Smith KC. Dose dependent decrease in extractability of DNA from bacteria following irradiation with ultraviolet light or with visible light plus dye. Biochem Biophys Res Commun. 1962;8:157–63.
Article
CAS
PubMed
Google Scholar
Barker S, Weinfeld M, Murray D. DNA–protein crosslinks: their induction, repair, and biological consequences. Mutat Res. 2005;589(2):111–35.
Article
CAS
PubMed
Google Scholar
Costa M, Zhitkovich A, Gargas M, Paustenbach D, Finley B, Kuykendall J, Billings R, Carlson TJ, Wetterhahn K, Xu J, et al. Interlaboratory validation of a new assay for DNA–protein crosslinks. Mutat Res. 1996;369(1–2):13–21.
Article
CAS
PubMed
Google Scholar
Zwelling LA, Anderson T, Kohn KW. DNA–protein and DNA interstrand cross-linking by cis- and trans-platinum(II) diamminedichloride in L1210 mouse leukemia cells and relation to cytotoxicity. Cancer Res. 1979;39(2 Pt 1):365–9.
CAS
PubMed
Google Scholar
Pommier Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev. 2009;109(7):2894–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Graaf B, Clore A, McCullough AK. Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA–protein crosslinks. DNA Repair (Amst). 2009;8(10):1207–14.
Article
CAS
Google Scholar
Neale MJ, Pan J, Keeney S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature. 2005;436(7053):1053–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salem AM, Nakano T, Takuwa M, Matoba N, Tsuboi T, Terato H, Yamamoto K, Yamada M, Nohmi T, Ide H. Genetic analysis of repair and damage tolerance mechanisms for DNA–protein cross-links in Escherichia coli. J Bacteriol. 2009;191(18):5657–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minko IG, Zou Y, Lloyd RS. Incision of DNA–protein crosslinks by UvrABC nuclease suggests a potential repair pathway involving nucleotide excision repair. Proc Natl Acad Sci U S A. 2002;99(4):1905–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano T, Morishita S, Katafuchi A, Matsubara M, Horikawa Y, Terato H, Salem AM, Izumi S, Pack SP, Makino K, et al. Nucleotide excision repair and homologous recombination systems commit differentially to the repair of DNA–protein crosslinks. Mol Cell. 2007;28(1):147–58.
Article
CAS
PubMed
Google Scholar
Baker DJ, Wuenschell G, Xia L, Termini J, Bates SE, Riggs AD, O’Connor TR. Nucleotide excision repair eliminates unique DNA–protein cross-links from mammalian cells. J Biol Chem. 2007;282(31):22592–604.
Article
CAS
PubMed
Google Scholar
Pommier Y, Huang SY, Gao R, Das BB, Murai J, Marchand C. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst). 2014;19:114–29.
Article
CAS
Google Scholar
Stingele J, Schwarz MS, Bloemeke N, Wolf PG, Jentsch S. A DNA-dependent protease involved in DNA–protein crosslink repair. Cell. 2014;158(2):327–38.
Article
CAS
PubMed
Google Scholar
Lopez-Mosqueda J, Maddi K, Prgomet S, Kalayil S, Marinovic-Terzic I. Terzic J. Dikic I: SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA–protein crosslinks. Elife; 2016. p. 5.
Google Scholar
Stingele J, Bellelli R, Alte F, Hewitt G, Sarek G, Maslen SL, Tsutakawa SE, Borg A, Kjaer S, Tainer JA, et al. Mechanism and regulation of DNA–protein crosslink repair by the DNA-dependent metalloprotease SPRTN. Mol Cell. 2016;64(4):688–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaz B, Popovic M, Newman JA, Fielden J, Aitkenhead H, Halder S, Singh AN, Vendrell I, Fischer R, Torrecilla I, et al. Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA–protein crosslink repair. Mol Cell. 2016;64(4):704–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maskey RS, Flatten KS, Sieben CJ, Peterson KL, Baker DJ, Nam HJ, Kim MS, Smyrk TC, Kojima Y, Machida Y, et al. Spartan deficiency causes accumulation of topoisomerase 1 cleavage complexes and tumorigenesis. Nucleic Acids Res. 2017;45(8):4564–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morocz M, Zsigmond E, Toth R, Enyedi MZ, Pinter L, Haracska L. DNA-dependent protease activity of human Spartan facilitates replication of DNA–protein crosslink-containing DNA. Nucleic Acids Res. 2017;45(6):3172–88.
CAS
PubMed
PubMed Central
Google Scholar
Quievryn G, Zhitkovich A. Loss of DNA–protein crosslinks from formaldehyde-exposed cells occurs through spontaneous hydrolysis and an active repair process linked to proteosome function. Carcinogenesis. 2000;21(8):1573–80.
Article
CAS
PubMed
Google Scholar
Gao R, Schellenberg MJ, Huang SY, Abdelmalak M, Marchand C, Nitiss KC, Nitiss JL, Williams RS, Pommier Y. Proteolytic degradation of topoisomerase II (Top2) enables the processing of Top2.DNA and Top2.RNA covalent complexes by tyrosyl-DNA-phosphodiesterase 2 (TDP2). J Biol Chem. 2014;289(26):17960–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano T, Ouchi R, Kawazoe J, Pack SP, Makino K, Ide H. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription. J Biol Chem. 2012;287(9):6562–72.
Article
CAS
PubMed
Google Scholar
Nakano T, Miyamoto-Matsubara M, Shoulkamy MI, Salem AM, Pack SP, Ishimi Y, Ide H. Translocation and stability of replicative DNA helicases upon encountering DNA–protein cross-links. J Biol Chem. 2013;288(7):4649–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaz B, Popovic M, Ramadan K. DNA–Protein crosslink proteolysis repair. Trends Biochem Sci. 2017;42(6):483–95.
Article
CAS
PubMed
Google Scholar
Stingele J, Habermann B, Jentsch S. DNA–protein crosslink repair: proteases as DNA repair enzymes. Trends Biochem Sci. 2015;40(2):67–71.
Article
CAS
PubMed
Google Scholar
Maslov AY, Lee M, Gundry M, Gravina S, Strogonova N, Tazearslan C, Bendebury A, Suh Y, Vijg J. 5-aza-2′-deoxycytidine-induced genome rearrangements are mediated by DNMT1. Oncogene. 2012;31(50):5172–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pommier Y, Marchand C. Interfacial inhibitors: targeting macromolecular complexes. Nat Rev Drug Discov. 2011;11(1):25–36.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9(5):338–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.
Article
CAS
PubMed
Google Scholar
Costa M, Zhitkovich A, Harris M, Paustenbach D, Gargas M. DNA–protein cross-links produced by various chemicals in cultured human lymphoma cells. J Toxicol Environ Health. 1997;50(5):433–49.
Article
CAS
PubMed
Google Scholar
Xie MZ, Shoulkamy MI, Salem AM, Oba S, Goda M, Nakano T, Ide H. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets. Mutat Res. 2016;786:41–51.
Article
CAS
PubMed
Google Scholar
Ide H, Nakano T, Salem AMH, Shoulkamy MI. DNA–protein cross-links: formidable challenges to maintaining genome integrity. DNA Repair. 2018;71:190–7.
Article
CAS
PubMed
Google Scholar
Brooks PJ, Zakhari S. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis. Environ Mol Mutagen. 2014;55(2):77–91.
Article
CAS
PubMed
Google Scholar
Szende B, Tyihak E. Effect of formaldehyde on cell proliferation and death. Cell Biol Int. 2010;34(12):1273–82.
Article
CAS
PubMed
Google Scholar
Lu K, Ye W, Zhou L, Collins LB, Chen X, Gold A, Ball LM, Swenberg JA. Structural characterization of formaldehyde-induced cross-links between amino acids and deoxynucleosides and their oligomers. J Am Chem Soc. 2010;132(10):3388–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano T, Xu X, Salem AMH, Shoulkamy MI, Ide H. Radiation-induced DNA–protein cross-links: mechanisms and biological significance. Free Radic Biol Med. 2017;107:136–45.
Article
CAS
PubMed
Google Scholar
Zhang H, Koch CJ, Wallen CA, Wheeler KT. Radiation-induced DNA damage in tumors and normal tissues III. Oxygen dependence of the formation of strand breaks and DNA–protein crosslinks. Radiat Res. 1995;142(2):163–8.
Article
CAS
PubMed
Google Scholar
Fornace AJ Jr, Little JB. DNA crosslinking induced by x-rays and chemical agents. Biochim Biophys Acta. 1977;477(4):343–55.
Article
CAS
PubMed
Google Scholar
Stingele J, Bellelli R, Boulton SJ. Mechanisms of DNA–protein crosslink repair. Nat Rev Mol Cell Biol. 2017;18(9):563–73.
Article
CAS
PubMed
Google Scholar
Fielden J, Ruggiano A, Popovic M, Ramadan K. DNA protein crosslink proteolysis repair: from yeast to premature ageing and cancer in humans. DNA Repair. 2018;71:198–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishioka H. Lethal and mutagenic action of formaldehyde in Hcr + and Hcr − strains of Escherichia coli. Mutat Res. 1973;17(2):261–5.
Article
CAS
PubMed
Google Scholar
Takahashi K, Morita T, Kawazoe Y. Mutagenic characteristics of formaldehyde on bacterial systems. Mutat Res. 1985;156(3):153–61.
Article
CAS
PubMed
Google Scholar
Bhagwat AS, Roberts RJ. Genetic analysis of the 5-azacytidine sensitivity of Escherichia coli K-12. J Bacteriol. 1987;169(4):1537–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lal D, Som S, Friedman S. Survival and mutagenic effects of 5-azacytidine in Escherichia coli. Mutat Res. 1988;193(3):229–36.
CAS
PubMed
Google Scholar
Fornace AJ Jr. Detection of DNA single-strand breaks produced during the repair of damage by DNA–protein cross-linking agents. Cancer Res. 1982;42(1):145–9.
CAS
PubMed
Google Scholar
Nakano T, Katafuchi A, Matsubara M, Terato H, Tsuboi T, Masuda T, Tatsumoto T, Pack SP, Makino K, Croteau DL, et al. Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA–protein cross-links in mammalian cells. J Biol Chem. 2009;284(40):27065–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ridpath JR, Nakamura A, Tano K, Luke AM, Sonoda E, Arakawa H, Buerstedde JM, Gillespie DA, Sale JE, Yamazoe M, et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res. 2007;67(23):11117–22.
Article
CAS
PubMed
Google Scholar
Orta ML, Calderon-Montano JM, Dominguez I, Pastor N, Burgos-Moron E, Lopez-Lazaro M, Cortes F, Mateos S, Helleday T. 5-Aza-2′-deoxycytidine causes replication lesions that require Fanconi anemia-dependent homologous recombination for repair. Nucleic Acids Res. 2013;41(11):5827–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaham J, Bomstein Y, Melzer A, Ribak J. DNA–protein Crosslinks and sister chromatid exchanges as biomarkers of exposure to formaldehyde. Int J Occup Environ Health. 1997;3(2):95–104.
Article
CAS
PubMed
Google Scholar
Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol. 2011;12(2):90–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodworth DL, Kreuzer KN. Bacteriophage T4 mutants hypersensitive to an antitumor agent that induces topoisomerase-DNA cleavage complexes. Genetics. 1996;143(3):1081–90.
CAS
PubMed
PubMed Central
Google Scholar
Stohr BA, Kreuzer KN. Repair of topoisomerase-mediated DNA damage in bacteriophage T4. Genetics. 2001;158(1):19–28.
