, Nilsson KW, Oreland L, Hallman J. Transcription factor AP2 beta involved in severe female alcoholism. Brain Res. 2009;1305:S20–6.
Article
CAS
PubMed
Google Scholar
Nordquist N, Göktürk C, Comasco E, Eensoo D, Merenäkk L, Veidebaum T, et al. The transcription factor TFAP2B is associated with insulin resistance and adiposity in healthy adolescents. Obesity. 2009;17:1762–7.
Article
CAS
PubMed
Google Scholar
Damberg M, Garpenstrand H, Hallman J, Oreland L. Genetic mechanisms of behavior—don’t forget about the transcription factors. Mol Psychiatry. 2001;6:503–10.
Article
CAS
PubMed
Google Scholar
Tao Y, Maegawa H, Ugi S, Ikeda K, Nagai Y, Egawa K, et al. The Transcription factor AP-2β causes cell enlargement and insulin resistance in 3T3-L1 adipocytes. Endocrinology. 2006;147:1685–96.
Article
CAS
PubMed
Google Scholar
Rossello XS, Igbavboa U, Weisman GA, Sun GY, Wood WG. AP-2β regulates amyloid beta-protein stimulation of apolipoprotein e transcription in astrocytes. Brain Res. 2012;1444:87–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikram F, Ackermann S, Kahlert Y, Volland R, Roels F, Engesser A, et al. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma. Mol Oncol. 2016;10:344–59.
Article
CAS
PubMed
Google Scholar
Tsukada S, Tanaka Y, Maegawa H, Kashiwagi A, Kawamori R, Maeda S. Intronic polymorphisms within TFAP2B regulate transcriptional activity and affect adipocytokine gene expression in differentiated adipocytes. Mol Endocrinol. 2006;20:1104–11.
Article
CAS
PubMed
Google Scholar
Albuquerque D, Nóbrega C, Rodríguez-López R, Manco L. Association study of common polymorphisms in MSRA, TFAP2B, MC4R, NRXN3, PPARGC1A, TMEM18, SEC16B, HOXB5 and OLFM4 genes with obesity-related traits among Portuguese children. J Hum Genet. 2014;59:307–13.
Article
CAS
PubMed
Google Scholar
Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, Koya D, et al. Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. J Hum Genet. 2005;50:283–92.
Article
CAS
PubMed
Google Scholar
Jansky S, Sharma AK, Körber V, Quintero A, Toprak UH, Wecht EM, et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet. 2021;53:683–93.
Article
CAS
PubMed
Google Scholar
Berggard C, Damberg M, Oreland L. Brainstem levels of transcription factor AP-2 in rat are changed after treatment with phenelzine, but not with citalopram. BMC Pharmacol. 2005. https://doi.org/10.1186/1471-2210-5-1.
Article
PubMed
PubMed Central
Google Scholar
Berggård C, Damberg M, Oreland L. Chronic citalopram treatment induces time-dependent changes in the expression and DNA-binding activity of transcription factor AP-2 in rat brain. Eur Neuropsychopharmacol. 2003;13:11–7.
Article
PubMed
Google Scholar
Mitchell PJ, Wang C, Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987;50:847–61.
Article
CAS
PubMed
Google Scholar
Wang HV, Vaupel K, Buettner R, Bosserhoff AK, Moser M. Identification and embryonic expression of a new AP-2 transcription factor, AP-2ε. Dev Dyn. 2004;231:128–35.
Article
CAS
PubMed
Google Scholar
Eckert D, Buhl S, Weber S, Jäger R, Schorle H. The AP-2 family of transcription factors. Genome Biol. 2005;6:246–246.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hilger-Eversheim K, Moser M, Schorle H, Buettner R. Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene. 2000;260:1–12.
Article
CAS
PubMed
Google Scholar
Williams T, Tijan R. Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science. 1991;251:1067–71.
Article
CAS
PubMed
Google Scholar
Williams T, Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 1991;5:670–82.
Article
CAS
PubMed
Google Scholar
Hong SJ, Huh YH, Leung A, Choi HJ, Ding Y, Kang UJ, et al. Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells. Mol Cell Neurosci. 2011;46:245–51.
Article
CAS
PubMed
Google Scholar
Bosher JM, Totty NF, Hsuan JJ, Williams T, Hurst HC. A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene. 1996;13:1701–7.
CAS
PubMed
Google Scholar
Zhao F, Satoda M, Licht JD, Hayashizaki Y, Gelb BD. Cloning and characterization of a novel mouse AP-2 transcription factor, Ap-2δ, with unique DNA binding and transactivation properties *. J Biol Chem. 2001;276:40755–60.
Article
CAS
PubMed
Google Scholar
Moser M, Rüschoff J, Rüschoff R, Buettner R. Comparative analysis of AP-2a and AP-2b gene expression during murine embryogenesis. Dev Dyn. 1997;208:115–24.
Article
CAS
PubMed
Google Scholar
Moser M, Dahmen S, Kluge R, Gröne H, Dahmen J, Kunz D, et al. Terminal renal failure in mice lacking transcription factor AP-2β. Lab Investig. 2003;83:571–8.
Article
CAS
PubMed
Google Scholar
Moser M, Pscherer A, Roth C, Becker J, Mücher G, Zerres K, et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2β. Genes Dev. 1997;11:1938–1938.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature. 1996;381:235–8.
Article
CAS
PubMed
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021;49:W216–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelms BL, Labosky PA. AP genes, transcriptional control of neural crest development. Dev Biol. 2010;1:1–227.
Google Scholar
Imagawa M, Chiu R, Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987;51:251–60.
Article
CAS
PubMed
Google Scholar
Roeslers WJ, Vandenbark GR, Hanson RW. Cyclic AMP and the induction of eukaryotic gene transcription*. J biol Chem. 1988;263:9063–6.
Article
Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.
Article
PubMed
CAS
Google Scholar
Pichler K, Warner K, Magrane M. SPIN: submitting sequences determined at protein level to UniProt. Curr Protoc Bioinform. 2018. https://doi.org/10.1002/cpbi.52.
Article
Google Scholar
Moser M, Rüschoff J, Buettner R. Comparative Analysis of AP-2 Alpha and AP-2 Beta Gene Expression During Murine Embryogenesis. Dev Dyn. 1997;208:115–24.
Article
CAS
PubMed
Google Scholar
Lamontagne JO, Zhang H, Zeid AM, Strittmatter K, Rocha AD, Williams T, et al. Transcription factors AP-2α and AP-2β regulate distinct segments of the distal nephron in the mammalian kidney. Nat Commun. 2022;13:1–18.
Article
CAS
Google Scholar
Damberg M. Transcription factor AP-2 and monoaminergic functions in the central nervous system review. J Neural Transm. 2005;112:1281–96.
Article
CAS
PubMed
Google Scholar
Zainolabidin N, Kamath SP, Thanawalla AR, Chen AI. Distinct activities of Tfap2A and Tfap2B in the specification of GABAergic interneurons in the developing cerebellum. Front Mol Neurosci. 2017;10:281–281.
Article
PubMed
PubMed Central
CAS
Google Scholar
Timberlake AT, Jin SC, Nelson-Williams C, Wu R, Furey CG, Islam B, et al. Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proc Natl Acad Sci USA. 2019;116:15116–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao F, Weismann CG, Satoda M, Pierpont MEM, Sweeney E, Thompson EM, et al. Novel TFAP2B mutations that cause char syndrome provide a genotype-phenotype correlation. Am J Hum Genet. 2001;69:695–695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kusuma L, Dinesh SM, Savitha MR, Krishnamurthy B, Narayanappa D, Ramachandra NB. Mutations of TFAP2B in congenital heart disease patients in Mysore, south India. Indian J Med Res. 2011;134:621–6.
