Fernandez-Sanchez ME, Brunet T, Röper JC, Farge E. Mechanotransduction’s impact on animal development, evolution, and tumorigenesis. Annu Rev Cell Dev Biol. 2015;31:373–97.
Article
CAS
PubMed
Google Scholar
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev. 2019;11(5):701–2. .
Article
CAS
PubMed
PubMed Central
Google Scholar
Costigan M, Scholz J, Woolf CJ. Neuropathic pain: A maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32 .
Article
CAS
PubMed
PubMed Central
Google Scholar
Blount P, Sukharev SI, Moe PC, Martinac B, Kung C. Mechanosensitive channels of bacteria. Methods Enzymol. 1999;294:458–82.
Article
CAS
PubMed
Google Scholar
Morris CE. Mechanosensitive ion channels. J Membr Biol. 1990;113(2):93–107.
Article
CAS
PubMed
Google Scholar
Brierley SM, Castro J, Harrington AM, Hughes PA, Page AJ, Rychkov G, et al. TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol. 2011;589(Pt 14):3575–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol. 2005;7(2):179–85.
Article
CAS
PubMed
Google Scholar
Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A. 2006;103(44):16586–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng NH, Lee HH, Shiang JC, Ma MC. Transient receptor potential vanilloid type 1 channels act as mechanoreceptors and cause substance P release and sensory activation in rat kidneys. Am J Physiol Renal Physiol. 2008;294(2):F316–25.
Article
CAS
PubMed
Google Scholar
Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2005;103(3):525–35.
Article
Google Scholar
Morita H, Honda A, Inoue R, Ito Y, Abe K, Nelson MT, et al. Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral arterymyocytes. J Pharmacol Sci. 2007;103(4):417–26.
Article
CAS
PubMed
Google Scholar
Numata T, Shimizu T, Okada Y. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol. 2007;292(1):C460–7.
Article
CAS
PubMed
Google Scholar
Kang L, Gao J, Schafer WR, Xie Z, Xu XZ. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron. 2010;67(3):381–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berrout J, Jin M, O’Neil RG. Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood–brain barrier endothelial cells. Brain Res. 2012;1436:1–12.
Article
CAS
PubMed
Google Scholar
Hao J, Padilla F, Dandonneau M, Lavebratt C, Lesage F, Noël J, et al. Kv1.1 channels act as mechanical brake in the senses of touch and pain. Neuron. 2013;77(5):899–914.
Article
CAS
PubMed
Google Scholar
Zhao H, Sokabe M. Tuning the mechanosensitivity of a BK channel by changing the linker length. Cell Res. 2008;18(8):871–8.
Article
CAS
PubMed
Google Scholar
Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E. Mechano-oracidstimulation,two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem. 1999;274(38):26691–6.
Article
CAS
PubMed
Google Scholar
Brohawn SG, del Marmol J. MacKinnon R Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K + ion channel. Science. 2012;335(6067):436–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin W, Laitko U, Juranka PF, Morris CE. Dual stretch responses of mHCN2 pacemaker channels: accelerated activation, accelerated deactivation. Biophys J. 2007;92(5):1559–72.
Article
CAS
PubMed
Google Scholar
Beyder A, Rae JL, Bernard C, Strege PR, Sachs F, Farrugia G. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol. 2010;588(Pt 24):4969–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kraichely RE, Strege PR, Sarr MG, Kendrick ML, Farrugia G. Lysophosphatidyl choline modulates mechanosensitive L-type Ca 2 + current in circular smooth muscle cells from human jejunum. Am J Physiol Gastrointest Liver Physiol. 2009;296(4):G833–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calabrese B, Tabarean IV, Juranka P, Morris CE. Mechanosensitivity of N-type calcium channel currents. Biophys J. 2002;83(5):2560–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilaire C, Lucas O, Valmier J, Scamps F. Neurotrophin-4 modulates the mechanotransducer Cav3.2 T-type calcium current in mice down-hair neurons. Biochem J. 2012;441(1):463–71.
Article
CAS
PubMed
Google Scholar
Zhang WK, Wang D, Duan Y, Loy MM, Chan HC, Huang P. Mechanosensitive gating of CFTR. Nat Cell Biol. 2010;12(5):507–12.
Article
CAS
PubMed
Google Scholar
Hong K, Driscoll M. A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neuro-degeneration in C. elegans. Nature. 1994;367(6462):470–3.
