Alatab S, Najafi I, Tabatabaei-Malazy O, Pourmand G, Ahmadbeigi N. Strategies for prevention and treatment of peritoneal fibrosis: a scientometric study. Int J Prev Med. 2019;10:60.
Article
Google Scholar
Ashizawa N, Miyazaki T, Abe S, Takazono T, Saijo T, Obata Y, Shimamura S, Yamamoto K, Imamura Y, Koji T, et al. Evaluation of Candida peritonitis with underlying peritoneal fibrosis and efficacy of micafungin in murine models of intra-abdominal candidiasis. Sci Rep. 2019;9:9331.
Article
Google Scholar
Asifullah K, Zhou Z, He W, Gao K, Khan MW, Faisal R, Muhammad H, Sun M. CXCR4-receptor-targeted liposomes for the treatment of peritoneal fibrosis. Mol Pharm. 2019;16:2728–41.
Article
CAS
Google Scholar
Helmke A, Nordlohne J, Balzer MS, Dong L, Rong S, Hiss M, Shushakova N, Haller H, von Vietinghoff S. CX3CL1-CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Kidney Int. 2019;95:1405–17.
Article
CAS
Google Scholar
Jiang N, Zhang Z, Shao X, Jing R, Wang C, Fang W, Mou S, Ni Z. Blockade of thrombospondin-1 ameliorates high glucose-induced peritoneal fibrosis through downregulation of TGF-beta1/Smad3 signaling pathway. J Cell Physiol. 2020;235:364–79.
Article
CAS
Google Scholar
Nam BY, Park JT, Kwon YE, Lee JP, Jung JH, Kim Y, Kim S, Park J, Um JE, Wu M, et al. Periostin-binding DNA aptamer treatment ameliorates peritoneal dialysis-induced peritoneal fibrosis. Mol Ther Nucleic Acids. 2017;7:396–407.
Article
CAS
Google Scholar
Kunin M, Carmon V, Beckerman P, Dinour D. Effect of peritoneal dialysis on serum fibrosis biomarkers in patients with refractory congestive heart failure. Int J Mol Sci. 2019;20:2610.
Article
CAS
Google Scholar
Balzer MS. Molecular pathways in peritoneal fibrosis. Cell Signal. 2020;75:109778.
Article
CAS
Google Scholar
Alatab S, Najafi I, Atlasi R, Pourmand G, Tabatabaei-Malazy O, Ahmadbeigi N. A systematic review of preclinical studies on therapeutic potential of stem cells or stem cells products in peritoneal fibrosis. Minerva Urol Nefrol. 2018;70:162–78.
PubMed
Google Scholar
Chen YT, Hsu H, Lin CC, Pan SY, Liu SY, Wu CF, Tsai PZ, Liao CT, Cheng HT, Chiang WC, et al. Inflammatory macrophages switch to CCL17-expressing phenotype and promote peritoneal fibrosis. J Pathol. 2020;250:55–66.
Article
CAS
Google Scholar
Yao Q, Pawlaczyk K, Ayala ER, Styszynski A, Breborowicz A, Heimburger O, Qian JQ, Stenvinkel P, Lindholm B, Axelsson J. The role of the TGF/Smad signaling pathway in peritoneal fibrosis induced by peritoneal dialysis solutions. Nephron Exp Nephrol. 2008;109:e71-78.
Article
CAS
Google Scholar
Yoshizawa H, Morishita Y, Watanabe M, Ishibashi K, Muto S, Kusano E, Nagata D. TGF-beta(1)-siRNA delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther. 2015;22:333–40.
Article
CAS
Google Scholar
Ueno T, Nakashima A, Doi S, Kawamoto T, Honda K, Yokoyama Y, Doi T, Higashi Y, Yorioka N, Kato Y, et al. Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-beta1 signaling. Kidney Int. 2013;84:297–307.
Article
CAS
Google Scholar
Subeq YM, Ke CY, Lin NT, Lee CJ, Chiu YH, Hsu BG. Valsartan decreases TGF-beta1 production and protects against chlorhexidine digluconate-induced liver peritoneal fibrosis in rats. Cytokine. 2011;53:223–30.
Article
CAS
Google Scholar
Qian W, Cai X, Qian Q. Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition. Aging (Albany NY). 2020;12:4322–36.