Article
CAS
Google Scholar
Ji W, Benson MA, Bhattacharya S, Chen Y, Hu J, Li F. Characterization of transcription factor AP-2 beta mutations involved in familial isolated patent ductus arteriosus suggests haploinsufficiency. J Surg Res. 2014;188:466–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding X, Luo C, Zhou J, Zhong Y, Hu X, Zhou F, et al. The interaction of KCTD1 with transcription factor AP-2α inhibits its transactivation. J Cell Biochem. 2009;106:285–95.
Article
CAS
PubMed
Google Scholar
Zarelli VE, Dawid IB. Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc Natl Acad Sci USA. 2013. https://doi.org/10.1073/pnas.1300203110.
Article
PubMed
PubMed Central
Google Scholar
Liu Z, Xiang Y, Sun G. The KCTD family of proteins: Structure, function, disease relevance. Cell Biosci. 2013;3:1–5.
Article
CAS
Google Scholar
Iwamoto N, Yokoyama S. Protein kinase D regulates the adiponectin gene expression through phosphorylation of AP-2: a common pathway to the ABCA1 gene regulation. Atherosclerosis. 2011;216:90–6.
Article
CAS
PubMed
Google Scholar
Ivey KN, Sutcliffe D, Richardson J, Clyman RI, Garcia JA, Srivastava D. Transcriptional regulation during development of the ductus arteriosus. Circ Res. 2008. https://doi.org/10.1161/CIRCRESAHA.108.180661.
Article
PubMed
PubMed Central
Google Scholar
Bragança J, Eloranta JJ, Bamforth SD, Ibbitt JC, Hurst HC, Bhattacharya S. Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2. J Biol Chem. 2003. https://doi.org/10.1074/jbc.M208144200.
Article
PubMed
Google Scholar
Bragança J, Swingler T, Marques FIR, Jones T, Eloranta JJ, Hurst HC, et al. Human CREB-binding protein/p300-interacting transactivator with ED-rich tail (CITED) 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2. J Biol Chem. 2002;277:8559–65.
Article
PubMed
CAS
Google Scholar
Ding X, Fan C, Zhou J, Zhong Y, Liu R, Ren K, et al. GAS41 interacts with transcription factor AP-2β and stimulates AP-2β-mediated transactivation. Nucleic Acids Res. 2006;34:2570–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.
Article
CAS
PubMed
Google Scholar
Eloranta JJ, Hurst HC. Transcription factor AP-2 interacts with the SUMO-conjugating enzyme UBC9 and is sumolated in vivo. J Biol Chem. 2002;277:30798–804.
Article
CAS
PubMed
Google Scholar
Gamero-Villarroel C, González LM, Rodríguez-López R, Albuquerque D, Carrillo JA, García-Herráiz A, et al. Influence of TFAP2B and KCTD15 genetic variability on personality dimensions in anorexia and bulimia nervosa. Brain Behav. 2017;7:e00784–e00784.
Article
PubMed
PubMed Central
Google Scholar
Williams MJ, Goergen P, Rajendran J, Zheleznyakova G, Hägglund MG, Perland E, et al. Obesity-linked homologues TfAP-2 and Twz establish meal frequency in drosophila melanogaster. PLoS Genet. 2014;10:e1004499–e1004499.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmidt M, Huber L, Majdazari A, Schütz G, Williams T, Rohrer H. The transcription factors AP-2β and AP-2α are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol. 2011;355:89–100.
Article
CAS
PubMed
Google Scholar
Williams MJ, Goergen P, Rajendran J, Klockars A, Kasagiannis A, Fredriksson R, et al. Regulation of aggression by obesity-linked genes TfAP-2 and Twz through octopamine signaling in Drosophila. Genetics. 2014;196:349–62.
Article
CAS
PubMed
Google Scholar
Jong Hong S, Lardaro T, Sook OhM, Huh Y, Ding Y, Jung Kang U, et al. Regulation of the noradrenaline neurotransmitter phenotype by the transcription factor AP-2β. J Biol Chem. 2008;283:16860–7.
Article
CAS
Google Scholar
Heils A, Mößner R, Lesch KP. The human serotonin transporter gene polymorphism-basic research and clinical implications. J Neural Transm. 1997;104:1005.
Article
CAS
PubMed
Google Scholar
Lesch KP, Heils A. Serotonergic gene transcriptional control regions: targets for antidepressant drug development ? Int J Neuropsychopharmacol. 2000;3:67–79.
Article
CAS
PubMed
Google Scholar
Damberg M, Berggård C, Oreland L. Phenelzine treatment increases transcription factor AP-2 levels in rat brain. BMC Pharmacol. 2003;3:10–10.
Article
PubMed
PubMed Central
Google Scholar
Her S, Bell RA, Bloom AK, Siddall BJ, Wong DL. Phenylethanolamine N-methyltransferase gene expression SP1 AND MAZ potential for tissue-specific expression*. J Biol Chem. 1999;274:8698–707.
Article
CAS
PubMed
Google Scholar
Ebert SN, Ficklin MB, Her S, Siddall BJ, Bell RA, Ganguly K, et al. Glucocorticoid-dependent action of neural crest factor AP-2: stimulation of phenylethanolamine N-Methyltransferase gene expression. J Neurochem. 2002;70:2286–95.
Article
Google Scholar
Wong DL, Siddall BJ, Ebert SN, Bell RA, Her S. Phenylethanolamine N-methyltransferase gene expression: synergistic activation by Egr-1, AP-2 and the glucocorticoid receptor. Mol Brain Res. 1998;61:154–61.
Article
CAS
PubMed
Google Scholar
Kim H-S, Hong SJ, LeDoux MS, Kim K-S. Regulation of the tyrosine hydroxylase and dopamine β-hydroxylase genes by the transcription factor AP-2. J Neurochem. 2009;76:280–94.
Article
Google Scholar
Kim HS, Seo H, Yang C, Brunet JF, Kim KS. Noradrenergic-specific transcription of the dopamine β-hydroxylase gene requires synergy of multiple cis-acting elements including at least two Phox2a-binding sites. J Neurosci. 1998. https://doi.org/10.1523/jneurosci.18-20-08247.1998.
Article
PubMed
PubMed Central
Google Scholar
Sari Y, Johnson VR, Weedman JM. Role of the serotonergic system in alcohol dependence: From animal models to clinics. Progr Mol Biol Transl Sci. 2011;98:401–43.
Article
CAS
Google Scholar
Schabram I, Eggermann T, Siegel SJ, Gründer G, Zerres K, Vernaleken I. Neuropsychological correlates of transcription factor AP-2Beta, and its interaction with COMT and MAOA in healthy females. Neuropsychobiology. 2013;68:79–90.
Article
CAS
PubMed
Google Scholar
Damberg M, Garpenstrand H, Berggård C, Åsberg M, Hallman J, Oreland L. The genotype of human transcription factor AP-2β is associated with platelet monoamine oxidase B activity. Neurosci Lett. 2000;291:204–6.
Article
CAS
PubMed
Google Scholar
Takeuchi S, Imafuku I, Waragai M, Roth C, Kanazawa I, Buettner R, et al. AP-2β represses D(1A) dopamine receptor gene transcription in Neuro2a cells. Mol Brain Res. 1999;74:208–16.
Article
CAS
PubMed
Google Scholar
Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Front Neuroanatomy. 2011;5:43.
