Hensch TK: Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005, 6 (11): 877-888. 10.1038/nrn1787
Article
CAS
PubMed
Google Scholar
Owens DF, Kriegstein AR: Is there more to GABA than synaptic inhibition?. Nat Rev Neurosci. 2002, 3 (9): 715-727. 10.1038/nrn919
Article
CAS
PubMed
Google Scholar
Wang XJ, Tegner J, Constantinidis C, Goldman-Rakic PS: Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc Natl Acad Sci U S A. 2004, 101 (5): 1368-1373. 10.1073/pnas.0305337101
Article
PubMed Central
CAS
PubMed
Google Scholar
Whittington MA, Traub RD: Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 2003, 26 (12): 676-682. 10.1016/j.tins.2003.09.016
Article
CAS
PubMed
Google Scholar
Dreifuss JJ, Kelly JS, Krnjevic K: Cortical inhibition and gamma-aminobutyric acid. Exp Brain Res. 1969, 9 (2): 137-154. 10.1007/BF00238327
Article
CAS
PubMed
Google Scholar
Fonnum F, Storm-Mathisen J: GABA synthesis in rat hippocampus correlated to the distribution of inhibitory neurons. Acta Physiol Scand. 1969, 76 (1): 35A-36A.
CAS
PubMed
Google Scholar
Somogyi P, Freund TF, Wu JY, Smith AD: The section-Golgi impregnation procedure. 2. Immunocytochemical demonstration of glutamate decarboxylase in Golgi-impregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat. Neuroscience. 1983, 9 (3): 475-490. 10.1016/0306-4522(83)90167-7
Article
CAS
PubMed
Google Scholar
Rudy B, Fishell G, Lee S, Hjerling-Leffler J: Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol. 2011, 71 (1): 45-61. 10.1002/dneu.20853
Article
PubMed Central
PubMed
Google Scholar
Marin O: Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012, 13 (2): 107-120.
CAS
PubMed
Google Scholar
Gibson JR, Beierlein M, Connors BW: Two networks of electrically coupled inhibitory neurons in neocortex. Nature. 1999, 402 (6757): 75-79. 10.1038/47035
Article
CAS
PubMed
Google Scholar
Porter JT, Johnson CK, Agmon A: Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci. 2001, 21 (8): 2699-2710.
CAS
PubMed
Google Scholar
Berger TK, Silberberg G, Perin R, Markram H: Brief bursts self-inhibit and correlate the pyramidal network. PLoS Biol. 2010, 8 (9): e1000473. 10.1371/journal.pbio.1000473
Article
PubMed Central
PubMed
CAS
Google Scholar
Silberberg G, Gupta A, Markram H: Stereotypy in neocortical microcircuits. Trends Neurosci. 2002, 25 (5): 227-230. 10.1016/S0166-2236(02)02151-3
Article
CAS
PubMed
Google Scholar
Wang Y, Toledo-Rodriguez M, Gupta A, Wu C, Silberberg G, Luo J, Markram H: Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol. 2004, 561 (Pt 1): 65-90.
Article
PubMed Central
CAS
PubMed
Google Scholar
Somogyi P, Tamas G, Lujan R, Buhl EH: Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev. 1998, 26 (2–3): 113-135.
Article
CAS
PubMed
Google Scholar
Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsaki G, Cauli B, Defelipe J, Fairen A: Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008, 9 (7): 557-568.
Article
CAS
PubMed
Google Scholar
Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, Hestrin S, Rossier J: Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci. 1997, 17 (10): 3894-3906.
CAS
PubMed
Google Scholar
DeFelipe J: Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex. 1993, 3 (4): 273-289. 10.1093/cercor/3.4.273
Article
CAS
PubMed
Google Scholar
DeFelipe J, Hendry SH, Jones EG: Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci U S A. 1989, 86 (6): 2093-2097. 10.1073/pnas.86.6.2093
Article
PubMed Central
CAS
PubMed
Google Scholar
Gonchar Y, Burkhalter A: Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex. 1997, 7 (4): 347-358. 10.1093/cercor/7.4.347
Article
CAS
PubMed
Google Scholar
Hendry SH, Jones EG, Emson PC, Lawson DE, Heizmann CW, Streit P: Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res. 1989, 76 (2): 467-472.
