Hirano T, Mitchison TJ. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell. 1994;79:449–58. https://doi.org/10.1016/0092-8674(94)90254-2.
Article
CAS
PubMed
Google Scholar
Hirano T, Kobayashi R, Hirano M. Condensins chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila barren protein. Cell. 1997;89:511–21. https://doi.org/10.1016/s0092-8674(00)80233-0.
Article
CAS
PubMed
Google Scholar
Lišková L, Šušor A, Pivoňková K, Sasková A, Karabínová P, Kubelka M. Detection of condensin I and II in maturing pig oocytes. Rep Fertil Dev. 2010;22:644–52. https://doi.org/10.1071/RD09068.
Article
CAS
Google Scholar
Lee J, Ogushi S, Saitou M, Hirano T. Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes. Mol Biol Cell. 2011;22:3465–77. https://doi.org/10.1091/mbc.E11-05-0423.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujiwara T, Tanaka K, Kuroiwa T, Hirano T. Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Mol Biol Cell. 2013;24:2515–27. https://doi.org/10.1091/mbc.E13-04-0208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakamoto T, Sugiyama T, Yamashita T, Matsunaga S. Plant condensin II is required for the correct spatial relationship between centromeres and rDNA arrays. Nucleus. 2019;10:116–25. https://doi.org/10.1080/19491034.2019.1616507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmiesing JA, Gregson HC, Zhou S, Yokomori K. A human condensin complex containing hCAP-C-hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation. Mol Cell Biol. 2000;20:6996–7006. https://doi.org/10.1128/mcb.20.18.6996-7006.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeong FM, Hombauer H, Wendt KS, Hirota T, Mudrak I, Mechtler K, Loregger T, Marchler-Bauer A, Tanaka K, Peters JM, Ogris E. Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Curr Biol. 2003;13:2058–64. https://doi.org/10.1016/j.cub.2003.10.032.
Article
CAS
PubMed
Google Scholar
Kimura K, Cuvier O, Hirano T. Chromosome condensation by a human condensin complex in Xenopus egg extracts. J Biol Chem. 2001;276:5417–20. https://doi.org/10.1074/jbc.C000873200.
Article
CAS
PubMed
Google Scholar
Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell. 2003;115:109–21. https://doi.org/10.1016/s0092-8674(03)00724-4.
Article
CAS
PubMed
Google Scholar
Ono T, Fang Y, Spector DL, HiranoT. Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell. 2004;15:3296–308. https://doi.org/10.1091/mbc.e04-03-0242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM. Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci. 2004;117:6435–45. https://doi.org/10.1242/jcs.01604.
Article
CAS
PubMed
Google Scholar
Onn I, Aono N, Hirano M, Hirano T. Reconstitution and subunit geometry of human condensin complexes. EMBO J. 2007;26:1024–34. https://doi.org/10.1038/sj.emboj.7601562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerlich D, Hirota T, Koch B, Peters JM, Ellenberg J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr Biol. 2006;16:333–44. https://doi.org/10.1016/j.cub.2005.12.040.
Article
CAS
PubMed
Google Scholar
Hirano T. Condensin-based chromosome organization from bacteria to vertebrates. Cell. 2016;164:847–57. https://doi.org/10.1016/j.cell.2016.01.033.
Article
CAS
PubMed
Google Scholar
Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M, Ødegård-Fougner Ø, Lampe M, Ellenberg J. A quantitative map of human Condensins provides new insights into mitotic chromosome architecture. J Cell Biol. 2018;217:2309–28. https://doi.org/10.1083/jcb.201801048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ono T, Sakamoto C, Nakao M, Saitoh N, Hirano T. Condensin II plays an essential role in reversible assembly of mitotic chromosomes in situ. Mol Biol Cell. 2017;28:2875–86. https://doi.org/10.1091/mbc.E17-04-0252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun M, Biggs R, Hornick J, Marko JF. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res. 2018;26:277–95. https://doi.org/10.1007/s10577-018-9584-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi M, Wakai T, Hirota T. Condensin I-mediated mitotic chromosome assembly requires association with chromokinesin KIF4A. Genes Dev. 2016;30:1931–6. https://doi.org/10.1101/gad.282855.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samoshkin A, Arnaoutov A, Jansen LE, Ouspenski I, Dye L, Karpova T, McNally J, Dasso M, Cleveland DW, Strunnikov A. Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLoS ONE. 2009;4(8):e6831. https://doi.org/10.1371/journal.pone.0006831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai L, Wang HZ, Tang W, Liu WG, Hao S, Zeng XL. Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells. Cell Biol Int. 2011;35:735–40. https://doi.org/10.1042/CBI20100646.
Article
PubMed
Google Scholar
Samoshkin A, Dulev S, Loukinov D, Rosenfeld JA, Strunnikov AV. Condensin dysfunction in human cells induces nonrandom chromosomal breaks in anaphase, with distinct patterns for both unique and repeated genomic regions. Chromosoma. 2012;121:191–9. https://doi.org/10.1007/s00412-011-0353-6.
Article
CAS
PubMed
Google Scholar
Abramo K, Valton AL, Venev SV, Ozadam H, Fox AN, Dekker J. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat Cell Biol. 2019;21:1393–402. https://doi.org/10.1038/s41556-019-0406-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ono T, Yamashita D, Hirano T. Condensin II initiates sister chromatid resolution during S phase. J Cell Biol. 2013;200:429–41. https://doi.org/10.1083/jcb.201208008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takemoto A, Kimura K, Yanagisawa J, Yokoyama S, Hanaoka F. Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J. 2006;25:5339–48. https://doi.org/10.1038/sj.emboj.7601394.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnhart-Dailey MC, Trivedi P, Stukenberg PT, Foltz DR. HJURP interaction with the condensin II complex during G1 promotes CENP-A deposition. Mol Biol Cell. 2017;28:54–64. https://doi.org/10.1091/mbc.E15-12-0843.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, Neumann LM, Krebs A, Reis A, Sperling K, Neitzel H, Jackson AP. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet. 2004;75:261–6. https://doi.org/10.1086/422855.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trimborn M, Schindler D, Neitzel H, Hirano T. Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II. Cell Cycle. 2006;5:322–6. https://doi.org/10.4161/cc.5.3.2412.
Article
CAS
PubMed
Google Scholar
Wood JL, Liang Y, Li K, Chen J. Microcephalin/MCPH1 associates with the condensin II complex to function in homologous recombination repair. J Biol Chem. 2008;283:29586–92. https://doi.org/10.1074/jbc.M804080200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D, Neitzel H, Trimborn M, Hirano T. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J Cell Biol. 2011;194:841–54. https://doi.org/10.1083/jcb.201106141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heale JT, Ball AR Jr, Schmiesing JA, Kim JS, Kong X, Zhou S, Hudson DF, Earnshaw WC, Yokomori K. Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol Cell. 2006;21:837–48. https://doi.org/10.1016/j.molcel.2006.01.036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong X, Stephens J, Ball AR Jr, Heale JT, Newkirk DA, Berns MW, Yokomori K. Condensin I recruitment to base damage-enriched DNA lesions is modulated by PARP. 1PLoS One. 2011;6(8):e23548. https://doi.org/10.1371/journal.pone.0023548.
Article
CAS
Google Scholar
Zhang T, Si-Hoe SL, Hudson DF, Surana U. Condensin recruitment to chromatin is inhibited by Chk2 kinase in response to DNA damage. Cell Cycle. 2016;15:3454–70. https://doi.org/10.1080/15384101.2016.1249075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward JR, Vasu K, Deutschman E, Halawani D, Larson PA, Zhang D, Willard B, Fox PL, Moran JV, Longworth MS. Condensin II and GAIT complexes cooperate to restrict LINE-1 retrotransposition in epithelial cells. PLoS Genet. 2017;13:e1007051. https://doi.org/10.1371/journal.pgen.1007051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang K, Jia J, Wu C, Yao M, Li M, Jin J, Jiang C, Cai Y, Pei D, Pan G, Yao H. Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem. 2013;288:26067–77. https://doi.org/10.1074/jbc.M113.486175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoyama Y, Zhu H, Zhang R, Noma K. A novel role for the condensin II complex in cellular senescence. Cell Cycle. 2015;14:2160–70. https://doi.org/10.1080/15384101.2015.1049778.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwasaki O, Tanizawa H, Kim KD, Kossenkov A, Nacarelli T, Tashiro S, Majumdar S, Showe LC, Zhang R, Noma KI. Involvement of condensin in cellular senescence through gene regulation and compartmental reorganization. Nat Commun. 2019;10:5688. https://doi.org/10.1038/s41467-019-13604-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parry AJ, Narita M. Old cells, new tricks: chromatin structure in senescence. Mamm Genome. 2016;27:320–31. https://doi.org/10.1007/s00335-016-9628-9.
Article
PubMed
PubMed Central
Google Scholar
Kim YH, Park TJ. (2019) Cellular senescence in cancer. BMB Rep 52:42–6. https://doi.org/10.5483/BMBRep.2019.52.1.295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salama R, Sadaie M, Hoare M, Narita M. (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114. https://doi.org/10.1101/gad.235184.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng Q, Gao J, Zhu H, He H, Lu Z, Hong M, Zhou H. (2018) The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence. Biochem Biophys Res Commun 505:1112–20. https://doi.org/10.1016/j.bbrc.2018.10.065.
Article
CAS
PubMed
Google Scholar
Lee S, Lee JS. Cellular senescence: a promising strategy for cancer therapy. BMB Rep. 2019;52:35–41. https://doi.org/10.5483/BMBRep.2019.52.1.294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602. https://doi.org/10.1016/s0092-8674(00)81902-9.
Article
CAS
PubMed
Google Scholar
Gorgoulis VG, Halazonetis TD. Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol. 2010;22:816–27. https://doi.org/10.1016/j.ceb.2010.07.013.
Article
CAS
PubMed
Google Scholar
de Magalhães JP, Passos JF. Stress, cell senescence and organismal ageing. Mech Ageing Dev. 2018;170:2–9. https://doi.org/10.1016/j.mad.2017.07.001.
Article
CAS
PubMed
Google Scholar
Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 1999;59:3761–7.
CAS
PubMed
Google Scholar
Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene. 1999;18:4808–18. https://doi.org/10.1038/sj.onc.1203078.
Article
CAS
PubMed
Google Scholar
Bojko A, Czarnecka-Herok J, Charzynska A, Dabrowski M, Sikora E. Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents. Cells. 2019;8:1501. https://doi.org/10.3390/cells8121501.
Article
CAS
PubMed Central
Google Scholar
Huang B, Wang B, Yuk-Wai Lee W, Pong UK, Leung KT, Li X, Liu Z, Chen R, Lin JC, Tsang LL, Liu B, Ruan YC, Chan HC, Li G, Jiang X. KDM3A and KDM4C regulate mesenchymal stromal cell senescence and bone aging via condensin-mediated heterochromatin reorganization. iScience. 2019;21:375–90. https://doi.org/10.1016/j.isci.2019.10.041.
Article
CAS
PubMed
PubMed Central
Google Scholar
George CM, Bozler J, Nguyen HQ, Bosco G. (2014) Condensins are required for maintenance of nuclear architecture. Cells 3:865–82. https://doi.org/10.3390/cells3030865.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito Y, Narita M. The expanding territories of condensin II. Cell Cycle. 2015;14:2723–4. https://doi.org/10.1080/15384101.2015.1063356.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace HA, Rana V, Nguyen HQ, Bosco G. Condensin II subunit NCAPH2 associates with shelterin protein TRF1 and is required for telomere stability. J Cell Physiol. 2019;234:20755–68. https://doi.org/10.1002/jcp.28681.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabello OA, Eliseeva E, He WG, Youssoufian H, Plon SE, Brinkley BR, Belmont JW. Cell cycle-dependent expression and nucleolar localization of hCAP-H. Mol Biol Cell. 2001;12:3527–37. https://doi.org/10.1091/mbc.12.11.3527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Paulson JR, Bakhrebah M, Kim JH, Nowell C, Kalitsis P, Hudson DF. Condensin I and II behaviour in interphase nuclei and cells undergoing premature chromosome condensation. Chromosome Res. 2016;24:243–69. https://doi.org/10.1007/s10577-016-9519-7.
Article
CAS
PubMed
Google Scholar
Xing X, Mroß C, Hao L, Munck M, Herzog A, Mohr C, Unnikannan CP, Kelkar P, Noegel AA, Eichinger L, Neumann S. Nesprin-2 interacts with condensin component SMC2. Int J Cell Biol. 2017;2017:8607532. https://doi.org/10.1155/2017/8607532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swygert SG, Kim S, Wu X, Fu T, Hsieh TH, Rando OJ, Eisenman RN, Shendure J, McKnight JN, Tsukiyama T. Condensin-dependent chromatin compaction represses transcription globally during quiescence. Mol Cell. 2019;73:533–46.e4. https://doi.org/10.1016/j.molcel.2018.11.020.
Article
CAS
PubMed
Google Scholar
Matson JP, House AM, Grant GD, Wu H, Perez J, Cook JG. Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence. J Cell Biol. 2019;218:2169–84. https://doi.org/10.1083/jcb.201902143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gosling KM, Makaroff LE, Theodoratos A, Kim YH, Whittle B, Rui L, Wu H, Hong NA, Kennedy GC, Fritz JA, Yates AL, Goodnow CC, Fahrer AM. A mutation in a chromosome condensin II subunit, kleisin beta, specifically disrupts T cell development. Proc Natl Acad Sci U S A. 2007;104:12445–50. https://doi.org/10.1073/pnas.0704870104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gosling KM, Goodnow CC, Verma NK, Fahrer AM. Defective T-cell function leading to reduced antibody production in a kleisin-beta mutant mouse. Immunology. 2008;125:208–17. https://doi.org/10.1111/j.1365-2567.2008.02831.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rawlings JS, Gatzka M, Thomas PG, Ihle JN. Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J. 2011;30:263–76. https://doi.org/10.1038/emboj.2010.314.
Article
CAS
PubMed
Google Scholar
Woodward J, Taylor GC, Soares DC, Boyle S, Sie D, Read D, Chathoth K, Vukovic M, Tarrats N, Jamieson D, Campbell KJ, Blyth K, Acosta JC, et al. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability. Genes Dev. 2016;30:2173–86. https://doi.org/10.1101/gad.284562.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swygert SG, Tsukiyama T. Unraveling quiescence-specific repressive chromatin domains. Curr Genet. 2019;65:1145–51. https://doi.org/10.1007/s00294-019-00985-9.
Article
CAS
PubMed
Google Scholar
Wang HZ, Yang SH, Li GY, Cao X. Subunits of human condensins are potential therapeutic targets for cancers. Cell Div. 2018;13:2. https://doi.org/10.1186/s13008-018-0035-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoare MW, Narita M. The power behind the throne: senescence and the hallmarks of cancer. Annu Rev Cancer Biol. 2018;2:175–94. https://doi.org/10.1146/annurev-cancerbio-030617-050352.
Article
Google Scholar
Chan ASL, Narita M. Short-term gain, long-term pain: the senescence life cycle and cancer. Genes Dev. 2019;33:127–43. https://doi.org/10.1101/gad.320937.118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, Dobke M, Rosenfeld MG, Jordan IK, et al. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle. 2011;10:3016–30. https://doi.org/10.4161/cc.10.17.17543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Potts PR, Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol. 2007;14:581–90. https://doi.org/10.1038/nsmb1259.
Article
CAS
PubMed
Google Scholar
Min J, Wright WE, Shay JW. Alternative lengthening of telomeres mediated by mitotic DNA synthesis engages break-induced replication processes. Mol Cell Biol. 2017;37:e00226-17. https://doi.org/10.1128/MCB.00226-17.
Article
PubMed
PubMed Central
Google Scholar
Chavez A, George V, Agrawal V, Johnson FB. Sumoylation and the structural maintenance of chromosomes (Smc) 5/6 complex slow senescence through recombination intermediate resolution. J Biol Chem. 2010;285:11922–30. https://doi.org/10.1074/jbc.M109.041277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowley MJ, Lyu X, Rana V, Ando-Kuri M, Karns R, Bosco G, Corces VG. Condensin II counteracts cohesin and RNA polymerase II in the establishment of 3D chromatin organization. Cell Rep. 2019;26(11):2890–903.e3. https://doi.org/10.1016/j.celrep.2019.01.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Yanagida M. Suppressor screening reveals common kleisin-hinge interaction in condensin and cohesin, but different modes of regulation. Proc Natl Acad Sci USA. 2019;116:10889–98. https://doi.org/10.1073/pnas.1902699116.
Article
CAS
PubMed
Google Scholar
Tapia-Alveal C, Lin SJ, O’Connell MJ. Functional interplay between cohesin and Smc5/6 complexes. Chromosoma. 2014;123:437–45. https://doi.org/10.1007/s00412-014-0474-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallego-Paez LM. Tanaka H, Bando M. Takahashi M, Nozaki N. Nakato R, Shirahige K. Hirota T (2014) Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol Biol Cell 25:302 – 17. https://doi.org/10.1091/mbc.E13-01-0020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pryzhkova MV, Jordan PW. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. J Cell Sci. 2016;129:1619–34. https://doi.org/10.1242/jcs.179036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swanson EC, Rapkin LM, Bazett-Jones DP, Lawrence JB. Unfolding the story of chromatin organization in senescent cells. Nucleus. 2015;6(4):254–60. https://doi.org/10.1080/19491034.2015.1057670.
Article
PubMed
PubMed Central
Google Scholar
Graziano S, Gonzalo S. Mechanisms of oncogene-induced genomic instability. Biophys Chem. 2017;225:49–57. https://doi.org/10.1016/j.bpc.2016.11.008.
Article
CAS
PubMed
Google Scholar
Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z, Capell BC, Xu C, Xu M, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550:402–6. https://doi.org/10.1038/nature24050.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Ruiten MS, Rowland BD. SMC Complexes: universal DNA looping machines with distinct regulators. Trends Genet. 2018;34:477–87. https://doi.org/10.1016/j.tig.2018.03.003.
Article
CAS
PubMed
Google Scholar
Hassler M. Shaltiel IA, Haering CH. (2018) Towards a unified model of SMC complex function. Curr Biol 28:R1266-81. https://doi.org/10.1016/j.cub.2018.08.034.
Article
CAS
Google Scholar
Marko JF. De Los Rios P, Barducci A, Gruber S. (2019) DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Nucleic Acids Res 47:6956–72. https://doi.org/10.1093/nar/gkz497.
Article
CAS
PubMed
PubMed Central
Google Scholar