Article
CAS
Google Scholar
Bhatia A, Lenchner JR, Saadabadi A. Biochemistry, dopamine receptors. Tampa: StatPearls Publishing; 2022.
Google Scholar
Ortiz O, Delgado-García JM, Espadas I, Bahí A, Trullas R, Dreyer JL, et al. Associative learning and CA3–CA1 synaptic plasticity are impaired in D1R Null, Drd1a−/− mice and in hippocampal siRNA silenced Drd1a Mice. J Neurosci. 2010;30:12288–12288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fazio L, Pergola G, Papalino M, Carlo PD, Monda A, Gelao B, et al. Transcriptomic context of DRD1 is associated with prefrontal activity and behavior during working memory. Proc Natl Acad Sci USA. 2018;115:5582–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsang J, Fullard JF, Giakoumaki SG, Katsel P, Karagiorga VE, Greenwood TA, et al. The relationship between dopamine receptor D1 and cognitive performance. NPJ Schizophr. 2015;1:14002–14002.
Article
PubMed
PubMed Central
Google Scholar
Weinshenker D. Dopamine beta-hydroxylase. In: Enna SJ, Bylund DB, editors. xPharm: the comprehensive pharmacology reference. New York: Elsevier; 2007. p. 1–15.
Google Scholar
Ikegame T, Hidaka Y, Nakachi Y, Murata Y, Watanabe R, Sugawara H, et al. Identification and functional characterization of the extremely long allele of the serotonin transporter-linked polymorphic region. Transl Psychiatry. 2021;11:1–7.
Article
CAS
Google Scholar
Nilsson KW, Sonnby K, Nordquist N, Comasco E, Leppert J, Oreland L, et al. Transcription factor activating protein-2β (TFAP-2β) genotype and symptoms of attention deficit hyperactivity disorder in relation to symptoms of depression in two independent samples. Eur Child Adolesc Psychiatry. 2014;23:207–17.
Article
PubMed
Google Scholar
Hahn SL, Hahn M, Kang UJ, Joh TH. Structure of the rat aromatic l-amino acid decarboxylase gene: evidence for an alternative promoter usage. J Neurochem. 1993;60:1058–64.
Article
CAS
PubMed
Google Scholar
Garlow SJ, Ciaranello RD. Transcriptional control of the rat serotonin-2 receptor gene. Mol Brain Res. 1995;31:201–9.
Article
CAS
PubMed
Google Scholar
Du YL, Wilcox BD, Teitler M, Jeffrey JJ. Isolation and characterization of the rat 5-hydroxytryptamine type 2 receptor promoter: constitutive and inducible activity in myometrial smooth muscle cells. Mol Pharmacol. 1994;45:1125–31.
CAS
PubMed
Google Scholar
Bedford FK, Julius D, Ingraham HA. Neuronal expression of the 5HT3 serotonin receptor gene requires nuclear factor 1 complexes. J Neurosci. 1998. https://doi.org/10.1523/jneurosci.18-16-06186.1998.
Article
PubMed
PubMed Central
Google Scholar
Boularand S, Darmon MC, Ravassard P, Mallet J. Characterization of the human tryptophan hydroxylase gene promoter: transcriptional regulation bY cAMP requires a new motif distinct from the cAMP-responsive element (∗). J Biol Chem. 1995;270:3757–64.
Article
CAS
PubMed
Google Scholar
Zirin J, Hu Y, Liu L, Yang-Zhou D, Colbeth R, Yan D, et al. Large-scale transgenic drosophila resource collections for loss- and gain-of-function studies. Genetics. 2020. https://doi.org/10.1534/genetics.119.302964.
Article
PubMed
PubMed Central
Google Scholar
Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, et al. FlyBase 2.0: the next generation. Nucleic Acids Res. 2019;47:D759–65.
Article
CAS
PubMed
Google Scholar
Schwartz K, Yadid G, Weizman A, Rehavi M. Decreased limbic vesicular monoamine transporter 2 in a genetic rat model of depression. Brain Res. 2003;965:174–9.
Article
CAS
PubMed
Google Scholar
Villemagne VL, Okamura N, Pejoska S, Drago J, Mulligan RS, Chételat G, et al. Differential diagnosis in Alzheimer’s disease and dementia with Lewy bodies via VMAT2 and amyloid imaging. Neurodegener Dis. 2012;10:161–5.
Article
CAS
PubMed
Google Scholar
Fehr C, Sommerlad D, Sander T, Anghelescu I, Dahmen N, Szegedi A, et al. Association of VMAT2 gene polymorphisms with alcohol dependence. J Neural Transm. 2013;120:1161–9.
Article
CAS
PubMed
Google Scholar
Avsar O, Kuskucu A, Sancak S, Genc E. Do vesicular monoamine transporter 2 genotypes relate to obesity and eating behavior? Neuropsychiatry. 2017. https://doi.org/10.4172/neuropsychiatry.1000310.
Article
Google Scholar
Xu Y, Lu Y, Xu P, Mangieri LR, Isingrini E, Xu Y, et al. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation. eNeuro. 2017. https://doi.org/10.1523/ENEURO.0083-17.2017.
Article
PubMed
PubMed Central
Google Scholar
Kolat D, Kaluzinska Z, Bednarek AK, Pluciennik E. The biological characteristics of transcription factors AP-2α and AP-2γ and their importance in various types of cancers. 2019. Biosci Rep. https://doi.org/10.1042/BSR20181928.
Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D, et al. The GeneCards Suite. Practical Guide to Life Science Databases. 2021;27–56.
Nilsson KW, Sjöberg RL, Leppert J, Oreland L, Damberg M. Transcription factor AP-2β genotype and psychosocial adversity in relation to adolescent depressive symptomatology. J Neural Transm. 2009;116:363–70.
Article
CAS
PubMed
Google Scholar
Maeda S, Osawa N, Hayashi T, Tsukada S, Kobayashi M, Kikkawa R. Genetic variations associated with diabetic nephropathy and type II diabetes in a Japanese population. Kidney Int. 2007;72(SUPPL. 106):S43–8.
Article
CAS
Google Scholar
Hensch T, Wargelius HL, Herold U, Strobel A, Oreland L, Brocke B. Electrophysiological and behavioral correlates of polymorphisms in the transcription factor AP-2β coding gene. Neurosci Lett. 2008;436:67–71.
Article
CAS
PubMed
Google Scholar
Stocks T, Ängquist L, Banasik K, Harder MN, Taylor MA, Hager J, et al. TFAP2B influences the effect of dietary fat on weight loss under energy restriction. PLoS ONE. 2012;7:e43212–e43212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomei S, Mamtani R, Al Ali R, Elkum N, Abdulmalik M, Ismail A, et al. Obesity susceptibility loci in Qataris, a highly consanguineous Arabian population. J Transl Med. 2015;13:1.
Article
CAS
Google Scholar
Iłowiecka K, Glibowski P, Skrzypek M, Styk W. The long-term dietitian and psychological support of obese patients who have reduced their weight allows them to maintain the effects. Nutrients. 2021;13:2020–2020.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sandholt CH, Hansen T, Pedersen O. Beyond the fourth wave of genome-wide obesity association studies. Nutr Diabetes. 2012;2:37–37.
Article
CAS
Google Scholar
Kondo M, Maegawa H, Obata T, Ugi S, Ikeda K, Morino K, et al. Transcription factor activating protein-2β: a positive regulator of monocyte chemoattractant protein-1 gene expression. Endocrinology. 2009. https://doi.org/10.1210/en.2008-1361.
