Levine AJ, Hu W, Feng Z: The P53 pathway: what questions remain to be explored?. Cell Death Differ. 2006, 13 (6): 1027-1036. 10.1038/sj.cdd.4401910
Article
CAS
PubMed
Google Scholar
Vousden KH, Prives C: Blinded by the Light: The Growing Complexity of p53. Cell. 2009, 137 (3): 413-431. 10.1016/j.cell.2009.04.037
Article
CAS
PubMed
Google Scholar
Levine AJ, Oren M: The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009, 9 (10): 749-758. 10.1038/nrc2723
Article
PubMed Central
CAS
PubMed
Google Scholar
Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature. 2000, 408 (6810): 307-310. 10.1038/35042675
Article
CAS
PubMed
Google Scholar
Olivier M, Hussain SP, Caron De Fromentel C, Hainaut P, Harris CC: TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ. 2004, 157: 247-270.
PubMed
Google Scholar
Wade M, Wahl GM: Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry?. Mol Cancer Res. 2009, 7 (1): 1-11. 10.1158/1541-7786.MCR-08-0423
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu X: Tied up in loops: positive and negative autoregulation of p53. Cold Spring Harb Perspect Biol. 2010, 2 (5): a000984. 10.1101/cshperspect.a000984
Article
PubMed Central
PubMed
Google Scholar
Harris SL, Levine AJ: The p53 pathway: positive and negative feedback loops. Oncogene. 2005, 24 (17): 2899-2908. 10.1038/sj.onc.1208615
Article
CAS
PubMed
Google Scholar
Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990, 63 (6): 1129-1136. 10.1016/0092-8674(90)90409-8
Article
CAS
PubMed
Google Scholar
Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992, 356 (6366): 215-221. 10.1038/356215a0
Article
CAS
PubMed
Google Scholar
Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA: Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994, 4 (1): 1-7. 10.1016/S0960-9822(00)00002-6
Article
CAS
PubMed
Google Scholar
Strong LC: General keynote: hereditary cancer: lessons from Li-Fraumeni syndrome. Gynecol Oncol. 2003, 88 (1 Pt 2): S4-S7. discussion S11-13.
Article
PubMed
Google Scholar
Riley T, Sontag E, Chen P, Levine A: Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008, 9 (5): 402-412. 10.1038/nrm2395
Article
CAS
PubMed
Google Scholar
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM: p53 regulates mitochondrial respiration. Science. 2006, 312 (5780): 1650-1653. 10.1126/science.1126863
Article
CAS
PubMed
Google Scholar
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006, 126 (1): 107-120. 10.1016/j.cell.2006.05.036
Article
CAS
PubMed
Google Scholar
Vousden KH, Ryan KM: p53 and metabolism. Nat Rev Cancer. 2009, 9 (10): 691-700. 10.1038/nrc2715
Article
CAS
PubMed
Google Scholar
Feng Z, Levine AJ: The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 2010, 20 (7): 427-434. 10.1016/j.tcb.2010.03.004
Article
PubMed Central
CAS
PubMed
Google Scholar
Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM: Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004, 304 (5670): 596-600. 10.1126/science.1095569
Article
CAS
PubMed
Google Scholar
Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM: The antioxidant function of the p53 tumor suppressor. Nat Med. 2005, 11 (12): 1306-1313. 10.1038/nm1320
Article
PubMed Central
CAS
PubMed
Google Scholar
Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W: Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence. Cell. 2012, 149 (6): 1269-1283. 10.1016/j.cell.2012.04.026
Article
PubMed Central
CAS
PubMed
Google Scholar
Warburg O: On the origin of cancer cells. Science. 1956, 123 (3191): 309-314. 10.1126/science.123.3191.309
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013
Article
CAS
PubMed
Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324 (5930): 1029-1033. 10.1126/science.1160809
Article
PubMed Central
CAS
PubMed
Google Scholar
Cairns RA, Harris IS, Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 2011, 11 (2): 85-95.
Article
CAS
PubMed
Google Scholar
Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134 (5): 703-707. 10.1016/j.cell.2008.08.021
Article
CAS
PubMed
Google Scholar
Fantin VR, St-Pierre J, Leder P: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006, 9 (6): 425-434. 10.1016/j.ccr.2006.04.023
Article
CAS
PubMed
Google Scholar
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452 (7184): 230-233. 10.1038/nature06734
Article
CAS
PubMed
Google Scholar
Dang CV: Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?. Cell Cycle. 2010, 9 (19): 3884-3886. 10.4161/cc.9.19.13302
Article
CAS
PubMed
Google Scholar
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, et al: Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010, 18 (3): 207-219. 10.1016/j.ccr.2010.08.009
Article
PubMed Central
CAS
PubMed
Google Scholar
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, et al: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008, 105 (48): 18782-18787. 10.1073/pnas.0810199105
Article
PubMed Central
CAS
PubMed
Google Scholar
Santos CR, Schulze A: Lipid metabolism in cancer. FEBS J. 2012, 279 (15): 2610-2623. 10.1111/j.1742-4658.2012.08644.x
Article
CAS
PubMed
Google Scholar
Biswas S, Lunec J, Bartlett K: Non-glucose metabolism in cancer cells-is it all in the fat?. Cancer Metastasis Rev. 2012, 31 (3-4): 689-698. 10.1007/s10555-012-9384-6
Article
CAS
PubMed
Google Scholar
Medes G, Thomas A, Weinhouse S: Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 1953, 13 (1): 27-29.
CAS
PubMed
Google Scholar
Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR: Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA. 1994, 91 (14): 6379-6383. 10.1073/pnas.91.14.6379
Article
PubMed Central
CAS
PubMed
Google Scholar
Levine AJ, Puzio-Kuter AM: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010, 330 (6009): 1340-1344. 10.1126/science.1193494
Article
CAS
PubMed
Google Scholar
Dang CV, Kim JW, Gao P, Yustein J: The interplay between MYC and HIF in cancer. Nat Rev Cancer. 2008, 8 (1): 51-56. 10.1038/nrc2274
Article
CAS
PubMed
Google Scholar
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009, 458 (7239): 762-765. 10.1038/nature07823
Article
PubMed Central
CAS
PubMed
Google Scholar
Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008, 8 (9): 705-713. 10.1038/nrc2468
Article
CAS
PubMed
Google Scholar
Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3 (3): 187-197. 10.1016/j.cmet.2006.01.012
Article
CAS
PubMed
Google Scholar
Kim JW, Tchernyshyov I, Semenza GL, Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3 (3): 177-185. 10.1016/j.cmet.2006.02.002
Article
PubMed
Google Scholar
Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Durr P: Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci USA. 1999, 96 (4): 1291-1296. 10.1073/pnas.96.4.1291
Article
PubMed Central
CAS
PubMed
Google Scholar
Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC: Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008, 452 (7184): 181-186. 10.1038/nature06667
Article
CAS
PubMed
Google Scholar
Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR: Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp 70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol. 1994, 14 (7): 4902-4911.
