Garone C, D’souza AR, Dallabona C, et al. Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome. Hum Mol Genet. 2017;26(21):4257–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porat-Shliom N, Harding OJ, Malec L, et al. Mitochondrial populations exhibit differential dynamic responses to increased energy demand during exocytosis in vivo. iScience. 2019;11:440–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy S, Kim D, Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy. J Clin Med. 2019. https://doi.org/10.3390/jcm8091363.
Article
PubMed
PubMed Central
Google Scholar
Suh BK, Lee SA, Park C, et al. Schizophrenia-associated dysbindin modulates axonal mitochondrial movement in cooperation with p150(glued). Mol Brain. 2021;14(1):14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campello S, Lacalle RA, Bettella M, et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med. 2006;203(13):2879–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev. 2020;62:101128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Gao Y, Liu J, et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther. 2021;6(1):65.
Article
PubMed
PubMed Central
Google Scholar
Zampieri LX, Silva-Almeida C, Rondeau JD, et al. Mitochondrial transfer in cancer: a comprehensive review. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22063245.
Article
PubMed
PubMed Central
Google Scholar
Rodriguez AM, Nakhle J, Griessinger E, et al. Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle. 2018;17(6):712–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho YM, Kim JH, Kim M, et al. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS ONE. 2012;7(3): e32778.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong LF, Kovarova J, Bajzikova M, et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife. 2017. https://doi.org/10.7554/eLife.22187.
Article
PubMed
PubMed Central
Google Scholar
Austefjord MW, Gerdes HH, Wang X. Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol. 2014;7(1): e27934.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rustom A, Saffrich R, Markovic I, et al. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–10.
Article
CAS
PubMed
Google Scholar
Koyanagi M, Brandes RP, Haendeler J, et al. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res. 2005;96(10):1039–41.
Article
CAS
PubMed
Google Scholar
Vignais ML, Caicedo A, Brondello JM, et al. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int. 2017;2017:6917941.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ljubojevic N, Henderson JM, Zurzolo C. The ways of actin: why tunneling nanotubes are unique cell protrusions. Trends Cell Biol. 2021;31(2):130–42.
Article
CAS
PubMed
Google Scholar
Yang F, Zhang Y, Liu S, et al. Tunneling nanotube-mediated mitochondrial transfer rescues nucleus pulposus cells from mitochondrial dysfunction and apoptosis. Oxid Med Cell Longev. 2022;2022:3613319.
PubMed
PubMed Central
Google Scholar
Yang C, Endoh M, Tan DQ, et al. Mitochondria transfer from early stages of erythroblasts to their macrophage niche via tunnelling nanotubes. Br J Haematol. 2021;193(6):1260–74.
Article
CAS
PubMed
Google Scholar
Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22(7):1181–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu K, Ji K, Guo L, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.
Article
CAS
PubMed
Google Scholar
Wang J, Liu X, Qiu Y, et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol. 2018;11(1):11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vallabhaneni KC, Haller H, Dumler I. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 2012;21(17):3104–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng W, He C, Hao Y, et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020;27(1):585–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abraham A, Krasnodembskaya A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med. 2020;9(1):28–38.
Article
CAS
PubMed
Google Scholar
Varcianna A, Myszczynska MA, Castelli LM, et al. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine. 2019;40:626–35.
Article
PubMed
PubMed Central
Google Scholar
Hayakawa K, Esposito E, Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicolas-Avila JA, Lechuga-Vieco AV, Esteban-Martinez L, et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 2020;183(1):94-109 e23.
Article
CAS
PubMed
Google Scholar
Hough KP, Trevor JL, Strenkowski JG, et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol. 2018;18:54–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delvaeye T, Vandenabeele P, Bultynck G, et al. Therapeutic targeting of connexin channels: new views and challenges. Trends Mol Med. 2018;24(12):1036–53.
Article
CAS
PubMed
Google Scholar
Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Wang C, He T, et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics. 2019;9(7):2017–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caicedo A, Aponte PM, Cabrera F, et al. Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int. 2017;2017:7610414.
Article
PubMed
PubMed Central
CAS
Google Scholar
Senos Demarco R, Jones DL. Mitochondrial fission regulates germ cell differentiation by suppressing ROS-mediated activation of epidermal growth factor signaling in the Drosophila larval testis. Sci Rep. 2019;9(1):19695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature. 2020;585(7823):91–5.
Article
CAS
PubMed
Google Scholar
Pinto G, Saenz-De-Santa-Maria I, Chastagner P, et al. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem J. 2021;478(1):21–39.