Article
PubMed
PubMed Central
Google Scholar
Joost U, Villa I, Comasco E, Oreland L, Veidebaum T, Harro J. Association between Transcription Factor AP-2B genotype, obesity, insulin resistance and dietary intake in a longitudinal birth cohort study. Int J Obes. 2019;43:2095–106.
Article
CAS
Google Scholar
Hebbar P, Abubaker JA, Abu-Farha M, Tuomilehto J, Al-Mulla F, Thanaraj TA. A perception on genome-wide genetic analysis of metabolic traits in Arab populations. Front Endocrinol. 2019;10:8.
Article
Google Scholar
Katus U, Villa I, Ringmets I, Pulver A, Veidebaum T, Harro J. The role of reward sensitivity in obesity and its association with Transcription Factor AP-2B: a longitudinal birth cohort study. Neurosci Lett. 2020;735:135158.
Article
CAS
PubMed
Google Scholar
Scott CC, Vossio S, Rougemont J, Gruenberg J. TFAP2 transcription factors are regulators of lipid droplet biogenesis. Elife. 2018;7:e36330.
Article
PubMed
PubMed Central
Google Scholar
Bille DS, Banasik K, Justesen JM, Sandholt CH, Sandbæk A, Lauritzen T, et al. Implications of central obesity-related variants in LYPLAL1, NRXN3, MSRA, and TFAP2B on quantitative metabolic traits in adult danes. PLoS ONE. 2011;6: e20640.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L, et al. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet. 2009;5: e1000508.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stocks T, Ängquist L, Hager J, Charon C, Holst C, Martinez JA, et al. TFAP2B-dietary protein and glycemic index interactions and weight maintenance after weight loss in the DiOGenes trial. Hum Hered. 2013;75:213–9.
Article
CAS
PubMed
Google Scholar
Isse N, Ogawa Y, Tamura N, Masuzaki H, Mori K, Okazaki T, et al. Structural organization and chromosomal assignment of the human obese gene. J Biol Chem. 1995;270:27728–33.
Article
CAS
PubMed
Google Scholar
Fuke T, Yoshizaki T, Kondo M, Morino K, Obata T, Ugi S, et al. Transcription factor AP-2Β inhibits expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes. Int J Obes. 2010;34:670–8.
Article
CAS
Google Scholar
Meng X, Kondo M, Morino K, Fuke T, Obata T, Yoshizaki T, et al. Transcription factor AP-2β: A negative regulator of IRS-1 gene expression. Biochem Biophys Res Commun. 2010;392:526–32.
Article
CAS
PubMed
Google Scholar
Ikeda K, Maegawa H, Ugi S, Tao Y, Nishio Y, Tsukada S, et al. Transcription factor activating enhancer-binding protein-2β: a negative regulator of adiponectin gene expression. J Biol Chem. 2006;281:31245–53.
CAS
PubMed
Google Scholar
Mojiminiyi OA, Abdella NA, Al Arouj M, Ben NA. Adiponectin, insulin resistance and clinical expression of the metabolic syndrome in patients with Type 2 diabetes. Int J Obes. 2005;2007(31):213–20.
Google Scholar
Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6:13–21.
Article
CAS
PubMed
Google Scholar
Marette A, Bukowiecki LJ. Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochemical J. 1991;277:119–24.
Article
CAS
Google Scholar
Chernogubova E, Cannon B, Bengtsson T. Norepinephrine increases glucose transport in brown adipocytes via β 3 -Adrenoceptors through a cAMP, PKA, and PI3-Kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology. 2004;145:269–80.
Article
CAS
PubMed
Google Scholar
Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006. https://doi.org/10.1161/01.HYP.0000242642.42177.49.
Article
PubMed
Google Scholar
Deibert DC, DeFronzo RA. Epinephrine-induced insulin resistance in man. J Clin Investig. 1980;65:717–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
LeeAbraham D, Hansen PA, Schluter J, Gulve EA, Gao J, Holloszy JO. Effects of epinephrine on insulin-stimulated glucose uptake and GLUT-4 phosphorylation in muscle. Am J Physiol. 1997;273:3.
Google Scholar
Khoury N, Mcgill JB. Reduction in insulin sensitivity following administration of the clinically used low-dose pressor, norepinephrine. Diabetes Metab Res Rev. 2011;27:604–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penesova A, Radikova Z, Cizmarova E, Kvetňanský R, Blazicek P, Vlcek M, et al. The role of norepinephrine and insulin resistance in an early stage of hypertension. Ann NY Acad Sci. 2008;1148:490–4.
Article
CAS
PubMed
Google Scholar
Mannelli M, Parenti G, Zampetti B, Canu L, Mannucci E. Diabetes from Catecholamine Excess. In: Frontiers in Diabetes. S. Karger AG; 2014. p. 44–51.
Bottner A, Haidan A, Eisenhofer G, Kristensen K, Castle AL, Scherbaum WA, et al. Increased body fat mass and suppression of circulating leptin levels in response to hypersecretion of epinephrine in phenylethanolamine-N-methyltransferase (PNMT)-overexpressing mice. Endocrinology. 2000;141:4239–46.
Article
CAS
PubMed
Google Scholar
Drabe M, Rullmann M, Luthardt J, Boettcher Y, Regenthal R, Ploetz T, et al. Serotonin transporter gene promoter methylation status correlates with in vivo prefrontal 5-HTT availability and reward function in human obesity. Transl Psychiatry. 2017;7:e1167–e1167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Goldberg J, Vaccarino V. Promoter methylation of serotonin transporter gene is associated with obesity measures: a monozygotic twin study. Int J Obes. 2013;37:140–5.
Article
CAS
Google Scholar
Oreland L, Hallman J, Damberg M. Platelet MAO and personality—function and dysfunction. Curr Med Chem. 2012;11:2007–16.
Article
Google Scholar
Oreland L, Nilsson K, Damberg M, Hallman J. Monoamine oxidases—activities, genotypes and the shaping of behaviour. J Neural Transm. 2007;114(6):817–22.
Article
CAS
PubMed
Google Scholar
Tikkanen R, Ducci F, Goldman D, Holi M, Lindberg N, Tiihonen J, et al. MAOA alters the effects of heavy drinking and childhood physical abuse on risk for severe impulsive acts of violence among alcoholic violent offenders. Alcohol Clin Exp Res. 2010. https://doi.org/10.1111/j.1530-0277.2010.01157.x.
Article
PubMed
PubMed Central
Google Scholar
Preuss UW, Wurst FM, Ridinger M, Rujescu D, Fehr C, Koller G, et al. Association of functional DBH genetic variants with alcohol dependence risk and related depression and suicide attempt phenotypes: Results from a large multicenter association study. Drug Alcohol Depend. 2013;133:459–67.
Article
CAS
PubMed
Google Scholar
Zhao R, Zhang R, Li W, Liao Y, Tang J, Miao Q, et al. Genome-wide DNA methylation patterns in discordant sib pairs with alcohol dependence. Asia Pac Psychiatry. 2013. https://doi.org/10.1111/appy.12010.
Article
PubMed
Google Scholar
Hodge CW, Samson HH, Chappelle AM. Alcohol self-administration: further examination of the role of dopamine receptors in the nucleus accumbens. Alcohol Clin Exp Res. 1997;21:1083–91.
CAS
PubMed
Google Scholar
Bahi A, Dreyer JL. Involvement of nucleus accumbens dopamine D1 receptors in ethanol drinking, ethanol-induced conditioned place preference, and ethanol-induced psychomotor sensitization in mice. Psychopharmacology. 2012;222:141–53.