Article
CAS
PubMed
Google Scholar
Kawaguchi Y, Kubota Y: GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex. 1997, 7 (6): 476-486. 10.1093/cercor/7.6.476
Article
CAS
PubMed
Google Scholar
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C: Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004, 5 (10): 793-807. 10.1038/nrn1519
Article
CAS
PubMed
Google Scholar
Somogyi P, Klausberger T: Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol. 2005, 562 (Pt 1): 9-26.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B: The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci. 2010, 30 (50): 16796-16808. 10.1523/JNEUROSCI.1869-10.2010
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu X, Callaway EM: Laminar specificity of functional input to distinct types of inhibitory cortical neurons. J Neurosci. 2009, 29 (1): 70-85. 10.1523/JNEUROSCI.4104-08.2009
Article
PubMed Central
CAS
PubMed
Google Scholar
Connors BW, Gutnick MJ: Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 1990, 13 (3): 99-104. 10.1016/0166-2236(90)90185-D
Article
CAS
PubMed
Google Scholar
Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B: K + channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron. 2008, 58 (3): 387-400. 10.1016/j.neuron.2008.03.003
Article
PubMed Central
CAS
PubMed
Google Scholar
Pinto DJ, Brumberg JC, Simons DJ: Circuit dynamics and coding strategies in rodent somatosensory cortex. J Neurophysiol. 2000, 83 (3): 1158-1166.
CAS
PubMed
Google Scholar
Miller LM, Escabi MA, Schreiner CE: Feature selectivity and interneuronal cooperation in the thalamocortical system. J Neurosci. 2001, 21 (20): 8136-8144.
CAS
PubMed
Google Scholar
Pouille F, Scanziani M: Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science. 2001, 293 (5532): 1159-1163. 10.1126/science.1060342
Article
CAS
PubMed
Google Scholar
Pinto DJ, Hartings JA, Brumberg JC, Simons DJ: Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb Cortex. 2003, 13 (1): 33-44. 10.1093/cercor/13.1.33
Article
PubMed
Google Scholar
Lawrence JJ, McBain CJ: Interneuron diversity series: containing the detonation–feedforward inhibition in the CA3 hippocampus. Trends Neurosci. 2003, 26 (11): 631-640. 10.1016/j.tins.2003.09.007
Article
CAS
PubMed
Google Scholar
Gabernet L, Jadhav SP, Feldman DE, Carandini M, Scanziani M: Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron. 2005, 48 (2): 315-327. 10.1016/j.neuron.2005.09.022
Article
CAS
PubMed
Google Scholar
Cruikshank SJ, Lewis TJ, Connors BW: Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci. 2007, 10 (4): 462-468.
CAS
PubMed
Google Scholar
Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA: Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005, 47 (3): 423-435. 10.1016/j.neuron.2005.06.016
Article
CAS
PubMed
Google Scholar
Haider B, McCormick DA: Rapid neocortical dynamics: cellular and network mechanisms. Neuron. 2009, 62 (2): 171-189. 10.1016/j.neuron.2009.04.008
Article
PubMed Central
CAS
PubMed
Google Scholar
Woodruff A, Xu Q, Anderson SA, Yuste R: Depolarizing effect of neocortical chandelier neurons. Frontiers in neural circuits. 2009, 3: 15.
Article
PubMed Central
PubMed
Google Scholar
Szabadics J, Varga C, Molnar G, Olah S, Barzo P, Tamas G: Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science. 2006, 311 (5758): 233-235. 10.1126/science.1121325
Article
CAS
PubMed
Google Scholar
Glickfeld LL, Roberts JD, Somogyi P, Scanziani M: Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nat Neurosci. 2009, 12 (1): 21-23. 10.1038/nn.2230
Article
PubMed Central
CAS
PubMed
Google Scholar
Blatow M, Rozov A, Katona I, Hormuzdi SG, Meyer AH, Whittington MA, Caputi A, Monyer H: A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron. 2003, 38 (5): 805-817. 10.1016/S0896-6273(03)00300-3
Article
CAS
PubMed
Google Scholar
Uematsu M, Hirai Y, Karube F, Ebihara S, Kato M, Abe K, Obata K, Yoshida S, Hirabayashi M, Yanagawa Y: Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. Cereb Cortex. 2008, 18 (2): 315-330.