Article
CAS
PubMed
Google Scholar
Osswald M, Jung E, Sahm F, et al. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015;528(7580):93–8.
Article
CAS
PubMed
Google Scholar
Falk MM, Bell CL, Kells Andrews RM, et al. Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions. BMC Cell Biol. 2016;17(Suppl 1):22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Norris RP. Transfer of mitochondria and endosomes between cells by gap junction internalization. Traffic. 2021;22(6):174–9.
Article
CAS
PubMed
Google Scholar
Bell CL, Shakespeare TI, Smith AR, et al. Visualization of annular gap junction vesicle processing: the interplay between annular gap junctions and mitochondria. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms20010044.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Bukoreshtliev NV, Gerdes HH. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS ONE. 2012;7(10): e47429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ariazi J, Benowitz A, De Biasi V, et al. Tunneling nanotubes and gap junctions—their role in long-range intercellular communication during development, health, and disease conditions. Front Mol Neurosci. 2017;10:333.
Article
PubMed
PubMed Central
Google Scholar
Yao Y, Fan XL, Jiang D, et al. Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Reports. 2018;11(5):1120–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren D, Zheng P, Zou S, et al. GJA1-20K enhances mitochondria transfer from astrocytes to neurons via Cx43-TnTs after traumatic brain injury. Cell Mol Neurobiol. 2021. https://doi.org/10.1007/s10571-021-01070-x.
Article
PubMed
Google Scholar
Lock JT, Parker I, Smith IF. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions. Cell Calcium. 2016;60(4):266–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tishchenko A, Azorin DD, Vidal-Brime L, et al. Cx43 and associated cell signaling pathways regulate tunneling nanotubes in breast cancer cells. Cancers. 2020. https://doi.org/10.3390/cancers12102798.
Article
PubMed
PubMed Central
Google Scholar
Wang JD, Shao Y, Liu D, et al. Rictor/mTORC2 involves mitochondrial function in ES cells derived cardiomyocytes via mitochondrial Connexin 43. Acta Pharmacol Sin. 2021;42(11):1790–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basheer WA, Xiao S, Epifantseva I, et al. GJA1-20k arranges actin to guide Cx43 delivery to cardiac intercalated discs. Circ Res. 2017;121(9):1069–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Acquistapace A, Bru T, Lesault PF, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 2011;29(5):812–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picone P, Porcelli G, Bavisotto CC, et al. Synaptosomes: new vesicles for neuronal mitochondrial transplantation. J Nanobiotechnology. 2021;19(1):6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao J, Qin A, Liu D, et al. Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network. Sci Adv. 2019;5(11):eaaw7215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pesaresi M, Sebastian-Perez R, Cosma MP. Dedifferentiation, transdifferentiation and cell fusion: in vivo reprogramming strategies for regenerative medicine. FEBS J. 2019;286(6):1074–93.
Article
CAS
PubMed
Google Scholar
Wada KI, Hosokawa K, Ito Y, et al. Quantitative control of mitochondria transfer between live single cells using a microfluidic device. Biol Open. 2017;6(12):1960–5.
CAS
PubMed
PubMed Central
Google Scholar
Marlein CR, Piddock RE, Mistry JJ, et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 2019;79(9):2285–97.
Article
CAS
PubMed
Google Scholar
Figeac F, Lesault PF, Le Coz O, et al. Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells. 2014;32(1):216–30.
Article
CAS
PubMed
Google Scholar
Hekmatshoar Y, Nakhle J, Galloni M, et al. The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem J. 2018;475(14):2305–28.
Article
CAS
PubMed
Google Scholar
Sinclair KA, Yerkovich ST, Hopkins PM, et al. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther. 2016;7(1):91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roger AJ, Munoz-Gomez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27(21):R1177–92.
Article
CAS
PubMed
Google Scholar
Tria FDK, Brueckner J, Skejo J, et al. Gene duplications trace mitochondria to the onset of eukaryote complexity. Genome Biol Evol. 2021. https://doi.org/10.1093/gbe/evab055.
Article
PubMed
PubMed Central
Google Scholar
Clark MA, Shay JW. Mitochondrial transformation of mammalian cells. Nature. 1982;295(5850):605–7.
Article
CAS
PubMed
Google Scholar
Shi J, Irwin MH, Pinkert CA. Mitochondria transfer into fibroblasts: liposome-mediated transfer of labeled mitochondria into cultured cells. Ethn Dis. 2008;8:SI43-4.
Google Scholar
Chang JC, Liu KH, Li YC, et al. Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery. Neurosignals. 2013;21(3–4):160–73.
Article
CAS
PubMed
Google Scholar
Caicedo A, Fritz V, Brondello JM, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5:9073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macheiner T, Fengler VH, Agreiter M, et al. Magnetomitotransfer: an efficient way for direct mitochondria transfer into cultured human cells. Sci Rep. 2016;6:35571.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim MJ, Hwang JW, Yun CK, et al. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep. 2018;8(1):3330.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ali Pour P, Kenney MC, Kheradvar A. Bioenergetics consequences of mitochondrial transplantation in cardiomyocytes. J Am Heart Assoc. 2020;9(7): e014501.
Article
PubMed
PubMed Central
Google Scholar
Dawson ER, Patananan AN, Sercel AJ, et al. Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells. Sci Rep. 2020;10(1):14328.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu TH, Sagullo E, Case D, et al. Mitochondrial transfer by photothermal nanoblade restores metabolite profile in mammalian cells. Cell Metab. 2016;23(5):921–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patananan AN, Sercel AJ, Wu TH, et al. Pressure-driven mitochondrial transfer pipeline generates mammalian cells of desired genetic combinations and fates. Cell Rep. 2020;33(13): 108562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sercel AJ, Patananan AN, Man T, et al. Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery. Elife. 2021. https://doi.org/10.7554/eLife.63102.
Article
PubMed
PubMed Central
Google Scholar
Doulamis IP, Guariento A, Duignan T, et al. Mitochondrial transplantation for myocardial protection in diabetic hearts. Eur J Cardiothorac Surg. 2020;57(5):836–45.
Article
PubMed
Google Scholar
Fu A, Shi X, Zhang H, et al. Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front Pharmacol. 2017;8:241.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin HC, Liu SY, Lai HS, et al. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock. 2013;39(3):304–10.
Article
CAS
PubMed
Google Scholar
Mccully JD, Cowan DB, Pacak CA, et al. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol. 2009;296(1):H94–105.
Article
CAS
PubMed
Google Scholar
Masuzawa A, Black KM, Pacak CA, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2013;304(7):H966–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blitzer D, Guariento A, Doulamis IP, et al. Delayed transplantation of autologous mitochondria for cardioprotection in a porcine model. Ann Thorac Surg. 2020;109(3):711–9.
Article
PubMed
Google Scholar
Huang PJ, Kuo CC, Lee HC, et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant. 2016;25(5):913–27.
Article
CAS
PubMed
Google Scholar
Al Amir Dache Z, Otandault A, Tanos R, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020;34(3):3616–30.
Article
CAS
PubMed
Google Scholar
Lindqvist D, Wolkowitz OM, Picard M, et al. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology. 2018;43(7):1557–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picca A, Beli R, Calvani R, et al. Older adults with physical frailty and sarcopenia show increased levels of circulating small extracellular vesicles with a specific mitochondrial signature. Cells. 2020. https://doi.org/10.3390/cells9040973.
Article
PubMed
PubMed Central
Google Scholar
Miller B, Kim SJ, Kumagai H, et al. Peptides derived from small mitochondrial open reading frames: genomic, biological, and therapeutic implications. Exp Cell Res. 2020;393(2): 112056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emani SM, Piekarski BL, Harrild D, et al. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2017;154(1):286–9.
Article
PubMed
Google Scholar
Mobarak H, Heidarpour M, Tsai PJ, et al. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell Biosci. 2019;9:95.
Article
PubMed
PubMed Central
Google Scholar
Lin HY, Liou CW, Chen SD, et al. Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion. 2015;2:31–44.
Article
CAS
Google Scholar
Maeda H, Kami D, Maeda R, et al. TAT-dextran-mediated mitochondrial transfer enhances recovery from models of reperfusion injury in cultured cardiomyocytes. J Cell Mol Med. 2020;24(9):5007–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitani T, Kami D, Matoba S, et al. Internalization of isolated functional mitochondria: involvement of macropinocytosis. J Cell Mol Med. 2014;18(8):1694–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabrera F, Ortega M, Velarde F, et al. Primary allogeneic mitochondrial mix (PAMM) transfer/transplant by MitoCeption to address damage in PBMCs caused by ultraviolet radiation. BMC Biotechnol. 2019;19(1):42.
Article
PubMed
PubMed Central
Google Scholar
Gu B, Lambert JP, Cockburn K, et al. AIRE is a critical spindle-associated protein in embryonic stem cells. Elife. 2017. https://doi.org/10.7554/eLife.28131.
Article
PubMed
PubMed Central
Google Scholar
Yao B, Wang R, Wang Y, et al. Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration. Sci Adv. 2020;6(10):eaaz1094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Li H, Yao Y, et al. Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Ther. 2018;9(1):106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szydlak R. Mesenchymal stem cells’ homing and cardiac tissue repair. Acta Biochim Pol. 2019;66(4):483–9.
CAS
PubMed
Google Scholar
Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine. Cells. 2019. https://doi.org/10.3390/cells8080886.
Article
PubMed
PubMed Central
Google Scholar
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9(1):63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahrouf-Yorgov M, Augeul L, Da Silva CC, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 2017;24(7):1224–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis CH, Kim KY, Bushong EA, et al. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci USA. 2014;111(26):9633–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18091852.
Article
PubMed
PubMed Central
Google Scholar
Goto H, Shimono Y, Funakoshi Y, et al. Adipose-derived stem cells enhance human breast cancer growth and cancer stem cell-like properties through adipsin. Oncogene. 2019;38(6):767–79.
Article
CAS
PubMed
Google Scholar
Wang Y, Liu J, Jiang Q, et al. Human adipose-derived mesenchymal stem cell-secreted CXCL1 and CXCL8 facilitate breast tumor growth by promoting angiogenesis. Stem Cells. 2017;35(9):2060–70.
Article
CAS
PubMed
Google Scholar
Shah K. Stem cell-based therapies for tumors in the brain: are we there yet? Neuro Oncol. 2016;18(8):1066–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer. 2014;14(10):683–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu W, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors. Stem Cells Int. 2019;2019:9757201.
PubMed
PubMed Central
Google Scholar
Shen J, Zhang JH, Xiao H, et al. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis. 2018;9(2):81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Desir S, Dickson EL, Vogel RI, et al. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget. 2016;7(28):43150–61.
Article
PubMed
PubMed Central
Google Scholar
Hayakawa K, Chan SJ, Mandeville ET, et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells. 2018;36(9):1404–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang D, Gao F, Zhang Y, et al. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 2016;7(11): e2467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luz-Crawford P, Hernandez J, Djouad F, et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 2019;10(1):232.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Yu Z, Jiang D, et al. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-alpha Yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Rep. 2016;7(4):749–63.
Article
CAS
Google Scholar
Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13(12):780–8.
Article
CAS
PubMed
Google Scholar
Maeda A, Fadeel B. Mitochondria released by cells undergoing TNF-alpha-induced necroptosis act as danger signals. Cell Death Dis. 2014;5:e1312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.
Article
CAS
PubMed
Google Scholar
Kimura S, Yamashita M, Yamakami-Kimura M, et al. Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation. Sci Rep. 2016;6:33548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devine MJ, Birsa N, Kittler JT. Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol Dis. 2016;90:27–34.
Article
CAS
PubMed
Google Scholar
Macaskill AF, Rinholm JE, Twelvetrees AE, et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009;61(4):541–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paliwal S, Chaudhuri R, Agrawal A, et al. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25(1):31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahmad T, Mukherjee S, Pattnaik B, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33(9):994–1010.
CAS
PubMed
PubMed Central
Google Scholar
Babenko VA, Silachev DN, Zorova LD, et al. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl Med. 2015;4(9):1011–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babenko VA, Silachev DN, Popkov VA, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 2018. https://doi.org/10.3390/molecules23030687.
Article
PubMed
PubMed Central
Google Scholar
Gao L, Zhang Z, Lu J, et al. Mitochondria are dynamically transferring between human neural cells and alexander disease-associated GFAP mutations impair the astrocytic transfer. Front Cell Neurosci. 2019;13:316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun C, Liu X, Wang B, et al. Endocytosis-mediated mitochondrial transplantation: transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics. 2019;9(12):3595–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Ni J, Gao T, et al. Activation of astrocytic sigma-1 receptor exerts antidepressant-like effect via facilitating CD38-driven mitochondria transfer. Glia. 2020;68(11):2415–26.
PubMed
Google Scholar
Lewis SC, Uchiyama LF, Nunnari J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science. 2016;353(6296):aaf5549.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zung N, Schuldiner M. New horizons in mitochondrial contact site research. Biol Chem. 2020;401(6–7):793–809.
Article
CAS
PubMed
Google Scholar
Park JH, Lo EH, Hayakawa K. Endoplasmic reticulum interaction supports energy production and redox homeostasis in mitochondria released from astrocytes. Transl Stroke Res. 2021. https://doi.org/10.1007/s12975-021-00892-7.
Article
PubMed
PubMed Central
Google Scholar
Cowan DB, Yao R, Thedsanamoorthy JK, et al. Transit and integration of extracellular mitochondria in human heart cells. Sci Rep. 2017;7(1):17450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pacak CA, Preble JM, Kondo H, et al. Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biol Open. 2015;4(5):622–6.
Article
PubMed
PubMed Central
Google Scholar
Kesner EE, Saada-Reich A, Lorberboum-Galski H. Characteristics of mitochondrial transformation into human cells. Sci Rep. 2016;6:26057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kami D, Gojo S. From cell entry to engraftment of exogenous mitochondria. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21144995.
Article
PubMed
PubMed Central
Google Scholar
Zhao Z, Hou Y, Zhou W, et al. Mitochondrial transplantation therapy inhibit carbon tetrachloride-induced liver injury through scavenging free radicals and protecting hepatocytes. Bioeng Transl Med. 2021;6(2): e10209.
Article
CAS
PubMed
Google Scholar
Yoshida S, Pacitto R, Inoki K, et al. Macropinocytosis, mTORC1 and cellular growth control. Cell Mol Life Sci. 2018;75(7):1227–39.
Article
CAS
PubMed
Google Scholar
Corti O. Neuronal mitophagy: lessons from a pathway linked to Parkinson’s disease. Neurotox Res. 2019;36(2):292–305.
Article
PubMed
Google Scholar
Li X, Zhang Y, Yeung SC, et al. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 2014;51(3):455–65.
Article
PubMed
CAS
Google Scholar
Rousselle TV, Kuscu C, Kuscu C, et al. FTY720 regulates mitochondria biogenesis in dendritic cells to prevent kidney ischemic reperfusion injury. Front Immunol. 2020;11:1278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196(10):1275–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rackham CL, Hubber EL, Czajka A, et al. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer. Stem Cells. 2020;38(4):574–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louwagie EJ, Larsen TD, Wachal AL, et al. Mitochondrial transfer improves cardiomyocyte bioenergetics and viability in male rats exposed to pregestational diabetes. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22052382.
Article
PubMed
PubMed Central
Google Scholar
Hsu MJ, Karkossa I, Schafer I, et al. Mitochondrial transfer by human mesenchymal stromal cells ameliorates hepatocyte lipid load in a mouse model of NASH. Biomedicines. 2020. https://doi.org/10.3390/biomedicines8090350.
Article
PubMed
PubMed Central
Google Scholar
Brestoff JR, Wilen CB, Moley JR, et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 2021;33(2):270-82 e8.
Article
CAS
PubMed
Google Scholar
Pandya JD, Valdez M, Royland JE, et al. Age- and organ-specific differences in mitochondrial bioenergetics in brown Norway rats. J Aging Res. 2020;2020:7232614.
Article
PubMed
PubMed Central
Google Scholar
Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid Med Cell Longev. 2019;2019:2105607.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cozzolino M, Marin D, Sisti G. New Frontiers in IVF: mtDNA and autologous germline mitochondrial energy transfer. Reprod Biol Endocrinol. 2019;17(1):55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hernandez G, Thornton C, Stotland A, et al. MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy. 2013;9(11):1852–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo SW, Park SK, Oh SJ, et al. TLR4-mediated activation of the ERK pathway following UVA irradiation contributes to increased cytokine and MMP expression in senescent human dermal fibroblasts. PLoS ONE. 2018;13(8): e0202323.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nitzan K, Benhamron S, Valitsky M, et al. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. J Alzheimers Dis. 2019;72(2):587–604.
Article
CAS
PubMed
Google Scholar
Chang JC, Wu SL, Liu KH, et al. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl Res. 2016;170:40-56 e3.
Article
CAS
PubMed
Google Scholar
Levoux J, Prola A, Lafuste P, et al. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab. 2021;33(2):283-99 e9.
Article
CAS
PubMed
Google Scholar
Lee JM, Hwang JW, Kim MJ, et al. Mitochondrial transplantation modulates inflammation and apoptosis, alleviating tendinopathy both in vivo and in vitro. Antioxidants. 2021. https://doi.org/10.3390/antiox10050696.
Article
PubMed
PubMed Central
Google Scholar
Memme JM, Erlich AT, Phukan G, et al. Exercise and mitochondrial health. J Physiol. 2021;599(3):803–17.
Article
CAS
PubMed
Google Scholar
Wang R, Maimaitijuma T, Ma YY, et al. Mitochondrial transfer from bone-marrow-derived mesenchymal stromal cells to chondrocytes protects against cartilage degenerative mitochondrial dysfunction in rats chondrocytes. Chin Med J. 2020;134(2):212–8.
Article
PubMed
PubMed Central
Google Scholar
Guo Y, Chi X, Wang Y, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 2020;11(1):245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin B, Cowan DB, Emani SM, et al. Mitochondrial transplantation in myocardial ischemia and reperfusion injury. Adv Exp Med Biol. 2017;982:595–619.
Article
CAS
PubMed
Google Scholar
Guariento A, Blitzer D, Doulamis I, et al. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg. 2020;160(2):e15–29.
Article
PubMed
Google Scholar
Weixler V, Lapusca R, Grangl G, et al. Autogenous mitochondria transplantation for treatment of right heart failure. J Thorac Cardiovasc Surg. 2021;162(1):e111–21.
Article
PubMed
Google Scholar
Guariento A, Piekarski BL, Doulamis IP, et al. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2020. https://doi.org/10.1016/j.jtcvs.2020.10.151.
Article
PubMed
Google Scholar
Orfany A, Arriola CG, Doulamis IP, et al. Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg. 2020;71(3):1014–26.
Article
PubMed
Google Scholar
Moskowitzova K, Orfany A, Liu K, et al. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2020;318(1):L78–88.
Article
CAS
PubMed
Google Scholar
Doulamis IP, Guariento A, Duignan T, et al. Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol Renal Physiol. 2020;319(3):F403–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao H, Cheng Y, Gao H, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano. 2020;14(4):4014–26.
Article
CAS
PubMed
Google Scholar
Yan C, Duanmu X, Zeng L, et al. Mitochondrial DNA: distribution, mutations, and elimination. Cells. 2019. https://doi.org/10.3390/cells8040379.
Article
PubMed
PubMed Central
Google Scholar
Stefano GB, Kream RM. Mitochondrial DNA heteroplasmy in human health and disease. Biomed Rep. 2016;4(3):259–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42.
Article
CAS
PubMed
Google Scholar
Pyle A, Anugrha H, Kurzawa-Akanbi M, et al. Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiol Aging. 2016;38(216):e7–10.
Google Scholar
Cecchino GN, Garcia-Velasco JA. Mitochondrial DNA copy number as a predictor of embryo viability. Fertil Steril. 2019;111(2):205–11.
Article
CAS
PubMed
Google Scholar
Santos D, Santos MJ, Alves-Ferreira M, et al. mtDNA copy number associated with age of onset in familial amyloid polyneuropathy. J Neurol Neurosurg Psychiatry. 2018;89(3):300–4.
Article
PubMed
Google Scholar
Fazzini F, Lamina C, Raftopoulou A, et al. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J Intern Med. 2021. https://doi.org/10.1111/joim.13242.
Article
PubMed
PubMed Central
Google Scholar
Foote K, Reinhold J, Yu EPK, et al. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell. 2018;17(4): e12773.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang M, Kauppila TES, Motori E, et al. Increased total mtDNA copy number cures male infertility despite unaltered mtDNA mutation load. Cell Metab. 2017;26(2):429-36 e4.
Article
CAS
PubMed
Google Scholar
Chuang YC, Liou CW, Chen SD, et al. Mitochondrial transfer from Wharton’s jelly mesenchymal stem cell to MERRF cybrid reduces oxidative stress and improves mitochondrial bioenergetics. Oxid Med Cell Longev. 2017;2017:5691215.
PubMed
PubMed Central
Google Scholar
Lin TK, Chen SD, Chuang YC, et al. Mitochondrial transfer of Wharton’s jelly mesenchymal stem cells eliminates mutation burden and rescues mitochondrial bioenergetics in rotenone-stressed MELAS fibroblasts. Oxid Med Cell Longev. 2019;2019:9537504.
PubMed
PubMed Central
Google Scholar
Liu K, Zhou Z, Pan M, et al. Stem cell-derived mitochondria transplantation: a promising therapy for mitochondrial encephalomyopathy. CNS Neurosci Ther. 2021;27(7):733–42.
Article
PubMed
PubMed Central
Google Scholar
Emperador S, Lopez-Gallardo E, Hernandez-Ainsa C, et al. Ketogenic treatment reduces the percentage of a LHON heteroplasmic mutation and increases mtDNA amount of a LHON homoplasmic mutation. Orphanet J Rare Dis. 2019;14(1):150.
Article
PubMed
PubMed Central
Google Scholar
Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61(5):667–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Zhan L, Chen Y, et al. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduct Target Ther. 2018. https://doi.org/10.1038/s41392-018-0011-z.
Article
PubMed
PubMed Central
Google Scholar
Reznik E, Wang Q, La K, et al. Mitochondrial respiratory gene expression is suppressed in many cancers. Elife. 2017. https://doi.org/10.7554/eLife.21592.
Article
PubMed
PubMed Central
Google Scholar
Porporato PE, Filigheddu N, Pedro JMB, et al. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80.
Article
CAS
PubMed
Google Scholar
Vara-Perez M, Felipe-Abrio B, Agostinis P. Mitophagy in cancer: a tale of adaptation. Cells. 2019. https://doi.org/10.3390/cells8050493.
Article
PubMed
PubMed Central
Google Scholar
Saha T, Dash C, Jayabalan R, et al. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat Nanotechnol. 2021. https://doi.org/10.1038/s41565-021-01000-4.
Article
PubMed
Google Scholar
Bonekamp NA, Peter B, Hillen HS, et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature. 2020;588(7839):712–6.
Article
CAS
PubMed
Google Scholar
Pinto G, Brou C, Zurzolo C. Tunneling nanotubes: the fuel of tumor progression? Trends Cancer. 2020;6(10):874–88.
Article
CAS
PubMed
Google Scholar
Lu J, Zheng X, Li F, et al. Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget. 2017;8(9):15539–52.
Article
PubMed
PubMed Central
Google Scholar
Salaud C, Alvarez-Arenas A, Geraldo F, et al. Mitochondria transfer from tumor-activated stromal cells (TASC) to primary glioblastoma cells. Biochem Biophys Res Commun. 2020;533(1):139–47.
Article
CAS
PubMed
Google Scholar
Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci USA. 2017;114(43):E9066–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philley JV, Kannan A, Qin W, et al. Complex-I alteration and enhanced mitochondrial fusion are associated with prostate cancer progression. J Cell Physiol. 2016;231(6):1364–74.
Article
CAS
PubMed
Google Scholar
Tan AS, Baty JW, Dong LF, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81–94.
Article
CAS
PubMed
Google Scholar
Spees JL, Olson SD, Whitney MJ, et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA. 2006;103(5):1283–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ippolito L, Morandi A, Taddei ML, et al. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene. 2019;38(27):5339–55.
Article
CAS
PubMed
Google Scholar
Ippolito L, Marini A, Cavallini L, et al. Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget. 2016;7(38):61890–904.
Article
PubMed
PubMed Central
Google Scholar
Burt R, Dey A, Aref S, et al. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood. 2019;134(17):1415–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasquier J, Guerrouahen BS, Al Thawadi H, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med. 2013;11:94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz-Carballo D, Klein J, Acikelli AH, et al. Cytotoxic stress induces transfer of mitochondria-associated human endogenous retroviral RNA and proteins between cancer cells. Oncotarget. 2017;8(56):95945–64.
Article
PubMed
PubMed Central
Google Scholar
Yu Z, Hou Y, Zhou W, et al. The effect of mitochondrial transplantation therapy from different gender on inhibiting cell proliferation of malignant melanoma. Int J Biol Sci. 2021;17(8):2021–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang JC, Chang HS, Wu YC, et al. Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. J Exp Clin Cancer Res. 2019;38(1):30.
Article
PubMed
PubMed Central
Google Scholar
Roushandeh AM, Tomita K, Kuwahara Y, et al. Transfer of healthy fibroblast-derived mitochondria to HeLa rho(0) and SAS rho(0) cells recovers the proliferation capabilities of these cancer cells under conventional culture medium, but increase their sensitivity to cisplatin-induced apoptotic death. Mol Biol Rep. 2020;47(6):4401–11.
Article
CAS
PubMed
Google Scholar
Alexander JF, Seua AV, Arroyo LD, et al. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics. 2021;11(7):3109–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan C, Ma Z, Ma H, et al. Mitochondrial transplantation attenuates brain dysfunction in sepsis by driving microglial M2 polarization. Mol Neurobiol. 2020;57(9):3875–90.
Article
CAS
PubMed
Google Scholar
Robicsek O, Ene HM, Karry R, et al. Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophr Bull. 2018;44(2):432–42.
Article
PubMed
Google Scholar
Shi X, Zhao M, Fu C, et al. Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion. 2017;34:91–100.
Article
CAS
PubMed
Google Scholar
Zhang Z, Ma Z, Yan C, et al. Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav Brain Res. 2019;356:322–31.
Article
CAS
PubMed
Google Scholar
Liu K, Guo L, Zhou Z, et al. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res. 2019;123:74–80.
Article
CAS
PubMed
Google Scholar
Gollihue JL, Patel SP, Eldahan KC, et al. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma. 2018;35(15):1800–18.
Article
PubMed
PubMed Central
Google Scholar
Cowan DB, Yao R, Akurathi V, et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS ONE. 2016;11(8): e0160889.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dutra Silva J, Su Y, Calfee CS, et al. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J. 2021. https://doi.org/10.1183/13993003.02978-2020.
Article
PubMed
PubMed Central
Google Scholar
Konari N, Nagaishi K, Kikuchi S, et al. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci Rep. 2019;9(1):5184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mok BY, De Moraes MH, Zeng J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583(7817):631–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saez JC, Schalper KA, Retamal MA, et al. Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res. 2010;316(15):2377–89.
Article
CAS
PubMed
Google Scholar
Uhl J, Gujarathi S, Waheed AA, et al. Myosin-X is essential to the intercellular spread of HIV-1 Nef through tunneling nanotubes. J Cell Commun Signal. 2019;13(2):209–24.
Article
PubMed
Google Scholar
Yamada Y, Ito M, Arai M, et al. Challenges in promoting mitochondrial transplantation therapy. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176365.
Article
PubMed
PubMed Central
Google Scholar
Sun X, Gao R, Li W, et al. Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury. Bioact Mater. 2021;6(7):2058–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chernyak BV. Mitochondrial transplantation: a critical analysis. Biochemistry. 2020;85(5):636–41.
CAS
PubMed
Google Scholar
Sharma A, Liaw K, Sharma R, et al. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics. 2018;8(20):5529–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernardi P, Rasola A, Forte M, et al. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 2015;95(4):1111–55.
Article
PubMed
PubMed Central
Google Scholar
Bertero E, O’rourke B, Maack C. Mitochondria do not survive calcium overload during transplantation. Circ Res. 2020;126(6):784–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katrangi E, D’souza G, Boddapati SV, et al. Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function. Rejuvenation Res. 2007;10(4):561–70.
Article
PubMed
Google Scholar
Stephens OR, Grant D, Frimel M, et al. Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion. 2020;54:102–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crewe C, Funcke JB, Li S, et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 2021. https://doi.org/10.1016/j.cmet.2021.08.002.
Article
PubMed
Google Scholar
Huang T, Zhang T, Jiang X, et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci Adv. 2021;7(40):e0534.
Article
CAS
Google Scholar
Tseng N, Lambie SC, Huynh CQ, et al. Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: the role of Miro1. J Cereb Blood Flow Metab. 2021;41(4):761–70.
Article
CAS
PubMed
Google Scholar
Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco AV, et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature. 2016;535(7613):561–5.
Article
CAS
PubMed
Google Scholar
Latorre-Pellicer A, Lechuga-Vieco AV, Johnston IG, et al. Regulation of mother-to-offspring transmission of mtDNA heteroplasmy. Cell Metab. 2019;30(6):1120-30 e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lackner LL. The expanding and unexpected functions of mitochondria contact sites. Trends Cell Biol. 2019;29(7):580–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie JH, Li YY, Jin J. The essential functions of mitochondrial dynamics in immune cells. Cell Mol Immunol. 2020;17(7):712–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng Z, Fan S, Zheng J, et al. Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma. J Hematol Oncol. 2018;11(1):29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang N, Chen Q, He X, et al. ESeroS-GS protects neuronal cells from oxidative stress by stabilizing lysosomes. Molecules. 2016. https://doi.org/10.3390/molecules21060637.
Article
PubMed
PubMed Central
Google Scholar
Onodera Y, Nam JM, Horikawa M, et al. Arf6-driven cell invasion is intrinsically linked to TRAK1-mediated mitochondrial anterograde trafficking to avoid oxidative catastrophe. Nat Commun. 2018;9(1):2682.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye J. Mechanism of insulin resistance in obesity: a role of ATP. Front Med. 2021;15(3):372–82.
Article
PubMed
Google Scholar
Kanellopoulos AK, Mariano V, Spinazzi M, et al. Aralar sequesters GABA into hyperactive mitochondria, causing social behavior deficits. Cell. 2020;180(6):1178–9720.
Article
CAS
PubMed
Google Scholar
Mor DE, Sohrabi S, Kaletsky R, et al. Metformin rescues Parkinson’s disease phenotypes caused by hyperactive mitochondria. Proc Natl Acad Sci USA. 2020;117(42):26438–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krall AS, Mullen PJ, Surjono F, et al. Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab. 2021;33(5):1013-26 e6.
Article
CAS
PubMed
PubMed Central
Google Scholar