Article
CAS
PubMed
Google Scholar
Abrahao KP, Quadros IMH, Souza-Formigoni MLO. Nucleus accumbens dopamine D1 receptors regulate the expression of ethanol-induced behavioural sensitization. Int J Neuropsychopharmacol. 2011;14:175–85.
Article
CAS
PubMed
Google Scholar
El-Ghundi M, George SR, Drago J, Fletcher PJ, Fan T, Nguyen T, et al. Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Eur J Pharmacol. 1998;353:149–58.
Article
CAS
PubMed
Google Scholar
Boyce-Rustay JM, Wiedholz LM, Millstein RA, Carroll J, Murphy DL, Daws LC, et al. Ethanol-related behaviors in serotonin transporter knockout mice. Alcohol Clin Exp Res. 2006. https://doi.org/10.1111/j.1530-0277.2006.00241.x.
Article
PubMed
Google Scholar
Atigari OV, Kelly AM, Jabeen Q, Healy D. New onset alcohol dependence linked to treatment with selective serotonin reuptake inhibitors. Int J Risk Saf Med. 2013;25:105–9.
Article
PubMed
Google Scholar
Brookwell L, Hogan C, Healy D, Mangin D. Ninety-three cases of alcohol dependence following SSRI treatment. Int J Risk Saf Med. 2014;26:99–107.
Article
PubMed
Google Scholar
Philibert RA, Gunter TD, Beach SRH, Brody GH, Madan A. Rapid publication: MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet Part B Neuropsychiatric Genet. 2008. https://doi.org/10.1002/ajmg.b.30778.
Article
Google Scholar
Bach H, Arango V, Kassir SA, Tsaava T, Dwork AJ, Mann JJ, et al. Alcoholics have more tryptophan hydroxylase 2 mRNA and protein in the dorsal and median raphe nuclei. Alcohol Clin Exp Res. 2014. https://doi.org/10.1111/acer.12414.
Article
PubMed
PubMed Central
Google Scholar
Kuhn DM, Hasegawa H. Tryptophan hydroxylase and serotonin synthesis regulation. Handb Behav Neurosci. 2020;31:239–56.
Article
Google Scholar
SSRIs in Depression and Anxiety. SSRIs in Depression and Anxiety. 2001https://doi.org/10.1002/0470846518
Garcia-Miralles M, Ooi J, Ferrari Bardile C, Tan LJJ, George M, Drum CLL, et al. Treatment with the MAO-A inhibitor clorgyline elevates monoamine neurotransmitter levels and improves affective phenotypes in a mouse model of Huntington disease. Exp Neurol. 2016. https://doi.org/10.1016/j.expneurol.2016.01.019.
Article
PubMed
Google Scholar
Bortolato M, Shih JC, et al. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. Int Rev Neurobiol. 2011;100:13–42.
Article
PubMed
PubMed Central
Google Scholar
Tyrer P, Srrawcuosst C. Monoamine oxidase inhibitors in anxiety disorders. J Psychiatric Res. 1988;22:87–98.
Article
Google Scholar
Shulman KII, Herrmann N, Walker SEE. Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs. 2013. https://doi.org/10.1007/s40263-013-0097-3.
Article
PubMed
Google Scholar
Thase ME. The role of monoamine oxidase inhibitors in depression treatment guidelines. J Clin Psychiatry. 2012. https://doi.org/10.4088/JCP.11096su1c.02.
Article
PubMed
Google Scholar
Jakubovski E, Johnson JA, Nasir M, Müller-Vahl K, Bloch MH. Systematic review and meta-analysis: dose–response curve of SSRIs and SNRIs in anxiety disorders. Depress Anxiety. 2019. https://doi.org/10.1002/da.22854.
Article
PubMed
Google Scholar
Jans LAW, Riedel WJ, Markus CR, Blokland A. Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry. 2007. https://doi.org/10.1038/sj.mp.4001920.
Article
PubMed
Google Scholar
Mentis A-FA, Dardiotis E, Katsouni E, Chrousos GP. From warrior genes to translational solutions: novel insights into monoamine oxidases (MAOs) and aggression. Transl Psychiatry. 2021;11:130–130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolla NJ, Vinette SA. Monoamine oxidase A in antisocial personality disorder and borderline personality disorder. Curr Behav Neurosci Rep. 2017;4:41–41.
Article
PubMed
PubMed Central
Google Scholar
Huizinga D, Haberstick BC, Smolen A, Menard S, Young SE, Corley RP, et al. Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biol Psychiat. 2006;60:677–83.
Article
CAS
PubMed
Google Scholar
Pattij T, Vanderschuren LJMJ. The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci. 2008;29:192–9.
Article
CAS
PubMed
Google Scholar
Prichard ZM, Jorm AF, Mackinnon A, Easteal S. Association analysis of 15 polymorphisms within 10 candidate genes for antisocial behavioural traits. Psychiatr Genet. 2007. https://doi.org/10.1097/YPG.0b013e32816ebc9e.
Article
PubMed
Google Scholar
Scott AL, Bortolato M, Chen K, Shih JC. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. NeuroReport. 2008. https://doi.org/10.1097/WNR.0b013e3282fd6e88.
Article
PubMed
PubMed Central
Google Scholar
Ramakrishnan V. MAOA gene associated with aggressive behavior in humans. J Down Synd Chromosome Abnorm. 2017. https://doi.org/10.4172/2472-1115.1000120.
Article
Google Scholar
Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science. 1995. https://doi.org/10.1126/science.7792602.
Article
PubMed
PubMed Central
Google Scholar
Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA. 1998. https://doi.org/10.1073/pnas.95.17.9991.
Article
PubMed
PubMed Central
Google Scholar
Volavka J, Kennedy JL, Ni X, Czobor P, Nolan K, Sheitman B, et al. COMT158 polymorphism and hostility. Am J Med Genet Neuropsychiatric Genet. 2004. https://doi.org/10.1002/ajmg.b.20149.
Article
Google Scholar
Strous RD, Bark N, Parsia SS, Volavka J, Lachman HM. Analysis of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior. Psychiatry Res. 1997. https://doi.org/10.1016/S0165-1781(96)03111-3.
Article
PubMed
Google Scholar
Lee RJ, Coccaro EF. Neurotransmitters and Intermittent Explosive Disorder. In: Intermittent Explosive Disorder: Etiology, Assessment, and Treatment. Elsevier; 2019. p. 87–110.
Marino MD, Bourdélat-Parks BN, Cameron Liles L, Weinshenker D. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res. 2005. https://doi.org/10.1016/j.bbr.2005.02.005.
Article
PubMed
Google Scholar
Holmes A, Murphy DL, Crawley JN. Abnormal behavioral phenotypes of serotonin transporter knockout mice: Parallels with human anxiety and depression. Biol Psychiat. 2003. https://doi.org/10.1016/j.biopsych.2003.09.003.
Article
PubMed
Google Scholar
Quadros IM, Takahashi A, Miczek KA. Serotonin and aggression—an update. In: Handbook of Behavioral Neuroscience. Elsevier B.V.; 2020. p. 635–63.
Quadros IM, Takahashi A, Miczek KA. Serotonin and Aggression. In: Handbook of Behavioral Neuroscience. Elsevier; 2010. p. 687–713.
Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV. Genetics of aggressive behavior: an overview. Am J Med Genet Part B Neuropsychiatric Genet. 2016. https://doi.org/10.1002/ajmg.b.32364.
Article
Google Scholar
Dumitrescu L, Mahoney ER, Mukherjee S, Lee ML, Bush WS, Engelman CD, et al. Genetic variants and functional pathways associated with resilience to Alzheimer’s disease. Brain. 2020;143:2561–75.