Article
PubMed
Google Scholar
Beierlein M, Gibson JR, Connors BW: Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol. 2003, 90 (5): 2987-3000. 10.1152/jn.00283.2003
Article
PubMed
Google Scholar
Kapfer C, Glickfeld LL, Atallah BV, Scanziani M: Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat Neurosci. 2007, 10 (6): 743-753. 10.1038/nn1909
Article
PubMed Central
CAS
PubMed
Google Scholar
Reyes A, Lujan R, Rozov A, Burnashev N, Somogyi P, Sakmann B: Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci. 1998, 1 (4): 279-285. 10.1038/1092
Article
CAS
PubMed
Google Scholar
Silberberg G, Markram H: Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron. 2007, 53 (5): 735-746. 10.1016/j.neuron.2007.02.012
Article
CAS
PubMed
Google Scholar
Fanselow EE, Richardson KA, Connors BW: Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. J Neurophysiol. 2008, 100 (5): 2640-2652. 10.1152/jn.90691.2008
Article
PubMed Central
PubMed
Google Scholar
Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A: Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci. 2006, 26 (19): 5069-5082. 10.1523/JNEUROSCI.0661-06.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
McGarry LM, Packer AM, Fino E, Nikolenko V, Sippy T, Yuste R: Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes. Front Neural Circ. 2010, 4: 12.
Google Scholar
Xu X, Roby KD, Callaway EM: Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol. 2006, 499 (1): 144-160. 10.1002/cne.21101
Article
CAS
PubMed
Google Scholar
Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, Gampe C, Bolz J: Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci. 2011, 31 (50): 18364-18380. 10.1523/JNEUROSCI.4690-11.2011
Article
CAS
PubMed
Google Scholar
Gonchar Y, Wang Q, Burkhalter A: Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat. 2007, 1: 3.
PubMed Central
PubMed
Google Scholar
Miyoshi G, Butt SJ, Takebayashi H, Fishell G: Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci. 2007, 27 (29): 7786-7798. 10.1523/JNEUROSCI.1807-07.2007
Article
CAS
PubMed
Google Scholar
Xu X, Roby KD, Callaway EM: Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol. 2010, 518 (3): 389-404. 10.1002/cne.22229
Article
PubMed Central
PubMed
Google Scholar
Cauli B, Porter JT, Tsuzuki K, Lambolez B, Rossier J, Quenet B, Audinat E: Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci U S A. 2000, 97 (11): 6144-6149. 10.1073/pnas.97.11.6144
Article
PubMed Central
CAS
PubMed
Google Scholar
Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa VH, Butt SJ, Battiste J, Johnson JE, Machold RP, Fishell G: Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci. 2010, 30 (5): 1582-1594. 10.1523/JNEUROSCI.4515-09.2010
Article
PubMed Central
CAS
PubMed
Google Scholar
David C, Schleicher A, Zuschratter W, Staiger JF: The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary somatosensory cortex of the adult rat. Eur J Neurosci. 2007, 25 (8): 2329-2340. 10.1111/j.1460-9568.2007.05496.x
Article
PubMed
Google Scholar
Acsady L, Gorcs TJ, Freund TF: Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience. 1996, 73 (2): 317-334. 10.1016/0306-4522(95)00609-5
Article
CAS
PubMed
Google Scholar
Ferezou I, Cauli B, Hill EL, Rossier J, Hamel E, Lambolez B: 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J Neurosci. 2002, 22 (17): 7389-7397.
CAS
PubMed
Google Scholar
Galarreta M, Erdelyi F, Szabo G, Hestrin S: Electrical coupling among irregular-spiking GABAergic interneurons expressing cannabinoid receptors. J Neurosci. 2004, 24 (44): 9770-9778. 10.1523/JNEUROSCI.3027-04.2004
Article
CAS
PubMed
Google Scholar
Porter JT, Cauli B, Staiger JF, Lambolez B, Rossier J, Audinat E: Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur J Neurosci. 1998, 10 (12): 3617-3628. 10.1046/j.1460-9568.1998.00367.x
Article
CAS
PubMed
Google Scholar
Caputi A, Rozov A, Blatow M, Monyer H: Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. Cereb Cortex. 2009, 19 (6): 1345-1359. 10.1093/cercor/bhn175
Article
PubMed
Google Scholar
Butt SJ, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G: The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron. 2005, 48 (4): 591-604. 10.1016/j.neuron.2005.09.034
Article
CAS
PubMed
Google Scholar
Kawaguchi Y, Kubota Y: Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci. 1996, 16 (8): 2701-2715.
CAS
PubMed
Google Scholar
Olah S, Komlosi G, Szabadics J, Varga C, Toth E, Barzo P, Tamas G: Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex. Front Neural Circ. 2007, 1: 4.
Google Scholar
Price CJ, Cauli B, Kovacs ER, Kulik A, Lambolez B, Shigemoto R, Capogna M: Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J Neurosci. 2005, 25 (29): 6775-6786. 10.1523/JNEUROSCI.1135-05.2005
Article
CAS
PubMed
Google Scholar
Simon A, Olah S, Molnar G, Szabadics J, Tamas G: Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J Neurosci. 2005, 25 (27): 6278-6285. 10.1523/JNEUROSCI.1431-05.2005
Article
CAS
PubMed
Google Scholar
Zsiros V, Maccaferri G: Electrical coupling between interneurons with different excitable properties in the stratum lacunosum-moleculare of the juvenile CA1 rat hippocampus. J Neurosci. 2005, 25 (38): 8686-8695. 10.1523/JNEUROSCI.2810-05.2005
Article
CAS
PubMed
Google Scholar
Tamas G, Lorincz A, Simon A, Szabadics J: Identified sources and targets of slow inhibition in the neocortex. Science. 2003, 299 (5614): 1902-1905. 10.1126/science.1082053
Article
CAS
PubMed
Google Scholar
Corbin JG, Butt SJ: Developmental mechanisms for the generation of telencephalic interneurons. Dev Neurobiol. 2011, 71 (8): 710-732. 10.1002/dneu.20890
Article
CAS
PubMed
Google Scholar
O’Rahilly R, Gardner E: The initial development of the human brain. Acta Anat. 1979, 104 (2): 123-133. 10.1159/000145061
Article
PubMed
Google Scholar
Van Eden CG, Mrzljak L, Voorn P, Uylings HB: Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol. 1989, 289 (2): 213-227. 10.1002/cne.902890204
Article
CAS
PubMed
Google Scholar
DeDiego I, Smith-Fernandez A, Fairen A: Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J Neurosci. 1994, 6 (6): 983-997. 10.1111/j.1460-9568.1994.tb00593.x
Article
CAS
PubMed
Google Scholar
de Carlos JA, Lopez-Mascaraque L, Valverde F: Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci. 1996, 16 (19): 6146-6156.
CAS
PubMed
Google Scholar
Tamamaki N, Fujimori KE, Takauji R: Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci. 1997, 17 (21): 8313-8323.
CAS
PubMed
Google Scholar
Mione MC, Danevic C, Boardman P, Harris B, Parnavelas JG: Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J Neurosci. 1994, 14 (1): 107-123.
CAS
PubMed
Google Scholar
Parnavelas JG, Barfield JA, Franke E, Luskin MB: Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cereb Cortex. 1991, 1 (6): 463-468. 10.1093/cercor/1.6.463
Article
CAS
PubMed
Google Scholar
Rakic P, Lombroso PJ: Development of the cerebral cortex: I. Forming the cortical structure. J Am Acad Child Adolesc Psychiatry. 1998, 37 (1): 116-117. 10.1097/00004583-199801000-00026
Article
CAS
PubMed
Google Scholar
Pleasure SJ, Anderson S, Hevner R, Bagri A, Marin O, Lowenstein DH, Rubenstein JL: Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron. 2000, 28 (3): 727-740. 10.1016/S0896-6273(00)00149-5
Article
CAS
PubMed
Google Scholar
Wonders CP, Anderson SA: The origin and specification of cortical interneurons. Nat Rev Neurosci. 2006, 7 (9): 687-696. 10.1038/nrn1954
Article
CAS
PubMed
Google Scholar
Wonders CP, Taylor L, Welagen J, Mbata IC, Xiang JZ, Anderson SA: A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol. 2008, 314 (1): 127-136. 10.1016/j.ydbio.2007.11.018
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA: Origins of cortical interneuron subtypes. J Neurosci. 2004, 24 (11): 2612-2622. 10.1523/JNEUROSCI.5667-03.2004
Article
CAS
PubMed
Google Scholar
Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL: Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci. 2005, 8 (8): 1059-1068. 10.1038/nn1499
Article
CAS
PubMed
Google Scholar
Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marin O: Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci. 2007, 27 (36): 9682-9695. 10.1523/JNEUROSCI.2750-07.2007
Article
CAS
PubMed
Google Scholar
Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A: In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development. 2001, 128 (19): 3759-3771.
CAS
PubMed
Google Scholar
Corbin JG, Rutlin M, Gaiano N, Fishell G: Combinatorial function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development. 2003, 130 (20): 4895-4906. 10.1242/dev.00717
Article
CAS
PubMed
Google Scholar
Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL: Distinct cortical migrations from the medial and lateral ganglionic eminences. Development. 2001, 128 (3): 353-363.
CAS
PubMed
Google Scholar
Nery S, Corbin JG, Fishell G: Dlx2 progenitor migration in wild type and Nkx2.1 mutant telencephalon. Cereb Cortex. 2003, 13 (9): 895-903. 10.1093/cercor/13.9.895
Article
PubMed
Google Scholar
Nery S, Fishell G, Corbin JG: The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci. 2002, 5 (12): 1279-1287. 10.1038/nn971
Article
CAS
PubMed
Google Scholar
Chameau P, Inta D, Vitalis T, Monyer H, Wadman WJ, van Hooft JA: The N-terminal region of reelin regulates postnatal dendritic maturation of cortical pyramidal neurons. Proc Natl Acad Sci U S A. 2009, 106 (17): 7227-7232. 10.1073/pnas.0810764106
Article
PubMed Central
CAS
PubMed
Google Scholar
Inta D, Alfonso J, von Engelhardt J, Kreuzberg MM, Meyer AH, van Hooft JA, Monyer H: Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci U S A. 2008, 105 (52): 20994-20999. 10.1073/pnas.0807059105
Article
PubMed Central
CAS
PubMed
Google Scholar
Vucurovic K, Gallopin T, Ferezou I, Rancillac A, Chameau P, van Hooft JA, Geoffroy H, Monyer H, Rossier J, Vitalis T: Serotonin 3A receptor subtype as an early and protracted marker of cortical interneuron subpopulations. Cereb Cortex. 2010, 20 (10): 2333-2347. 10.1093/cercor/bhp310
Article
PubMed Central
PubMed
Google Scholar
Gelman D, Griveau A, Dehorter N, Teissier A, Varela C, Pla R, Pierani A, Marin O: A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci. 2011, 31 (46): 16570-16580. 10.1523/JNEUROSCI.4068-11.2011
Article
CAS
PubMed
Google Scholar
Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A: Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci. 1999, 2 (5): 461-466. 10.1038/8131
Article
CAS
PubMed
Google Scholar
Sussel L, Marin O, Kimura S, Rubenstein JL: Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development. 1999, 126 (15): 3359-3370.
CAS
PubMed
Google Scholar
Jimenez D, Lopez-Mascaraque LM, Valverde F, De Carlos JA: Tangential migration in neocortical development. Dev Biol. 2002, 244 (1): 155-169. 10.1006/dbio.2002.0586
Article
CAS
PubMed
Google Scholar
Azim E, Jabaudon D, Fame RM, Macklis JD: SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat Neurosci. 2009, 12 (10): 1238-1247. 10.1038/nn.2387
Article
PubMed Central
CAS
PubMed
Google Scholar
Batista-Brito R, Rossignol E, Hjerling-Leffler J, Denaxa M, Wegner M, Lefebvre V, Pachnis V, Fishell G: The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron. 2009, 63 (4): 466-481. 10.1016/j.neuron.2009.08.005
Article
PubMed Central
CAS
PubMed
Google Scholar
Butt SJ, Sousa VH, Fuccillo MV, Hjerling-Leffler J, Miyoshi G, Kimura S, Fishell G: The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron. 2008, 59 (5): 722-732. 10.1016/j.neuron.2008.07.031
Article
PubMed Central
CAS
PubMed
Google Scholar
Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V: Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci. 2007, 27 (12): 3078-3089. 10.1523/JNEUROSCI.3055-06.2007
Article
CAS
PubMed
Google Scholar
Wang Y, Dye CA, Sohal V, Long JE, Estrada RC, Roztocil T, Lufkin T, Deisseroth K, Baraban SC, Rubenstein JL: Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J Neurosci. 2010, 30 (15): 5334-5345. 10.1523/JNEUROSCI.5963-09.2010
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JL: Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol. 2008, 510 (1): 79-99. 10.1002/cne.21772
Article
PubMed Central
CAS
PubMed
Google Scholar
Fogarty M, Grist M, Gelman D, Marin O, Pachnis V, Kessaris N: Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci. 2007, 27 (41): 10935-10946. 10.1523/JNEUROSCI.1629-07.2007
Article
CAS
PubMed
Google Scholar
Xu Q, Tam M, Anderson SA: Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol. 2008, 506 (1): 16-29. 10.1002/cne.21529
Article
CAS
PubMed
Google Scholar
Xu Q, Wonders CP, Anderson SA: Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development. 2005, 132 (22): 4987-4998. 10.1242/dev.02090
Article
CAS
PubMed
Google Scholar
Xu Q, Guo L, Moore H, Waclaw RR, Campbell K, Anderson SA: Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates. Neuron. 2010, 65 (3): 328-340. 10.1016/j.neuron.2010.01.004
Article
PubMed Central
CAS
PubMed
Google Scholar
Du T, Xu Q, Ocbina PJ, Anderson SA: NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development. 2008, 135 (8): 1559-1567. 10.1242/dev.015123
Article
CAS
PubMed
Google Scholar
Flandin P, Zhao Y, Vogt D, Jeong J, Long J, Potter G, Westphal H, