Jones PA, Laird PW: Cancer-epigenetics comes of age. Nat Genet. 1999, 21 (2): 163-167.
Article
CAS
PubMed
Google Scholar
Stein R, Razin A, Cedar H: In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc Natl Acad Sci. 1982, 79 (11): 3418-3422.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dodge JE, Ramsahoye BH, Wo ZG, Okano M, Li E: De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene. 2002, 289 (1–2): 41-48.
Article
CAS
PubMed
Google Scholar
Okano M, Bell W, Haber DA, Li E: DNA Methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999, 99 (3): 247-257.
Article
CAS
PubMed
Google Scholar
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009, 324 (5929): 930-935.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo Q-M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009, 462 (7271): 315-322.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci. 2000, 97 (10): 5237-5242.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011, 333 (6047): 1300-1303.
Article
PubMed Central
CAS
PubMed
Google Scholar
Strahl BD, Allis CD: The language of covalent histone modifications. Nature. 2000, 403 (6765): 41-45.
Article
CAS
PubMed
Google Scholar
Chi P, Allis CD, Wang GG: Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010, 10 (7): 457-469.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barth TK, Imhof A: Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci. 2010, 35 (11): 618-626.
Article
CAS
PubMed
Google Scholar
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006, 125 (2): 315-326.
Article
CAS
PubMed
Google Scholar
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ: DNMT3A mutations in acute myeloid leukemia. New Engl J Med. 2010, 363 (25): 2424-2433.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delhommeau F, Dupont S, Valle VD, James C, Trannoy S, Massé A, Kosmider O, Le Couedic J-P, Robert F, Alberdi A, Lécluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguié F, Fontenay M, Vainchenker W, Ber OA: Mutation in TET2 in myeloid cancers. N Engl J Med. 2009, 360 (22): 2289-2301.
Article
PubMed
Google Scholar
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X, Perna F, Pandey S, Madzo J, Song C, Dai Q, He C, Ibrahim S, Beran M, Zavadil J, Nimer SD, Melnick A, Godley LA, Aifantis I, Levine RL: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011, 20 (1): 11-24.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, Edkins S, Hardy C, O’Meara S, Teague J, Butler A, Hinton J, Latimer C, Andrews J, Barthorpe S, Beare D, Buck G, Campbell PJ, Cole J, Forbes S, Jia M, Jones D, Kok CY, Leroy C, Lin M-L, McBride DJ, Maddison M, Maquire S, McLay K, Menz A: Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009, 41 (5): 521-523.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gelsi-Boyer V, Trouplin V, Adélaïde J, Bonansea J, Cervera N, Carbuccia N, Lagarde A, Prebet T, Nezri M, Sainty D, Olschwang S, Xerri L, Chaffanet M, Mozziconacci M-J, Vey N, Birnbaum D: Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009, 145 (6): 788-800.
Article
CAS
PubMed
Google Scholar
Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16 (1): 6-21.
Article
CAS
PubMed
Google Scholar
Greger V, Debus N, Lohmann D, Hopping W, Passarge E, Horsthemke B, Debus N, Lohmann D, Hopping W, Passarge E, Horsthemke B: Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet. 1994, 94 (5): 491-496.
Article
CAS
PubMed
Google Scholar
Ohtani-Fujita N, Fujita T, Aoike A, Osifchin N, Robbins P, Sakai T: CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene. 1993, 8 (4): 1063-1067.
CAS
PubMed
Google Scholar
Stirzaker C, Millar DS, Paul CL, Warnecke PM, Harrison J, Vincent PC, Frommer M, Clark SJ, Millar DS, Paul CL, Warnecke PM, Harrison J, Vincent PC, Frommer M, Clark SJ: Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 1997, 57 (11): 2229-2237.
CAS
PubMed
Google Scholar
Papadopoulos N, Nicolaides N, Wei Y, Ruben S, Carter K, Rosen C, Haseltine W, Fleischmann R, Fraser C, Adams M, Venter C, Hamilton SR, Petersen GM, Watson P, Lynch HT, Peltomäki P, Jukka-Pekka Mecklin J, de la Chapell A: Mutation of a mutL homolog in hereditary colon cancer. Science. 1994, 263 (5153): 1625-1629.