Article
PubMed
PubMed Central
Google Scholar
García MA, Vázquez J, Giménez C, Valdivieso F, Zafra F. Transcription factor AP-2 regulates human apolipoprotein E gene expression in astrocytoma cells. J Neurosci. 1996;16:7550–6.
Article
PubMed
PubMed Central
Google Scholar
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38.
Article
PubMed
CAS
Google Scholar
Babić Leko M, Nikolac Perković M, Klepac N, Švob Štrac D, Borovečki F, Pivac N, et al. Relationships of cerebrospinal fluid alzheimer’s disease biomarkers and COMT, DBH, and MAOB single nucleotide polymorphisms. J Alzheimer’s Dis. 2020;73:135–45.
Article
CAS
Google Scholar
Pan X, Kaminga AC, Jia P, Wen SW, Acheampong K, Liu A. Catecholamines in Alzheimer’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2020;12:184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke WJ, Chung HD, Marshall GL, Gillespie KN, Joh TH. Evidence for decreased transport of PNMT protein in advanced Alzheimer’s Disease. J Am Geriatr Soc. 1990. https://doi.org/10.1111/j.1532-5415.1990.tb03448.x.
Article
PubMed
Google Scholar
Mustapić M, Presečki P, Mimica N, Pivac N, Folnegović Šmalc V, Mück-Šeler D. Dopamine beta-hydroxylase and inflammatory cytokines in Alzheimer’s disease. Periodicum biologorum 112, Suppl 1 - Final Programme and Abstract Book of the 6th Croatian Congress of Pharmacology with International Participation. 2010.
Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, et al. Ascending monoaminergic systems alterations in Alzheimer’s disease Translating basic science into clinical care. Neurosci Biobehav Rev. 2013;37:1363–79.
Article
CAS
PubMed
Google Scholar
Mann MB, Wu S, Rostamkhani M, Tourtellotte W, MacMurray J, Comings DE. Phenylethanolamine N-methyltransferase (PNMT) gene and early-onset Alzheimer disease. Am J Med Genet Neuropsychiatric Genet. 2001;105:312–6.
Article
CAS
Google Scholar
Mustapic M, Presecki P, Pivac N, Mimica N, Hof PR, Simic G, et al. Genotype-independent decrease in plasma dopamine beta-hydroxylase activity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2013. https://doi.org/10.1016/j.pnpbp.2013.02.002.
Article
PubMed
PubMed Central
Google Scholar
Perkovic MN, Strac DS, Tudor L, Konjevod M, Erjavec GN, Pivac N. Catechol-O-methyltransferase, cognition and Alzheimer’s Disease. Curr Alzheimer Res. 2018;15:408–19.
Article
CAS
PubMed
Google Scholar
Lukiw WJ, Rogaev EI. Genetics of aggression in Alzheimer’s Disease (AD). Front Aging Neurosci. 2017;9:87–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adolfsson R, Gottfries CG, Oreland L, Wiberg A, Winblad B. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci. 1980;27:1029–34.
Article
CAS
PubMed
Google Scholar
Patel CN, Georrge JJ, Modi KM, Narechania MB, Patel DP, Gonzalez FJ, et al. Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer’s disease. J Biomol Struct Dyn. 2018. https://doi.org/10.1080/07391102.2017.1404931.
Article
PubMed
Google Scholar
Cai Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol Med Rep. 2014. https://doi.org/10.3892/mmr.2014.2040.
Article
PubMed
PubMed Central
Google Scholar
Serretti A, Olgiati P. Catechol-O-Methyltransferase and Alzheimer’s Disease: A Review of Biological and Genetic Findings. CNS & Neurol Disord Drug Targets. 2012;11:299–305.
Article
CAS
Google Scholar
Smith GS, Barrett FS, Joo JH, Nassery N, Savonenko A, Sodums DJ, et al. Molecular imaging of serotonin degeneration in mild cognitive impairment. Neurobiol Dis. 2017. https://doi.org/10.1016/j.nbd.2017.05.007.
Article
PubMed
PubMed Central
Google Scholar
Mdawar B, Ghossoub E, Khoury R. Selective serotonin reuptake inhibitors and Alzheimer’s disease. Neural Regen Res. 2020;15:41–6.
Article
PubMed
Google Scholar
Bradner JE, Young DHRA. Transcriptional addiction in cancer. Cell. 2017;168:629–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henley MJ, Koehler AN. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat Rev Drug Discov. 2021;20:669–88.
Article
CAS
PubMed
Google Scholar
Durbin AD, Zimmerman MW, Dharia NV, Abraham BJ, Iniguez AB, Weichert-Leahey N, et al. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nat Genet. 2018;50:1240–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorell K, Bergman A, Carén H, Nilsson S, Kogner P, Martinsson T, et al. Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes. BMC Med Genom. 2009;2:53.
Article
CAS
Google Scholar
Li B, Xie S, Xia A, Suo T, Huang H, Zhang X, et al. Recent advance in the sensing of biomarker transcription factors. TrAC Trends Anal Chem. 2020;132:116039–116039.
Article
CAS
Google Scholar
Ahsen ME, Chun Y, Grishin A, Grishina G, Stolovitzky G, Pandey G, et al. NeTFactor, a framework for identifying transcriptional regulators of gene expression-based biomarkers. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-49498-y.
Article
PubMed
PubMed Central
Google Scholar
Kaur M, MacPherson CR, Schmeier S, Narasimhan K, Choolani M, Bajic VB. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer. BMC Syst Biol. 2011. https://doi.org/10.1186/1752-0509-5-144.
Article
PubMed
PubMed Central
Google Scholar
Raap M, Gierendt L, Kreipe HH, Christgen M. Transcription factor AP-2beta in development, differentiation and tumorigenesis. Int J Cancer. 2021;149:1221–7.
Article
CAS
PubMed
Google Scholar
Fu X, Zhang H, Chen Z, Yang Z, Shi D, Liu T, et al. TFAP2B overexpression contributes to tumor growth and progression of thyroid cancer through the COX-2 signaling pathway. Cell Death Dis. 2019;10:1–13.
Article
CAS
Google Scholar
Fu L, Shi K, Wang J, Chen W, Shi D, Tian Y, et al. TFAP2B overexpression contributes to tumor growth and a poor prognosis of human lung adenocarcinoma through modulation of ERK and VEGF/PEDF signaling. Mol Cancer. 2014;13:89–89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu H, Zhang J. Decreased expression of TFAP2B in endometrial cancer predicts poor prognosis: A study based on TCGA data. Gynecol Oncol. 2018;149:592–7.
Article
CAS
PubMed
Google Scholar
Oya M, Mikami S, Mizuno R, Miyajima A, Horiguchi Y, Nakashima J, et al. Differential expression of activator protein-2 isoforms in renal cell carcinoma. Urology. 2004;64:162–7.
Article
PubMed
Google Scholar
Tun HW, Marlow LA, von Roemeling CA, Cooper SJ, Kreinest P, Wu K, et al. Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS ONE. 2010;5:e10696.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu M, Zou L, Lu F, Ye L, Su B, Yang K, et al. miR-142-5p promotes renal cell tumorigenesis by targeting TFAP2B. Oncol Lett. 2020;20:1–1.
CAS
Google Scholar
Li Z, Xu X, Luo M, Hao J, Zhao S, Yu W, et al. Activator protein-2β promotes tumor growth and predicts poor prognosis in breast cancer. Cell Physiol Biochem. 2018;47:1925–35.