Article
CAS
PubMed
Google Scholar
Arnadóttir J, O’Hagan R, Chen Y, Goodman MB, Chalfie M. The DEG/ENaC protein MEC-10 regulates the transduction channel complex in Caenorhabditis elegans touch receptor neurons. J Neurosci. 2011;31(35):12695–704.
Article
PubMed
PubMed Central
CAS
Google Scholar
McIlwrath SL, Hu J, Anirudhan G, Shin JB, Lewin GR. The sensory mechanotransduction ion channel ASIC2 (acid sensitive ion channel 2) is regulated by neurotrophin availability. Neuroscience. 2005;131(2):499–511.
Article
CAS
PubMed
Google Scholar
Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, et al. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron. 2013;79(3):504–15.
Article
CAS
PubMed
Google Scholar
Lamandé SR, Yuan Y, Gresshoff IL, Rowley L, Belluoccio D, Kaluarachchi K, et al. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet. 2011;43(11):1142–6.
Article
PubMed
CAS
Google Scholar
Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotrans-duction in mammalian sensory neurons. Nature Reviews Neuroscience. 2011;12(3):139–53.
Article
CAS
PubMed
Google Scholar
Lumpkin EA, Marshall KL, Nelson AM. The cell biology of touch. J Cell Biol. 2010;191(2):237e248.
Article
CAS
Google Scholar
Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. Heat-evoked activation of the ion channel, TRPV4. J Neurosci. 2002;22(15):6408–14.
Article
PubMed
PubMed Central
Google Scholar
Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels. Science. 2010;330:55–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015;527:64–9.
Article
CAS
PubMed
Google Scholar
Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018;554:487.
Article
CAS
PubMed
Google Scholar
Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. eLife. 2017;6:e33660.
Article
PubMed
PubMed Central
Google Scholar
Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. Structure of the mechanically activated ion channel Piezo1. Nature. 2018;554:481–6.
Article
CAS
PubMed
Google Scholar
Wang L, Zhou H, Zhang M, Liu W, Deng T, Zhao Q, et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature. 2019;573:225–9.
Article
CAS
PubMed
Google Scholar
Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A. Piezo1 links mechanical forces to red blood cell volume. eLife. 2015;4:e07370.
Article
PubMed Central
Google Scholar
Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K, Davey CF, et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1 Nature. 2017;543:118–21.
CAS
PubMed
Google Scholar
Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, et al. Mechanosensation of cyclical force by Piezo1 is essential for innate immunity. Nature. 2019;573:69–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andolfo I, De Rosa G, Errichiello E, Manna F, Rosato BE, Gambale A, et al. PIEZO1 Hypomorphic variants in congenital lymphatic dysplasia cause shape and hydration alterations of red blood cells. Front Physiol. 2019;10:258.
Article
PubMed
PubMed Central
Google Scholar
Zarychanski R, Schulz VP, Houston BL, Maksimova Y, Houston DS, Smith B, et al. Mutations in the mechanotransduction protein Piezo1 are associated with hereditary xerocytosis. Blood. 2012;120:1908–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alper SL. Genetic diseases of PIEZO1 and PIEZO2 dysfunction. Curr Top Membr. 2017;79:97–134.
Article
CAS
PubMed
Google Scholar
Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483:176–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS, Martinac B, et al. Piezo1 channels are inherently mechanosensitive. Cell Rep. 2016;17(7):1739–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P, et al. Piezo1 ion channel pore properties are dictated by C-terminal region. Nat Commun. 2015;6:7223.
Article
PubMed
Google Scholar
Kamajaya A, Kaiser JT, Lee J, Reid M, Rees DC. The structure of a conserved Piezo channel domain reveals a topologically distinct β sandwich fold. Structure. 2014;22:1520–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, et al. Ion Permeation Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels Neuron. 2016;89(6):1248–63.
CAS
PubMed
Google Scholar
Andolfo I, Alper SL, De Franceschi L, Auriemma C, Russo R, De Falco L, et al. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in Piezo1. Blood. 2013;121(19):3925–35.
Article
CAS
PubMed
Google Scholar
Zhang T, Chi S, Jiang F, Zhao Q, Xiao B. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat Commun. 2017;8(1):1797.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewis AH, Grandl J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. Elife. 2015;4:e12088.
Article
PubMed
PubMed Central
Google Scholar
Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun. 2016;7:10366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taberner FJ, Prato V, Schaefer I, Schrenk-Siemens K, Heppenstall PA, Lechner SG. Structure-guided examination of the mechanogating mechanism of Piezo2. Proc Natl Acad Sci U S A. 2019;116(28):14260–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bae C, Sachs F, Gottlieb PA. Protonation of the Human PIEZO1 Ion Channel Stabilizes Inactivation. J Biol Chem. 2015;290(8):5167–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019;573(7773):230–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haselwandter CA, MacKinnon R. Piezo’s membrane footprint and its contribution to mechanosensitivity. Elife. 2018;7:e41968.
Article
PubMed
PubMed Central
Google Scholar
Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F. Desensitization of Mechano-Gated K2P Channels. Proc Natl Acad Sci U S A. 2006;103(18):6859–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J, et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated Piezo1 ion channels. Nat Commun. 2013;4:1884.
Article
PubMed
CAS
Google Scholar
Spier I, Kerick M, Drichel D, Horpaopan S, Altmüller J, Laner A, et al. Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis. Fam Cancer. 2016;15:281–8.
Article
CAS
PubMed
Google Scholar
Fotiou E, Martin-Almedina S, Simpson MA, Lin S, Gordon K, Brice G, et al. Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat Commun. 2015;6:8085.
Article
PubMed
Google Scholar
Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, et al. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat Commun. 2015;6:8329.
Article
CAS
PubMed
Google Scholar
Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J, et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun. 2013;4:1884.
Article
PubMed
CAS
Google Scholar
McMillin MJ, Beck AE, Chong JX, Shively KM, Buckingham KJ, Gildersleeve HI, et al. Mutations in PIEZO2 cause Gordon syndrome, Marden–Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet. 2014;94(5):734–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coste B, Houge G, Murray MF, Stitziel N, Bandell M, Giovanni MA, et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal arthrogryposis. Proc Natl Acad Sci USA. 2013;110(12):4667–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okubo M, Fujita A, Saito Y, Komaki H, Ishiyama A, Takeshita E, et al. A family of distal arthrogryposis type5 due to a novel PIEZO2 mutation. Am J Med Genet A. 2015;167A(5):1100–6.
Article
PubMed
CAS
Google Scholar
Wu J, Young M, Lewis AH, Martfeld AN, Kalmeta B, Grandl J. Inactivation of Mechanically Activated Piezo1 Ion Channels Is Determined by the C-Terminal Extracellular Domain and the Inner Pore Helix. Cell Rep. 2017;21(9):2357–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng W, Gracheva EO, Bagriantsev SN. A Hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. Elife. 2019;10:e44003.
Article
Google Scholar
Lewis AH, Grandl J. Inactivation Kinetics and Mechanical Gating of Piezo1 Ion Channels Depend on Subdomains within the Cap. Cell Rep. 2020;30(3):870–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Del Mármol JI, Touhara KK, Croft G, MacKinnon R. Piezo1 forms a slowly-inactivating mechanosensory channel in mouse embryonic stem cells. Elife. 2018;7:e33149.
Article
PubMed
PubMed Central
Google Scholar
Shi J, Hyman AJ, De Vecchis D, Chong J, Lichtenstein L, Futers TS, et al. Sphingomyelinase Disables Inactivation in Endogenous PIEZO1 Channels. Cell Rep. 2020;33(1):108225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson EO, Schneider ER, Matson JD, Gracheva EO, Bagriantsev SN. TMEM150C/Tentonin3 is a regulator of mechano-gated ion channels. Cell Rep. 2018;23(3):701–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubin AE, Schmidt M, Mathur J, Petrus MJ, Xiao B, Coste B, et al. Inflammatory signals enhance piezo2-mediated mechanosensitive currents. Cell Rep. 2012;2(3):511–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eijkelkamp N, Linley JE, Torres JM, Bee L, Dickenson AH, Gringhuis M, et al. A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun. 2013;4:1682.
Article
CAS
PubMed
Google Scholar
Gottlieb PA, Sachs F. Piezo1: properties of a cation selective mechanical channel. Channels. 2012;6(4):214–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia Z, Ikeda R, Ling J, Gu JG. GTP-dependent run-up of Piezo2-type mechanically activated currents in rat dorsal root ganglion neurons. Mol Brain. 2013;6:57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC, Cordero-Morales JF, et al. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun. 2019;10(1):1200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Szczot M, Pogorzala LA, Solinski HJ, Young L, Yee P, Le Pichon CE, et al. Cell-type-specific splicing of Piezo2 regulates mechanotransduction. Cell Rep. 2017;21(10):2760–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng W, Nikolaev YA, Gracheva EO, Bagriantsev SN. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors. Proc Natl Acad Sci USA. 2019;116(35):17547–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Chi S, Guo H, Li G, Wang L, Zhao Q, et al. A lever-like transduction pathway for long-distance chemical-and mechano-gating of the mechanosensitive Piezo1 channel. Nat Commun. 2018;9(1):1300.
Article
PubMed
PubMed Central
CAS
Google Scholar
Botello-Smith WM, Jiang W, Zhang H, Ozkan AD, Lin YC, Pham CN, et al. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat Commun. 2019;10(1):4503.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bae C, Sachs F, Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry. 2011;26(29):6295–300. 50(.
Article
CAS
Google Scholar
Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol. 2000;115(5):583–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suchyna TM, Tape SE, Koeppe RE 2nd, Andersen OS, Sachs F. Gottlieb PA. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature. 2004;430(6996):235–40.
Article
CAS
PubMed
Google Scholar
Evans EL, Cuthbertson K, Endesh N, Rode B, Blythe NM, Hyman AJ, et al. Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation. Br J Pharmacol. 2018;175(10):1744–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, et al. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling. Cell Rep. 2015;13(6):1161–71.
Article
CAS
PubMed
Google Scholar
Gaub BM, Müller DJ. Mechanical Stimulation of Piezo1 Receptors Depends on Extracellular Matrix Proteins and Directionality of Force. Nano Lett. 2017;17(3):2064–72.
Article
CAS
PubMed
Google Scholar
Qiu Z, Guo J, Kala S, Zhu J, Xian Q, Qiu W, et al. The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. iScience. 2019;21:448–57.
Article
PubMed
PubMed Central
Google Scholar
Douguet D, Patel A, Xu A, Vanhoutte PM. Honoré E. l. Piezo ion channels in cardiovascular mechanobiology. Trends Pharmacol Sci. 2019;40(12):956–70.
Article
CAS
PubMed
Google Scholar
Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, et al. Piezol integration of vascular architecture with physiological force Nature. 2014;515(7526):279–82.
CAS
Google Scholar
Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A. 2014;111(28):10347–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nonomura K, Lukacs V, Sweet DT, Goddard LM, Kanie A, Whitwam T, et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc Natl Acad Sci USA. 2018;115(50):12817–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.
Article
CAS
PubMed
Google Scholar
Kang H, Hong Z, Zhong M, Klomp J, Bayless KJ, Mehta, et al. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am J Physiol Cell Physiol. 2019;316(1):C92–103.
Article
CAS
PubMed
Google Scholar
Albarrán-Juárez J, Iring A, Wang S, Joseph S, Grimm M, Strilic B, et al. Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. J Exp Med. 2018;215(10):655–2672.
Article
CAS
Google Scholar
Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75:519–60.
Article
CAS
PubMed
Google Scholar
Félétou M, Köhler R, Vanhoutte PM. Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment. Curr Hypertens Rep. 2010;12(4):267–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Busse R, Fleming I. Regulation of endotheliumderived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci. 2003;24(1):24–9.
Article
CAS
PubMed
Google Scholar
Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S, et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126(12):4527–36.
Article
PubMed
PubMed Central
Google Scholar
Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, et al. Shear stress–induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129(7):2775–91.
Article
PubMed
PubMed Central
Google Scholar
John L, Ko NL, Gokin A, Gokina N, Mandalà M, Osol G. The Piezo1 cation channel mediates uterine artery shear stress mechanotransduction and vasodilation during rat pregnancy. Am J Physiol Heart Circ Physiol. 2018;315(4):H1019–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lhomme A, Gilbert G, Pele T, Deweirdt J, Henrion D, Baudrimont I. et,al.Stretch-activated Piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries. Am J Respir Cell Mol Biol. 2019;60(6):650–8.
Article
CAS
PubMed
Google Scholar
Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ, Lotteau SJ, et al. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat Commun. 2017;8(1):350.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wehrwein EA, Joyner MJ. Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. Handb Clin Neurol. 2013;117:89–102.