Article
CAS
PubMed
Google Scholar
Furukawa T, Konishi F, Masubuchi S, Shitoh K, Nagai H, Tsukamoto T: Densely methylated MLH1 promoter correlates with decreased mRNA expression in sporadic colorectal cancers. Genes Chr Cancer. 2002, 35 (1): 1-10.
Article
CAS
Google Scholar
Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R: Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997, 57 (5): 808-811.
CAS
PubMed
Google Scholar
Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa J-PJ, Markowitz S, Willson JKV, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB: Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci. 1998, 95 (12): 6870-6875.
Article
PubMed Central
CAS
PubMed
Google Scholar
Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG: Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci. 1998, 95 (20): 11891-11896.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG: Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci. 1994, 91 (24): 11733-11737.
Article
PubMed Central
CAS
PubMed
Google Scholar
Makos M, Nelkin BD, Lerman MI, Latif F, Zbar B, Baylin SB: Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc Natl Acad Sci. 1992, 89 (5): 1929-1933.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vogelstein B, Nelkin BD, Lerman MI, Latif F, Zbar B, Baylin SB: Genetic alterations during colorectal-tumor development. New Engl J Med. 1988, 319 (9): 525-532.
Article
CAS
PubMed
Google Scholar
Clark SJ, Melki J: DNA methylation and gene silencing in cancer: which is the guilty party?. Oncogene. 2002, 21: 5380-5387.
Article
CAS
PubMed
Google Scholar
Christensen BC, Marsit CJ, Houseman EA, Godleski JJ, Longacker JL, Zheng S, Yeh R-F, Wrensch MR, Wiemels JL, Karagas MR, Bueno R, Sugarbaker DJ, Nelson HH, Wiencke JK, Kelsey KT: Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res. 2009, 69 (15): 6315-6321.
Article
PubMed Central
CAS
PubMed
Google Scholar
Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa J-PJ: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci. 1999, 96 (15): 8681-8686.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006, 38 (7): 787-793.
Article
CAS
PubMed
Google Scholar
Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RGW, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010, 17 (5): 510-522.
Article
PubMed Central
CAS
PubMed
Google Scholar
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Löwenberg B, Licht JD, Godley LA, Delwel R, Valk PJM, Thompson CB, Levine RL, Melnick A: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010, 18 (6): 553-567.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zouridis H, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Löwenberg B, Licht JD, Godley LA, Delwel R, Valk PJM, Thompson CB, Levine RL, Melnick A: Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci Transl Med. 2012, 4 (156): 156ra140.
Article
PubMed
Google Scholar
Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stutz AM, Wang X, Gallo M, Garzia L, Zayne K, Zhang X, Ramaswamy V, Jager N, Jones DTW, Sill M, Pugh TJ, Ryzhova M, Wani KM, Shih DJH, Head R, Remke M, Bailey SD, Zichner T, Faria CC, Barszczyk M, Stark S, Seker-Cin H, Hutter S, Johann P, Bender S: Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature. 2014, 506 (7489): 445-450.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M: Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 1988, 48 (5): 1159-1161.
CAS
PubMed
Google Scholar
Gama-Sosa M, Slagel V, Trewyn R, Oxenhandler R, Kuo K, Gehrke C, Ehrlich M: The 5-methylcytosine content of DNA from human tumors. Nucl Acids Res. 1983, 11 (19): 6883-6894.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goelz S, Vogelstein B, Hamilton S, Feinberg A: Hypomethylation of DNA from benign and malignant human colon neoplasms. Science. 1985, 228 (4696): 187-190.
Article
CAS
PubMed
Google Scholar
Mertineit C, Yoder JA, Taketo T, Laird DW, Trasler JM, Bestor TH: Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development. 1998, 125 (5): 889-897.
CAS
PubMed
Google Scholar
Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J: 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun. 2011, 2: 241.
Article
PubMed
Google Scholar
Valinluck V, Sowers LC: Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 2007, 67 (3): 946-950.
Article
CAS
PubMed
Google Scholar
Guo JU, Su Y, Zhong C, Ming G-l, Song H: Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011, 145 (3): 423-434.
Article
PubMed Central
CAS
PubMed
Google Scholar
He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song C-X, Zhang K, He C, Xu G-L: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011, 333 (6047): 1303-1307.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maiti A, Drohat AC: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011, 286 (41): 35334-35338.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kangaspeska S, Stride B, Métivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G: Transient cyclical methylation of promoter DNA. Nature. 2008, 452 (7183): 112-115.
Article
CAS
PubMed
Google Scholar
Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G: Cyclical DNA methylation of a transcriptionally active promoter. Nature. 2008, 452 (7183): 45-50.
Article
CAS
PubMed
Google Scholar
Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010, 468 (7325): 839-843.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, Xu ZD, Zhu HG, Ling ZQ, Ye D, Guan KL, Xiong Y: Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013, 32 (5): 663-669.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jenuwein T, Allis CD: Translating the histone code. Science. 2001, 293 (5532): 1074-1080.
Article
CAS
PubMed
Google Scholar
Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD: Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell. 2003, 12 (6): 1591-1598.
Article
CAS
PubMed
Google Scholar
Feinberg AP, Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 2004, 4 (2): 143-153.
Article
CAS
PubMed
Google Scholar
Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP: G9a interacts with snail and is critical for snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 2012, 122 (4): 1469-1486.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen M-W, Hua K-T, Kao H-J, Chi C-C, Wei L-H, Johansson G, Shiah S-G, Chen PS, Jeng Y-M, Cheng T-Y, Lai T-C, Chang J-S, Jan Y-H, Chien M-H, Yang C-J, Huang M-S, Hsiao M, Kuo M-L: H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res. 2010, 70 (20): 7830-7840.
Article
CAS
PubMed
Google Scholar
Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RGAB, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci. 2003, 100 (20): 11606-11611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RGAB, Otte AP, Rubin MA, Chinnaiyan AM: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002, 419 (6907): 624-629.
Article
CAS
PubMed
Google Scholar
Agger K, Cloos PAC, Rudkjær L, Williams K, Andersen G, Christensen J, Helin K: The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A–ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 2009, 23 (10): 1171-1176.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song JS, Kim YS, Kim DK, Park SI, Jang SJ: Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Intl. 2012, 62 (3): 182-190.
Article
Google Scholar
Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK: Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005, 435 (7046): 1262-1266.
Article
CAS
PubMed
Google Scholar
Müller-Tidow C, Klein H-U, Hascher A, Isken F, Tickenbrock L, Thoennissen N, Agrawal-Singh S, Tschanter P, Disselhoff C, Wang Y, Becker A, Thiede C, Ehninger G, Zur Stadt U, Koschmieder S, Seidl M, Müller FU, Schmitz W, Schlenke P, McClelland M, Berdel WE, Dugas M, Serve H, : Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood. 2010, 116 (18): 3564-3571.
Article
PubMed Central
PubMed
Google Scholar
Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M: Stress induces dimethylated histone cells. Cancer Res. 2006, 66 (18): 9009-9016.
Article
CAS
PubMed
Google Scholar
Lee JS, Kim Y, Kim IS, Kim B, Choi HJ, Lee JM, Shin H-JR, Kim JH, Kim J-Y, Seo S-B, Lee H, Binda O, Gozani O, Semenza GL, Kim M, Kim KI, Hwang D, Baek SH: Negative regulation of hypoxic responses via induced reptin methylation. Mol Cell. 2010, 39 (1): 71-85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee JS, Kim Y, Bhin J, Shin H-JR, Nam HJ, Lee SH, Yoon J-B, Binda O, Gozani O, Hwang D, Baek SH, Kim Y, Bhin J, Shin H-JR, Nam HJ, Lee SH, Yoon J-B, Binda O, Gozani O, Hwang D, Baek SH: Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Natl Acad Sci. 2011, 108 (33): 13510-13515.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004, 119 (7): 941-953.
Article
CAS
PubMed
Google Scholar
Huang Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y: Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci. 2007, 104 (19): 8023-8028.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BMR, Bray JE, Savitsky P, Gileadi O, von Delft F, Rose NR, Offer J, Scheinost JC, Borowski T, Sundstrom M, Schofield CJ, Oppermann U: Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature. 2007, 448 (7149): 87-91.
Article
CAS
PubMed
Google Scholar
Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y: Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 2007, 450 (7166): 119-123.
Article
CAS
PubMed
Google Scholar
Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T: The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet. 2009, 41 (1): 125-129.
Article
CAS
PubMed
Google Scholar
Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, Higashinakagawa T: Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 1995, 9 (10): 1211-1222.
Article
CAS
PubMed
Google Scholar
Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D: Regulation of p53 activity through lysine methylation. Nature. 2004, 432 (7015): 353-360.
Article
CAS
PubMed
Google Scholar
Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL: Repression of p53 activity by Smyd2-mediated methylation. Nature. 2006, 444 (7119): 629-632.
Article
CAS
PubMed
Google Scholar
Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL: p53 is regulated by the lysine demethylase LSD1. Nature. 2007, 449 (7158): 105-108.
Article
CAS
PubMed
Google Scholar
Huang J, Dorsey J, Chuikov S, Zhang X, Jenuwein T, Reinberg D, Berger SL: G9a and Glp methylate Lysine 373 in the tumor suppressor p53. J Biol Chem. 2010, 285 (13): 9636-9641.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim E, Kim M, Woo D-H, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, Lee C, Joo KM, Rich JN, Nam D-H, Lee J: Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 2013, 23 (6): 839-852.
Article
PubMed Central
CAS
PubMed
Google Scholar
He A, Shen X, Ma Q, Cao J, von Gise A, Zhou P, Wang G, Marquez VE, Orkin SH, Pu WT: PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 2012, 26 (1): 37-42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee JM, Lee JS, Kim H, Kim K, Park H, Kim J-Y, Seung H, Lee SH, Kim LKS, Kim J, Lee M, Chung CH, Seo S-B, Yoon J-B, Ko E, Noh D-Y, Keun I, Kim KI, Kim KK, Baek SH: EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell. 2012, 48 (4): 572-586.
Article
CAS
PubMed
Google Scholar
Bertout JA, Patel SA, Simon MC: The impact of O2 availability on human cancer. Nat Rev Cancer. 2008, 8 (12): 967-975.
Article
PubMed Central
CAS
PubMed
Google Scholar
Borger DR, Gavrilescu LC, Bucur MC, Ivan M, Decaprio JA: AMP-activated protein kinase is essential for survival in chronic hypoxia. Biochem Biophys Res Commun. 2008, 370 (2): 230-234.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL: HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007, 129 (1): 111-122.
Article
CAS
PubMed
Google Scholar
Semenza GL: HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010, 20 (1): 51-56.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harris AL: Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer. 2002, 2 (1): 38-47.
Article
CAS
PubMed
Google Scholar
Majmundar AJ, Wong WJ, Simon MC: Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010, 40 (2): 294-309.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y: A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci. 1997, 94 (9): 4273-4278.
Article
PubMed Central
CAS
PubMed
Google Scholar
Semenza GL, Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992, 12 (12): 5447-5454.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ivanov SV, Salnikow K, Ivanova AV, Bai L, Lerman MI: Hypoxic repression of STAT1 and its downstream genes by a pVHL/HIF-1 target DEC1/STRA13. Oncogene. 2007, 26 (6): 802-812.
Article
CAS
PubMed
Google Scholar
Lee SH, Kim J, Kim WH, Lee YM: Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene. 2008, 28 (2): 184-194.
Article
PubMed
Google Scholar
Pathiraja TN, Nayak SR, Xi Y, Jiang S, Garee JP, Edwards DP, Lee AV, Chen J, Shea MJ, Santen RJ, Gannon F, Kangaspeska S, Jelinek J, Issa J-PJ, Richer JK, Elias A, McIlroy M, Young LS, Davidson NE, Schiff R, Li W, Oesterreich S: Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer. Sci Transl Med. 2014, 6 (229): 229ra41.
Article
PubMed Central
PubMed
Google Scholar