Article
PubMed Central
CAS
PubMed
Google Scholar
Inoki K, Li Y, Zhu T, Wu J, Guan KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002, 4 (9): 648-657. 10.1038/ncb839
Article
CAS
PubMed
Google Scholar
Inoki K, Corradetti MN, Guan KL: Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005, 37 (1): 19-24. 10.1038/ng1494
Article
CAS
PubMed
Google Scholar
Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, Jing Y, Yang H, Chen R, et al: Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA. 2011, 108 (10): 4129-4134. 10.1073/pnas.1014769108
Article
PubMed Central
CAS
PubMed
Google Scholar
Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L, et al: Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 2012, 149 (1): 49-62. 10.1016/j.cell.2012.02.030
Article
PubMed Central
CAS
PubMed
Google Scholar
Shaw R, Kosmatka M, Bardeesy N, Hurley R, Witters L, DePinho R, Cantley L: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004, 101: 3329-3335. 10.1073/pnas.0308061100
Article
PubMed Central
CAS
PubMed
Google Scholar
Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, et al: AIF deficiency compromises oxidative phosphorylation. EMBO J. 2004, 23 (23): 4679-4689. 10.1038/sj.emboj.7600461
Article
PubMed Central
CAS
PubMed
Google Scholar
Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M, Rotter V: Regulation of AIF expression by p53. Cell Death Differ. 2006, 13 (12): 2140-2149. 10.1038/sj.cdd.4401965
Article
CAS
PubMed
Google Scholar
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z: Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA. 2010, 107 (16): 7455-7460. 10.1073/pnas.1001006107
Article
PubMed Central
CAS
PubMed
Google Scholar
Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, et al: Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA. 2010, 107 (16): 7461-7466. 10.1073/pnas.1002459107
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang C, Lin M, Wu R, Wang X, Yang B, Levine AJ, Hu W, Feng Z: Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci USA. 2011, 108 (39): 16259-16264. 10.1073/pnas.1113884108
Article
PubMed Central
CAS
PubMed
Google Scholar
Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, Trapasso F, Drusco A, Shimizu M, Masciullo V, et al: Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA. 2003, 100 (10): 5956-5961. 10.1073/pnas.0931262100
Article
PubMed Central
CAS
PubMed
Google Scholar
Poulogiannis G, McIntyre RE, Dimitriadi M, Apps JR, Wilson CH, Ichimura K, Luo F, Cantley LC, Wyllie AH, Adams DJ, et al: PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci USA. 2010, 107 (34): 15145-15150. 10.1073/pnas.1009941107
Article
PubMed Central
CAS
PubMed
Google Scholar
Contractor T, Harris CR: p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 2012, 72 (2): 560-567. 10.1158/0008-5472.CAN-11-1215
Article
CAS
PubMed
Google Scholar
Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chretien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, et al: Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet. 2007, 39 (6): 776-780. 10.1038/ng2040
Article
CAS
PubMed
Google Scholar
Kulawiec M, Ayyasamy V, Singh KK: p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog. 2009, 8: 8. 10.4103/1477-3163.50893
Article
PubMed Central
PubMed
Google Scholar
Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, Keating MJ, Huang P: Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J. 2005, 24 (19): 3482-3492. 10.1038/sj.emboj.7600819
Article
PubMed Central
CAS
PubMed
Google Scholar
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004, 64 (7): 2627-2633. 10.1158/0008-5472.CAN-03-0846
Article
CAS
PubMed
Google Scholar
Kawauchi K, Araki K, Tobiume K, Tanaka N: p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 2008, 10 (5): 611-618. 10.1038/ncb1724
Article
CAS
PubMed
Google Scholar
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D: Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005, 65 (1): 177-185.
CAS
PubMed
Google Scholar
Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X: p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol. 2011, 13 (3): 310-316. 10.1038/ncb2172
Article
PubMed Central
CAS
PubMed
Google Scholar
Engelman JA: Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009, 9 (8): 550-562. 10.1038/nrc2664
Article
CAS
PubMed
Google Scholar
Cully M, You H, Levine AJ, Mak TW: Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006, 6 (3): 184-192. 10.1038/nrc1819
Article
CAS
PubMed
Google Scholar
Feng Z: p53 Regulation of the IGF-1/AKT/mTOR Pathways and the Endosomal Compartment. Cold Spring Harb Perspect Biol. 2010, 2 (2): a001057. 10.1101/cshperspect.a001057
Article
PubMed Central
PubMed
Google Scholar
Levine AJ, Feng Z, Mak TW, You H, Jin S: Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev. 2006, 20 (3): 267-275. 10.1101/gad.1363206
Article
CAS
PubMed
Google Scholar
Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW: Regulation of PTEN transcription by p53. Mol Cell. 2001, 8 (2): 317-325. 10.1016/S1097-2765(01)00323-9
Article
CAS
PubMed
Google Scholar
Feng Z, Hu W, de Stanchina E, Teresky A, Jin S, Lowe S, Levine AJ: The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007, 67 (7): 3043-3053. 10.1158/0008-5472.CAN-06-4149
Article
CAS
PubMed
Google Scholar
Budanov AV, Karin M: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008, 134 (3): 451-460. 10.1016/j.cell.2008.06.028
Article
PubMed Central
CAS
PubMed
Google Scholar
Feng Z, Zhang H, Levine AJ, Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005, 102 (23): 8204-8209. 10.1073/pnas.0502857102
Article
PubMed Central
CAS
PubMed
Google Scholar
Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA: REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 2002, 10 (5): 995-1005. 10.1016/S1097-2765(02)00706-2
Article
CAS
PubMed
Google Scholar
Olalla L, Gutierrez A, Jimenez AJ, Lopez-Tellez JF, Khan ZU, Perez J, Alonso FJ, de la Rosa V, Campos-Sandoval JA, Segura JA, et al: Expression of the scaffolding PDZ protein glutaminase-interacting protein in mammalian brain. J Neurosci Res. 2008, 86 (2): 281-292. 10.1002/jnr.21505
Article
CAS
PubMed
Google Scholar
Ide T, Brown-Endres L, Chu K, Ongusaha PP, Ohtsuka T, El-Deiry WS, Aaronson SA, Lee SW: GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol Cell. 2009, 36 (3): 379-392. 10.1016/j.molcel.2009.09.031
Article
PubMed Central
CAS
PubMed
Google Scholar
Assaily W, Rubinger DA, Wheaton K, Lin Y, Ma W, Xuan W, Brown-Endres L, Tsuchihara K, Mak TW, Benchimol S: ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell. 2011, 44 (3): 491-501. 10.1016/j.molcel.2011.08.038
Article
CAS
PubMed
Google Scholar
Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC Jr, Kelly DP: Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006, 4 (3): 199-210. 10.1016/j.cmet.2006.08.005
Article
CAS
PubMed
Google Scholar
Phan J, Reue K: Lipin, a lipodystrophy and obesity gene. Cell Metab. 2005, 1 (1): 73-83. 10.1016/j.cmet.2004.12.002
Article
CAS
PubMed
Google Scholar
Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y: Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem. 1999, 274 (17): 12061-12066. 10.1074/jbc.274.17.12061
Article
CAS
PubMed
Google Scholar
Yoon KA, Nakamura Y, Arakawa H: Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet. 2004, 49 (3): 134-140. 10.1007/s10038-003-0122-3
Article
CAS
PubMed
Google Scholar
Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD: Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell. 2009, 34 (6): 663-673. 10.1016/j.molcel.2009.04.029
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu G, Chen X: The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene. 2002, 21 (47): 7195-7204. 10.1038/sj.onc.1205862
Article
CAS
PubMed
Google Scholar
Martindale JL, Holbrook NJ: Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002, 192 (1): 1-15. 10.1002/jcp.10119
Article
CAS
PubMed
Google Scholar
Rivera A, Maxwell SA: The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem. 2005, 280 (32): 29346-29354. 10.1074/jbc.M504852200
Article
CAS
PubMed
Google Scholar
Bensaad K, Vousden KH: p53: new roles in metabolism. Trends Cell Biol. 2007, 17 (6): 286-291. 10.1016/j.tcb.2007.04.004
Article
CAS
PubMed
Google Scholar
Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD: Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005, 330 (7503): 1304-1305. 10.1136/bmj.38415.708634.F7
Article
PubMed Central
PubMed
Google Scholar
Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB: Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007, 67 (14): 6745-6752. 10.1158/0008-5472.CAN-06-4447
Article
CAS
PubMed
Google Scholar
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T: Restoration of p53 function leads to tumour regression in vivo. Nature. 2007, 445 (7128): 661-665. 10.1038/nature05541
Article
CAS
PubMed
Google Scholar
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007, 445 (7128): 656-660. 10.1038/nature05529
Article
PubMed Central
CAS
PubMed
Google Scholar
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303 (5659): 844-848. 10.1126/science.1092472
Article
CAS
PubMed
Google Scholar
Vassilev LT: MDM2 inhibitors for cancer therapy. Trends Mol Med. 2007, 13 (1): 23-31. 10.1016/j.molmed.2006.11.002
Article
CAS
PubMed
Google Scholar