Article
CAS
PubMed
Google Scholar
Pellikainen JM, Kosma V-M. Activator protein-2 in carcinogenesis with a special reference to breast cancer—a mini review. Int J Cancer. 2007;120:2061–7.
Article
CAS
PubMed
Google Scholar
Raap M, Gronewold M, Christgen H, Glage S, Bentires-Alj M, Koren S, et al. Lobular carcinoma in situ and invasive lobular breast cancer are characterized by enhanced expression of transcription factor AP-2β. Lab Investg. 2018. https://doi.org/10.1038/labinvest.2017.106.
Article
Google Scholar
Wang F, Huang W, Hu X, Chen C, Li X, Qiu J, et al. Transcription factor AP-2β suppresses cervical cancer cell proliferation by promoting the degradation of its interaction partner β-catenin. Mol Carcinog. 2017;56:1909–23.
Article
CAS
PubMed
Google Scholar
Beger M, Butz K, Denk C, Williams T, Hurst HC, Hoppe-Seyler F. Expression pattern of AP-2 transcription factors in cervical cancer cells and analysis of their influence on human papillomavirus oncogene transcription. J Mol Med. 2001;79:314–20.
Article
CAS
PubMed
Google Scholar
Bence M, Koller J, Sasvari-Szekely M, Keszler G. Transcriptional modulation of monoaminergic neurotransmission genes by the histone deacetylase inhibitor trichostatin A in neuroblastoma cells. J Neural Transm. 2012;119:17–24.
Article
CAS
PubMed
Google Scholar
Fontaine F, Overman J, François M. Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles. Cell Regen. 2015. https://doi.org/10.1186/s13619-015-0015-x.
Article
PubMed
PubMed Central
Google Scholar
Yan C, Higgins PJ. Drugging the undruggable: Transcription therapy for cancer. Biochim Biophys Acta Rev Cancer. 2013;1835:76–85.
Article
CAS
Google Scholar
Mohamad Anuar NN, Nor Hisam NS, Liew SL, Ugusman A. Clinical review: navitoclax as a pro-apoptotic and anti-fibrotic agent. Front Pharmacol. 2020;11:1817–1817.
Article
CAS
Google Scholar
Lamhamedi-Cherradi SE, Menegaz BA, Ramamoorthy V, Aiyer RA, Maywald RL, Buford AS, et al. An oral formulation of YK-4-279: Preclinical efficacy and acquired resistance patterns in Ewing sarcoma. Mol Cancer Ther. 2015. https://doi.org/10.1158/1535-7163.MCT-14-0334.
Article
PubMed
Google Scholar
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting transcription factors for cancer treatment. Molecules. 2018;23:1479.
Article
PubMed Central
CAS
Google Scholar
Bushweller JH. Targeting transcription factors in cancer — from undruggable to reality. Nat Rev Cancer. 2019. https://doi.org/10.1038/s41568-019-0196-7.
Article
PubMed
PubMed Central
Google Scholar
Inamoto I, Shin JA. Peptide therapeutics that directly target transcription factors. Pept Sci. 2019;111:e24048–e24048.
Article
CAS
Google Scholar
Ozers MS, Warren CL, Ansari AZ. Determining DNA sequence specificity of natural and artificial transcription factors by cognate site identifier analysis. Methods Mol Biol. 2009;544:637–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen-Petersen BL, Sears RC. Mission possible: advances in MYC therapeutic targeting in cancer. BioDrugs. 2019. https://doi.org/10.1007/s40259-019-00370-5.
Article
PubMed
PubMed Central
Google Scholar
Ludwig JA, Federman NC, Anderson PM, Macy ME, Riedel RF, Davis LE, et al. TK216 for relapsed/refractory Ewing sarcoma: Interim phase 1/2 results. JCO. 2021;39:11500–11500.
Article
Google Scholar
Robledinos-Antón N, Fernández-Ginés R, Manda G, Cuadrado A. Activators and Inhibitors of NRF2: a review of their potential for clinical development. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/9372182.
Article
PubMed
PubMed Central
Google Scholar
Ghosh D, Papavassiliou AG. Transcription factor therapeutics: long-shot or lodestone. Curr Med Chem. 2005;12:691–701.
Article
CAS
PubMed
Google Scholar
Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Abaan OD, et al. Small molecule selected to disrupt oncogenic protein EWS-FLI1 interaction with RNA Helicase A inhibits Ewing’s Sarcoma. Nat Med. 2009;15:750–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Branca MA. Multi-kinase inhibitors create buzz at ASCO. Nat Biotechnol. 2005;23:639–639.
Article
CAS
PubMed
Google Scholar
Frantz S. Playing dirty. Nature. 2005;437:942–3.
Article
CAS
PubMed
Google Scholar
Rothstein M, Simoes-Costa M. Heterodimerization of TFAP2 pioneer factors drives epigenomic remodeling during neural crest specification. Genome Res. 2020;30:35–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Z, Xu H, Sandell L. Negative regulation of chondrocyte differentiation by transcription factor AP-2alpha. J Bone Miner Res. 2004;19:245–55.
Article
CAS
PubMed
Google Scholar
Huckle WR. Molecular biology of placental development and disease. Progr Mol Biol Transl Sci. 2017;145:29–37.
Article
CAS
Google Scholar
Xie WF, Kondo S, Sandell LJ. Regulation of the mouse cartilage-derived retinoic acid-sensitive protein gene by the transcription factor AP-2. J Biol Chem. 1998;273:5026–32.
Article
CAS
PubMed
Google Scholar
Davies SR, Sakano S, Zhu Y, Sandell LJ. Distribution of the transcription factors Sox9, AP-2, and [delta]EF1 in adult murine articular and meniscal cartilage and growth plate. J Histochem Cytochem. 2002;50:1059–65.
Article
CAS
PubMed
Google Scholar
Seberg HE, Van Otterloo E, Loftus SK, Liu H, Bonde G, Sompallae R, et al. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet. 2017;13:e1006636–e1006636.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chambers BE, Gerlach GF, Clark EG, Chen KH, Levesque AE, Leshchiner I, et al. Tfap2a is a novel gatekeeper of nephron differentiation during kidney development. Development. 2019;146:dev172387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuckenberg P, Kubaczka C, Schorle H. The role of transcription factor Tcfap2c/TFAP2C in trophectoderm development. Reprod Biomed Online. 2012;25:12–20.
Article
CAS
PubMed
Google Scholar
Milunsky JM, Maher TA, Zhao G, Roberts AE, Stalker HJ, Zori RT, et al. TFAP2A mutations result in Branchio-Oculo-facial syndrome. The Am J Hum Genet. 2008;82:1171–7.
Article
CAS
PubMed
Google Scholar
Huang HX, Yang G, Yang Y, Yan J, Tang XY, Pan Q. TFAP2A is a novel regulator that modulates ferroptosis in gallbladder carcinoma cells via the Nrf2 signalling axis. Eur Rev Med Pharmacol Sci. 2020;24:4745–55.
PubMed
Google Scholar
Li Q, Dashwood RH. Activator Protein 2α associates with adenomatous polyposis Coli/β-catenin and inhibits β-Catenin/T-cell factor transcriptional activity in colorectal cancer cells. J Biol Chem. 2004;279:45669–45669.
Article
CAS
PubMed
Google Scholar
Makhov PB, Golovine KV, Kutikov A, Canter DJ, Rybko VA, Roshchin DA, et al. Reversal of epigenetic silencing of AP-2alpha results in increased zinc uptake in DU-145 and LNCaP prostate cancer cells. Carcinogenesis. 2011;32:1773–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hallberg AR, Vorrink SU, Hudachek DR, Cramer-Morales K, Milhem MM, Cornell RA, et al. Aberrant CpG methylation of the TFAP2A gene constitutes a mechanism for loss of TFAP2A expression in human metastatic melanoma. Epigenetics. 2014;9:1641–7.
Article
PubMed
Google Scholar
Lian W, Zhang L, Yang L, Chen W. AP-2α reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway. Apoptosis. 2017;22:933–41.
Article
CAS
PubMed
Google Scholar
Su W, Xia J, Chen X, Xu M, Nie L, Chen N, et al. Ectopic expression of AP-2α transcription factor suppresses glioma progression. Int J Clin Exp Pathol. 2014;7:8666–8666.
PubMed
PubMed Central
Google Scholar
Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98:262–72.
Article
CAS
PubMed
Google Scholar
Shi D, Xie F, Zhang Y, Tian Y, Chen W, Fu L, et al. TFAP2A regulates nasopharyngeal carcinoma growth and survival by targeting HIF-1α signaling pathway. Cancer Prev Res (Phila). 2014;7:266–77.
Article
CAS
Google Scholar
Bennett KL, Romigh T, Eng C. AP-2alpha induces epigenetic silencing of tumor suppressive genes and microsatellite instability in head and neck squamous cell carcinoma. PLoS ONE. 2009;4:e6931.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ding X, Yang Z, Zhou F, Wang F, Li X, Chen C, et al. Transcription factor AP-2α regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression. Int J Biochem Cell Biol. 2013;45:1647–56.
Article
CAS
PubMed
Google Scholar
Carrière C, Mirocha S, Deharvengt S, Gunn JR, Korc M. Aberrant expressions of AP-2α splice variants in pancreatic cancer. Pancreas. 2011;40:695–700.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schulte JH, Kirfel J, Lim S, Schramm A, Friedrichs N, Deubzer HE, et al. Transcription factor AP2alpha (TFAP2a) regulates differentiation and proliferation of neuroblastoma cells. Cancer Lett. 2008;271:56–63.
Article
CAS
PubMed
Google Scholar
Yang Y-L, Zhao L-Y. AP-2 family of transcription factors: critical regulators of human development and cancer. J Cancer Treat Diagn. 2021;5:1–4.
Article
CAS
Google Scholar
Kaiser S, Koch Y, Kühnel E, Sharma N, Gellhaus A, Kuckenberg P, et al. Reduced gene dosage of Tfap2c impairs trophoblast lineage differentiation and alters maternal blood spaces in the mouse placenta. Biol Reprod. 2015;93:31–2.
Article
PubMed
CAS
Google Scholar
Satoda M, Zhao F, Diaz GA, Burn J, Goodship J, Davidson HR, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet. 2000;25:42–6.
Article
CAS
PubMed
Google Scholar
Gao SL, Wang LZ, Liu HY, Liu DL, Xie LM, Zhang ZW. miR-200a inhibits tumor proliferation by targeting AP-2γ in neuroblastoma cells. Asian Pac J Cancer Prev. 2014;15:4671–6.
Article
PubMed
Google Scholar
Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, Skakkebaek NE, et al. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res. 2004;10:8521–30.
Article
CAS
PubMed
Google Scholar
Lal G, Contreras PG, Kulak M, Woodfield G, Bair T, Domann FE, et al. Human Melanoma cells over-express extracellular matrix 1 (ECM1) which is regulated by TFAP2C. PLoS ONE. 2013;8:e73953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams CMJ, Scibetta AG, Friedrich JK, Canosa M, Berlato C, Moss CH, et al. AP-2gamma promotes proliferation in breast tumour cells by direct repression of the CDKN1A gene. EMBO J. 2009;28:3591–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng C, Ying K, Xu M, Zhao W, Zhou Z, Huang Y, et al. Cloning and characterization of a novel human transcription factor AP-2 beta like gene (TFAP2BL1). Int J Biochem Cell Biol. 2002;34:78–86.
Article
CAS
PubMed
Google Scholar
Zhao F, Lufkin T, Gelb BD. Expression of Tfap2d, the gene encoding the transcription factor Ap-2 delta, during mouse embryogenesis. Gene Expr Patterns. 2003;3:213–7.
Article
CAS
PubMed
Google Scholar
Jain S, Glubrecht DD, Germain DR, Moser M, Godbout R. AP-2ε expression in developing retina: contributing to the molecular diversity of amacrine cells. Sci Rep. 2018;8:1–13.
Article
Google Scholar
Sun L, Zhao Y, Gu S, Mao Y, Ji C, Xin X. Regulation of the HMOX1 gene by the transcription factor AP-2δ with unique DNA binding site. Mol Med Rep. 2014;10:423–8.
Article
CAS
PubMed
Google Scholar
Fraune C, Harms L, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, et al. Upregulation of the transcription factor TFAP2D is associated with aggressive tumor phenotype in prostate cancer lacking the TMPRSS2:ERG fusion. Mol Med. 2020;26:1–13.
Article
CAS
Google Scholar
Wenke AK, Bosserhoff AK. Roles of AP-2 transcription factors in the regulation of cartilage and skeletal development. FEBS J. 2010;277:894–902.
Article
CAS
PubMed
Google Scholar
Lin JM, Taroc EZM, Frias JA, Prasad A, Catizone AN, Sammons MA, et al. The transcription factor Tfap2e/AP-2ε plays a pivotal role in maintaining the identity of basal vomeronasal sensory neurons. Dev Biol. 2018;441:67–82.
Article
CAS
PubMed
Google Scholar
Enomoto T, Ohmoto M, Iwata T, Uno A, Saitou M, Yamaguchi T, et al. Development/Plasticity/Repair Bcl11b/Ctip2 controls the differentiation of vomeronasal sensory neurons in mice. J Neurosci. 2011. https://doi.org/10.1523/JNEUROSCI.1245-11.2011.
Article
PubMed
PubMed Central
Google Scholar
Wenke AK, Grässel S, Moser M, Bosserhoff AK. The cartilage-specific transcription factor Sox9 regulates AP-2ε expression in chondrocytes. FEBS J. 2009;276:2494–504.
Article
CAS
PubMed
Google Scholar
Feng W, Simoes-de-Souza F, Finger TE, Restrepo D, Williams T. Disorganized olfactory bulb lamination in mice deficient for transcription factor AP-2e{open}. Mol Cell Neurosci. 2009;42:161–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niebler S, Bosserhoff AK. The transcription factor activating enhancer-binding protein epsilon (AP-2ε) regulates the core promoter of type II collagen (COL2A1). FEBS J. 2013;280:1397–408.
Article
CAS
PubMed
Google Scholar
Wenke AK, Rothhammer T, Moser M, Bosserhoff AK. Regulation of integrin alpha10 expression in chondrocytes by the transcription factors AP-2epsilon and Ets-1. Biochem Biophys Res Commun. 2006;345:495–501.
Article
CAS
PubMed
Google Scholar
Ebert MPA, Tänzer M, Balluff B, Burgermeister E, Kretzschmar AK, Hughes DJ, et al. TFAP2E-DKK4 and chemoresistance in colorectal cancer. N Engl J Med. 2012;366:44–53.
Article
CAS
PubMed
Google Scholar
Hoshi R, Watanabe Y, Ishizuka Y, Hirano T, Nagasaki-Maeoka E, Yoshizawa S, et al. Depletion of TFAP2E attenuates adriamycin-mediated apoptosis in human neuroblastoma cells. Oncol Rep. 2017;37:2459–64.
Article
CAS
PubMed
Google Scholar