Article
CAS
Google Scholar
Lee SJ, Kim SJ, Lee HS, Kwon OS. PKCdelta mediates NF-kappaB inflammatory response and downregulates SIRT1 expression in liver fibrosis. Int J Mol Sci. 2019;20:4607.
Article
CAS
Google Scholar
Li M, Hong W, Hao C, Li L, Wu D, Shen A, Lu J, Zheng Y, Li P, Xu Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. FASEB J. 2018;32:500–11.
Article
CAS
Google Scholar
Huang XZ, Wen D, Zhang M, Xie Q, Ma L, Guan Y, Ren Y, Chen J, Hao CM. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-beta/Smad3 pathway. J Cell Biochem. 2014;115:996–1005.
Article
CAS
Google Scholar
Zhang Y, Huang Q, Chen Y, Peng X, Wang Y, Li S, Wu J, Luo C, Gong W, Yin B, et al. Parthenolide, an NF-kappaB inhibitor, alleviates peritoneal fibrosis by suppressing the TGF-beta/Smad pathway. Int Immunopharmacol. 2020;78:106064.
Article
CAS
Google Scholar
Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.
Article
CAS
Google Scholar
Zhang F, Liu H, Liu F, Peng Y, Chen M, Liu Y, Chen G. New insights into the pathogenesis and treatment of peritoneal fibrosis: a potential role of Wnt/beta-catenin induced epithelial to mesenchymal transition and stem cells for therapy. Med Hypotheses. 2013;81:97–100.
Article
CAS
Google Scholar
Li J, Li SX, Gao XH, Zhao LF, Du J, Wang TY, Wang L, Zhang J, Wang HY, Dong R, Guo ZY. HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol Res Pract. 2019;215:644–52.
Article
CAS
Google Scholar
Guo Y, Wang L, Gou R, Wang Y, Shi X, Pang X, Tang L. SIRT1-modified human umbilical cord mesenchymal stem cells ameliorate experimental peritoneal fibrosis by inhibiting the TGF-beta/Smad3 pathway. Stem Cell Res Ther. 2020;11:362.
Article
CAS
Google Scholar
Strippoli R, Moreno-Vicente R, Battistelli C, Cicchini C, Noce V, Amicone L, Marchetti A, Del Pozo MA, Tripodi M. Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells Int. 2016;2016:3543678.
Article
Google Scholar
Yang CY, Chau YP, Chen A, Lee OK, Tarng DC, Yang AH. Targeting cannabinoid signaling for peritoneal dialysis-induced oxidative stress and fibrosis. World J Nephrol. 2017;6:111–8.
Article
Google Scholar
Zhou Q, Yang M, Lan H, Yu X. miR-30a negatively regulates TGF-beta1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am J Pathol. 2013;183:808–19.
Article
CAS
Google Scholar
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.
Article
CAS
Google Scholar
Balzer MS, Helmke A, Ackermann M, Casper J, Dong L, Hiss M, Kiyan Y, Rong S, Timrott K, von Vietinghoff S, et al. Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha. Nephrol Dial Transplant. 2019;34:947–60.
Article
CAS
Google Scholar
Meng XM, Huang XR, Xiao J, Chung AC, Qin W, Chen HY, Lan HY. Disruption of Smad4 impairs TGF-beta/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int. 2012;81:266–79.
Article
CAS
Google Scholar
Phillips AO, Fraser DJ. BMP-7 stops TGF-{beta} in peritoneal fibrosis. Nephrol Dial Transplant. 2010;25:1036–8.
Article
CAS
Google Scholar
Stamm SJ, Doctor J, Rose R, Isbister J, Hickman R. Peritoneal dialysis in the treatment of cystic fibrosis with congestive heart failure. Clin Pediatr (Phila). 1966;5:755–9.
Article
CAS
Google Scholar
Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O, Schett G, Distler JH. Sirt1 regulates canonical TGF-beta signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2016;75:226–33.
Article
CAS
Google Scholar
Sun L, Fan Z, Chen J, Tian W, Li M, Xu H, Wu X, Shao J, Bian Y, Fang M, Xu Y. Corrigendum: transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis. Sci Rep. 2016;6:30513.
Article
CAS
Google Scholar
Han L, Tang Y, Li S, Wu Y, Chen X, Wu Q, Hong K, Li J. Protective mechanism of SIRT1 on Hcy-induced atrial fibrosis mediated by TRPC3. J Cell Mol Med. 2020;24:488–510.
Article
CAS
Google Scholar