Article
PubMed
Google Scholar
Kirchheim HR. Systemic arterial baroreceptor reflexes. Physiol Rev. 1976;56(1):100–77.
Article
CAS
PubMed
Google Scholar
Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science. 2018;362(6413):464–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol. 1987;49:177–92.
Article
CAS
PubMed
Google Scholar
Price AK, Fischer DJ, Martin RS, Spence DM. Deformation-induced release of ATP from erythrocytes in a poly (dimethylsiloxane)-based microchip with channels that mimic resistance vessels. Anal Chem. 2004;76(16):4849–55.
Article
CAS
PubMed
Google Scholar
Lew VL, Tiffert T. On the Mechanism of human red blood cell longevity: roles of calcium, the sodium pump, PIEZO1, and gardos channels. Front Physiol. 2017;8:977.
Article
PubMed
PubMed Central
Google Scholar
Bae C, Gnanasambandam R, Nicolai C, Sachs F, Gottlieb PA. Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc Natl Acad Sci USA. 2013;110(12):E1162–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faucherre A, Kissa K, Nargeot J, Mangoni ME, Jopling C. Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica. 2014;99(1):70–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma S, Cahalan S, LaMonte G, Grubaugh ND, Zeng W, Murthy SE, et al. Common PIEZO1 allele in african populations causes RBC dehydration and attenuates plasmodium infection. Cell. 2018;173(2):443–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cinar E, Zhou S, DeCourcey J, Wang Y, Waugh RE, Wan J. Piezo1 regulates mechanotransductive release of ATP from human RBCs. Proc Natl Acad Sci U S A. 2015;112(38):11783–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyler WJ. The mechanobiology of brain function. Nat Rev Neurosci. 2012;13(12):867–78.
Article
CAS
PubMed
Google Scholar
Suter DM, Miller KE. The Emerging Role of Forces in Axonal Elongation. Prog Neurobiol. 2011;94(2):91–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfister BJ, Iwata A, Meaney DF, Smith DH. Extreme Stretch Growth of Integrated AxonsJ Neurosci. 2004;24(36):7978–83.
CAS
Google Scholar
Franze K, Janmey PA, Guck J. Mechanics in neuronal development and repair. Annu Rev Biomed Eng. 2013;15:227–51.
Article
CAS
PubMed
Google Scholar
Koser DE, Thompson AJ, Foster SK, Dwivedy A, Pillai EK, Sheridan GK, et al. Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci. 2016;19(12):1592–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velasco-Estevez M, Gadalla KKE, Liñan-Barba N, Cobb S, Dev KK, Sheridan GK. Inhibition of Piezo1 Attenuates Demyelination in the Central Nervous System. Glia. 2020;68(2):356–75.
Article
PubMed
Google Scholar
Velasco-Estevez M, Mampay M, Boutin H, Chaney A, Warn P, Sharp A, et al. Infection augments expression of mechanosensing Piezo1 channels in amyloid plaque-reactive astrocytes. Front Aging Neurosci. 2018;10:332.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simons M, Nave KA. Oligodendrocytes. Myelination and Axonal Support. Cold Spring Harb Perspect Biol. 2015;8(1):a020479.
Article
PubMed
Google Scholar
Sacco R, Cacci E, Novarino G. Neural stem cells in neuropsychiatric disorders. Curr Opin Neurobiol. 2018;48:131–8.
Article
CAS
PubMed
Google Scholar
Gonzalez R, Hamblin MH, Lee JP. Neural Stem Cell Transplantation and CNS Diseases. CNS Neurol Disord Drug Targets. 2016;15(8):881–6.
Article
CAS
PubMed
Google Scholar
Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14(8):467–73.
Article
CAS
PubMed
Google Scholar
Sun Y, Chen CS, Fu J. Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment. Annu Rev Biophys. 2012;41:519–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pathak MM, Nourse JL, Tran T, Hwe J, Arulmoli J, Le DT, et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc Natl Acad Sci USA. 2014;111(45):16148–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blumenthal NR, Hermanson O, Heimrich B, Shastri VP. Stochastic nanoroughness modulates neuron–astrocyte interactions and function via mechanosensing cation channels. Proc Natl Acad Sci USA. 2014;111(45):16124–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mawe GM, Hoffman JM. Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10(8):564–4.