CAS
PubMed
PubMed Central
Google Scholar
Connelly JC, de Leau ES, Leach DR. Nucleolytic processing of a protein-bound DNA end by the E. coli SbcCD (MR) complex. DNA Repair. 2003;2(7):795–807.
Article
CAS
PubMed
Google Scholar
Malik M, Nitiss JL. DNA repair functions that control sensitivity to topoisomerase-targeting drugs. Eukaryot Cell. 2004;3(1):82–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997;88(3):375–84.
Article
CAS
PubMed
Google Scholar
Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature. 1997;386(6623):414–7.
Article
CAS
PubMed
Google Scholar
Rothenberg M, Kohli J, Ludin K. Ctp1 and the MRN-complex are required for endonucleolytic Rec12 removal with release of a single class of oligonucleotides in fission yeast. PLoS Genet. 2009;5(11):e1000722.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aparicio T, Baer R, Gottesman M, Gautier J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J Cell Biol. 2016;212(4):399–408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee KC, Padget K, Curtis H, Cowell IG, Moiani D, Sondka Z, Morris NJ, Jackson GH, Cockell SJ, Tainer JA, et al. MRE11 facilitates the removal of human topoisomerase II complexes from genomic DNA. Biol Open. 2012;1(9):863–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoa NN, Shimizu T, Zhou ZW, Wang ZQ, Deshpande RA, Paull TT, Akter S, Tsuda M, Furuta R, Tsutsui K, et al. Mre11 Is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol Cell. 2016;64(5):1010.
Article
CAS
PubMed
Google Scholar
Yang SW, Burgin AB, Huizenga BN, Robertson CA, Yao KC, Nash HA. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci U S A. 1996;93(21):11534–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pouliot JJ, Yao KC, Robertson CA, Nash HA. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science. 1999;286(5439):552–5.
Article
CAS
PubMed
Google Scholar
Pouliot JJ, Robertson CA, Nash HA. Pathways for repair of topoisomerase I covalent complexes in Saccharomyces cerevisiae. Genes Cells. 2001;6(8):677–87.
Article
CAS
PubMed
Google Scholar
Banerjee B, Roy A, Sen N, Majumder HK. A tyrosyl DNA phosphodiesterase 1 from kinetoplastid parasite Leishmania donovani (LdTdp1) capable of removing topo I-DNA covalent complexes. Mol Microbiol. 2010;78(1):119–37.
CAS
PubMed
Google Scholar
Maede Y, Shimizu H, Fukushima T, Kogame T, Nakamura T, Miki T, Takeda S, Pommier Y, Murai J. Differential and common DNA repair pathways for topoisomerase I- and II-targeted drugs in a genetic DT40 repair cell screen panel. Mol Cancer Ther. 2014;13(1):214–20.
Article
CAS
PubMed
Google Scholar
Katyal S, el-Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, McKinnon PJ. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J. 2007;26(22):4720–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Khamisy SF, Saifi GM, Weinfeld M, Johansson F, Helleday T, Lupski JR, Caldecott KW. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature. 2005;434(7029):108–13.
Article
CAS
PubMed
Google Scholar
Interthal H, Chen HJ, Kehl-Fie TE, Zotzmann J, Leppard JB, Champoux JJ. SCAN1 mutant Tdp1 accumulates the enzyme–DNA intermediate and causes camptothecin hypersensitivity. EMBO J. 2005;24(12):2224–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miao ZH, Agama K, Sordet O, Povirk L, Kohn KW, Pommier Y. Hereditary ataxia SCAN1 cells are defective for the repair of transcription-dependent topoisomerase I cleavage complexes. DNA Repair. 2006;5(12):1489–94.
Article
CAS
PubMed
Google Scholar
Gao R, Das BB, Chatterjee R, Abaan OD, Agama K, Matuo R, Vinson C, Meltzer PS, Pommier Y. Epigenetic and genetic inactivation of tyrosyl-DNA-phosphodiesterase 1 (TDP1) in human lung cancer cells from the NCI-60 panel. DNA Repair. 2014;13:1–9.
Article
CAS
PubMed
Google Scholar
Interthal H, Pouliot JJ, Champoux JJ. The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc Natl Acad Sci U S A. 2001;98(21):12009–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies DR, Interthal H, Champoux JJ, Hol WG. The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Structure. 2002;10(2):237–48.
Article
CAS
PubMed
Google Scholar
Takashima H, Boerkoel CF, John J, Saifi GM, Salih MA, Armstrong D, Mao Y, Quiocho FA, Roa BB, Nakagawa M, et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet. 2002;32(2):267–72.
Article
CAS
PubMed
Google Scholar
Cortes Ledesma F, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature. 2009;461(7264):674–8.
Article
PubMed
CAS
Google Scholar
Zeng Z, Cortes-Ledesma F, El Khamisy SF, Caldecott KW. TDP2/TTRAP is the major 5′-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage. J Biol Chem. 2011;286(1):403–9.
Article
CAS
PubMed
Google Scholar
Gomez-Herreros F, Schuurs-Hoeijmakers JH, McCormack M, Greally MT, Rulten S, Romero-Granados R, Counihan TJ, Chaila E, Conroy J, Ennis S, et al. TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat Genet. 2014;46(5):516–21.
Article
CAS
PubMed
Google Scholar
Gomez-Herreros F, Romero-Granados R, Zeng Z, Alvarez-Quilon A, Quintero C, Ju L, Umans L, Vermeire L, Huylebroeck D, Caldecott KW, et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 2013;9(3):e1003226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao R, Huang SY, Marchand C, Pommier Y. Biochemical characterization of human tyrosyl-DNA phosphodiesterase 2 (TDP2/TTRAP): a Mg(2 +)/Mn(2 +)-dependent phosphodiesterase specific for the repair of topoisomerase cleavage complexes. J Biol Chem. 2012;287(36):30842–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adhikari S, Karmahapatra SK, Karve TM, Bandyopadhyay S, Woodrick J, Manthena PV, Glasgow E, Byers S, Saha T, Uren A. Characterization of magnesium requirement of human 5′-tyrosyl DNA phosphodiesterase mediated reaction. BMC Res Notes. 2012;5:134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin CP, Ban Y, Lyu YL, Desai SD, Liu LF. A ubiquitin-proteasome pathway for the repair of topoisomerase I-DNA covalent complexes. J Biol Chem. 2008;283(30):21074–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Interthal H, Champoux JJ. Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1. Biochem J. 2011;436(3):559–66.
Article
CAS
PubMed
Google Scholar
Debethune L, Kohlhagen G, Grandas A, Pommier Y. Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase. Nucleic Acids Res. 2002;30(5):1198–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao Y, Desai SD, Ting CY, Hwang JL, Liu LF. 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J Biol Chem. 2001;276(44):40652–8.
Article
CAS
PubMed
Google Scholar
Schellenberg MJ, Lieberman JA, Herrero-Ruiz A, Butler LR, Williams JG, Munoz-Cabello AM, Mueller GA, London RE, Cortes-Ledesma F, Williams RS. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA–protein cross-links. Science. 2017;357(6358):1412–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82(2):373–428.
Article
CAS
PubMed
Google Scholar
Desai SD, Liu LF, Vazquez-Abad D, D’Arpa P. Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem. 1997;272(39):24159–64.
Article
CAS
PubMed
Google Scholar
Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(1):12–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and function of the 26S proteasome. Annu Rev Biochem. 2018;87:697–724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desai SD, Li TK, Rodriguez-Bauman A, Rubin EH, Liu LF. Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells. Cancer Res. 2001;61(15):5926–32.
CAS
PubMed
Google Scholar
Duxin JP, Dewar JM, Yardimci H, Walter JC. Repair of a DNA–protein crosslink by replication-coupled proteolysis. Cell. 2014;159(2):346–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsen NB, Gao AO, Sparks JL, Gallina I, Wu RA, Mann M, Raschle M, Walter JC, Duxin JP. Replication-Coupled DNA–Protein Crosslink Repair by SPRTN and the Proteasome in Xenopus Egg Extracts. Mol Cell. 2019;73(3):574–588.e577.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biggins S, Bhalla N, Chang A, Smith DL, Murray AW. Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae. Genetics. 2001;159(2):453–70.
CAS
PubMed
PubMed Central
Google Scholar
Mullen JR, Chen CF, Brill SJ. Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase. Mol Cell Biol. 2010;30(15):3737–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balakirev MY, Mullally JE, Favier A, Assard N, Sulpice E, Lindsey DF, Rulina AV, Gidrol X, Wilkinson KD. Wss1 metalloprotease partners with Cdc48/Doa1 in processing genotoxic SUMO conjugates. Elife. 2015;4:e06763.
Article
PubMed Central
Google Scholar
Svoboda M, Konvalinka J, Trempe JF, Grantz Saskova K. The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response. DNA Repair. 2019;80:45–51.
Article
CAS
PubMed
Google Scholar
Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, et al. A global genetic interaction network maps a wiring diagram of cellular function. Science. 2016. https://doi.org/10.1126/science.aaf1420.
Article
PubMed
PubMed Central
Google Scholar
Mosbech A, Gibbs-Seymour I, Kagias K, Thorslund T, Beli P, Povlsen L, Nielsen SV, Smedegaard S, Sedgwick G, Lukas C, et al. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nat Struct Mol Biol. 2012;19(11):1084–92.
Article
CAS
PubMed
Google Scholar
Davis EJ, Lachaud C, Appleton P, Macartney TJ, Nathke I, Rouse J. DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nat Struct Mol Biol. 2012;19(11):1093–100.
Article
CAS
PubMed
Google Scholar
Ghosal G, Leung JW, Nair BC, Fong KW, Chen J. Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis. J Biol Chem. 2012;287(41):34225–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Centore RC, Yazinski SA, Tse A, Zou L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol Cell. 2012;46(5):625–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juhasz S, Balogh D, Hajdu I, Burkovics P, Villamil MA, Zhuang Z, Haracska L. Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Res. 2012;40(21):10795–808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim MS, Machida Y, Vashisht AA, Wohlschlegel JA, Pang YP, Machida YJ. Regulation of error-prone translesion synthesis by Spartan/C1orf124. Nucleic Acids Res. 2013;41(3):1661–8.
Article
CAS
PubMed
Google Scholar
Machida Y, Kim MS, Machida YJ. Spartan/C1orf124 is important to prevent UV-induced mutagenesis. Cell Cycle. 2012;11(18):3395–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lessel D, Vaz B, Halder S, Lockhart PJ, Marinovic-Terzic I, Lopez-Mosqueda J, Philipp M, Sim JC, Smith KR, Oehler J, et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014;46(11):1239–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maskey RS, Kim MS, Baker DJ, Childs B, Malureanu LA, Jeganathan KB, Machida Y, van Deursen JM, Machida YJ. Spartan deficiency causes genomic instability and progeroid phenotypes. Nat Commun. 2014;5:5744.
Article
CAS
PubMed
Google Scholar
Li F, Raczynska JE, Chen Z, Yu H. Structural Insight into DNA-dependent activation of human metalloprotease spartan. Cell Rep. 2019;26(12):3336–3346.e3334.
Article
CAS
PubMed
Google Scholar
Yang X, Li Y, Gao Z, Li Z, Xu J, Wang W, Dong Y. Structural analysis of Wss1 protein from saccharomyces cerevisiae. Sci Rep. 2017;7(1):8270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Borgermann N, Ackermann L, Schwertman P, Hendriks IA, Thijssen K, Liu JC, Lans H, Nielsen ML, Mailand N. SUMOylation promotes protective responses to DNA–protein crosslinks. EMBO J. 2019. https://doi.org/10.15252/embj.2019101496.
Article
PubMed
PubMed Central
Google Scholar