Article
Google Scholar
Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol. 2017;595(1):79–91.
Article
CAS
PubMed
Google Scholar
Dockray GJ, Varro A, Dimaline R, Wang T. The gastrins: their production and biological activities. Annu Rev Physiol. 2001;63:119–39.
Article
CAS
PubMed
Google Scholar
Frick C, Rettenberger AT, Lunz ML, Breer H. Complex morphology of gastrin-releasing G-cells in theantral region of the mouse stomach. Cell Tissue Res. 2016;366(2):301–10.
Article
CAS
PubMed
Google Scholar
Lang K, Breer H, Frick C. Mechanosensitive ion channel Piezo1 is expressed in antral G cells of murine stomach. Cell Tissue Res. 2018;371(2):251–60.
Article
CAS
PubMed
Google Scholar
Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286–94.
Article
CAS
PubMed
Google Scholar
Mazzuoli G, Schemann M. Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plex- us of the guinea pig ileum. J Physiol. 2009;587(Pt 19):4681–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzuoli-Weber G, Schemann M. Mechanosensitive enteric neurons in the guinea pig gastric corpus. Front Cell Neurosci. 2015;9:430.
PubMed
PubMed Central
Google Scholar
Mazzuoli-Weber G, Kugler EM, Bühler CI, Kreutz F, Demir IE, Ceyhan OG, et al. Piezo proteins: incidence and abundance in the enteric nervous system. Is there a link with mechanosensitivity? Cell Tissue Res. 2019;377(3):281–1.
Article
PubMed
Google Scholar
Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D, et al. Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater. 2019;6(3):129–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitzgerald JB, Jin M, Dean D, Wood DJ, Zheng MH, Grodzinsky AJ. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J Biol Chem. 2004;279(19):19502–11.
Article
CAS
PubMed
Google Scholar
Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci USA. 2014;111(47):E5114–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong M, Komarova Y, Rehman J, Malik AB. Mechanosensing Piezo channels in tissue homeostasis including their role in lungs. Pulm Circ. 2018;8(2):2045894018767393.
Article
PubMed
PubMed Central
CAS
Google Scholar
Friedrich EE, Hong Z, Xiong S, Zhong M, Di A, Rehman J, et al. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc Natl Acad Sci USA. 2019;116(26):12980–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong M, Wu W, Kang H, Hong Z, Xiong S, Gao X, et al. Alveolar stretch activation of endothelial Piezo1 protects adherens junctions and lung vascular barrier. Am J Respir Cell Mol Biol. 2020;62(2):168–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang GP, Xu J, Cao LL, Zeng YH, Chen BX, Yang J, et al. Piezo1 Induced Apoptosis of Type II pneumocytes during ARDS. Respir Res. 2019;20(1):118.
Article
PubMed
PubMed Central
Google Scholar
Diem K, Fauler M, Fois G, Hellmann A, Winokurow N, Schumacher S, et al. Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J. 2020;34(9):12785–804.
Article
CAS
PubMed
Google Scholar
Trippenbach T. Pulmonary reflexes and control of breathing during development. Biol Neonate. 1994;65(3–4):205–10.
Article
CAS
PubMed
Google Scholar
Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541(7636):176–81.
Article
CAS
PubMed
Google Scholar
Chesler AT, Szczot M, Bharucha-Goebel D, Čeko M, Donkervoort S, Laubacher C, et al. The role of PIEZO2 in human mechanosensation. N Engl J Med. 2016;375(14):1355–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delle Vedove A, Storbeck M, Heller R, Hölker I, Hebbar M, Shukla A, et al. Biallelic loss of proprioception-related PIEZO2 causes muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Am J Hum Genet. 2016;99(5):1406–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinbaum S, Duan Y, Satlin LM, Wang T, Weinstein AM. Mechanotransduction in the renal tubule. Am J Physiol Renal Physiol. 2010;299(6):F1220–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM, Kleyman TR, et al. Expression and Distribution of PIEZO1 in the Mouse Urinary Tract. Am J Physiol Renal Physiol. 2019;317:F303–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C, Picard N, et al. Piezo1-dependent Regulation of Urinary Osmolarity. Pflugers Arch. 2016;468(7):1197–206.
Article
CAS
PubMed
Google Scholar
Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, et al. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep. 2013;14(12):1143–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M, Takayama Y, et al. Functional role for Piezo1 in stretch-evoked Ca2 + influx and ATP release in Urothelial cell cultures. J Biol Chem. 2014;289(23):16568–75.
Article
CAS
Google Scholar
Michishita M, Yano K, Tomita KI, Matsuzaki O, Kasahara KI. Piezo1 expression increases in rat bladder after partial bladder outlet obstruction. Life Sci. 2016;166:1–7.
Article
CAS
PubMed
Google Scholar
Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci. 2011;12(3):139–53.
Article
CAS
PubMed
Google Scholar
Lin YT, Chen JC. Dorsal Root Ganglia Isolation and Primary Culture to Study Neurotransmitter Release. J Vis Exp. 2018;6(140):57569.
Google Scholar
Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature. 2014;516(7529):121–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SE, Coste B, Chadha A, Cook B, Patapoutian A. The role of Drosophila Piezo in mechanical nociception. Nature. 2012;483(7388):209–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faucherre A, Nargeot J, Mangoni ME, Jopling C. Piezo2b regulates vertebrate light touch response. J Neurosci. 2013;33(43):17089–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, et al. Epidermal Merkel Cells are Mechanosensory Cells that Tune Mammalian Touch Receptors. Nature. 2014;509(7502):617–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y, Qiu Z, et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature. 2014;509(7502):622–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woo SH, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR, Francisco A, et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci. 2015;18(12):1756–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szczot M, Liljencrantz J, Ghitani N, Barik A, Lam R, Thompson JH, et al. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci Transl Med. 2018;10(462):eaat9892.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murthy SE, Loud MC, Daou I, Marshall KL, Schwaller F, Kühnemund J, et al. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci Transl Med. 2018;10(462):eaat9897.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang M, Wang Y, Geng J, Zhou S, Xiao B. Mechanically Activated Piezo Channels Mediate Touch and Suppress Acute Mechanical Pain Response in Mice. Cell Rep. 2019;26(6):1419–31.
Article
CAS
PubMed
Google Scholar
Arcourt A, Gorham L, Dhandapani R, Prato V, Taberner FJ, Wende H, et al. Touch receptor-derived sensory information alleviates acute pain signaling and fine-tunes nociceptive reflex coordination. Neuron. 2017;93(1):179–93.
Article
CAS
PubMed
Google Scholar
Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci. 2006;26(6):1833–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, La JH, Hamill OP. Piezo1 is selectively expressed in small diameter mouse DRG neurons distinctfrom neurons strongly expressing TRPV1. Front Mol Neurosci. 2019;12:178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikhailov N, Leskinen J, Fagerlund I, Poguzhelskaya E, Giniatullina R, Gafurov O, et al. Mechanosensitive meningeal nociception via Piezo channels: Implications for pulsatile pain in migraine? Neuropharmacology. 2019;149:113–23.
Article
CAS
PubMed
Google Scholar
Fujii S, Tajiri Y, Hasegawa K, Matsumoto S, Yoshimoto RU, Wada H, et al. The TRPV4–AKT axis promotes oral squamous cell carcinoma cell proliferation via CaMKII activation. Lab Invest. 2020;100(2):311–23.
Article
CAS
PubMed
Google Scholar
Hasegawa K, Fujii S, Matsumoto S, Tajiri Y, Kikuchi A, Kiyoshima T. YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation. J Pathol. 2020. https://doi.org/10.1002/path.5553.
Article
PubMed
Google Scholar
Han Y, Liu C, Zhang D, Men H, Huo L, Geng Q, et al. Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle. Int J Oncol. 2019;55(3):629–44.
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Li M, Liu G, Zhang X, Zhi L, Zhao J, et al. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism. J Cancer Res Clin Oncol. 2020;146(5):1139–52.
Article
PubMed
PubMed Central
Google Scholar
Lou W, Liu J, Ding B, Jin L, Xu L, Li X, et al. Five miRNAs-mediated PIEZO2 downregulation, accompanied with activation of Hedgehog signaling pathway, predicts poor prognosis of breast cancer. Aging. 2019;11(9):2628–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aykut B, Chen R, Kim JI, Wu D, Shadaloey SAA, Abengozar R. v, et al. Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Sci Immunol. 2020;5(50):eabb5168.
Article
CAS
PubMed
Google Scholar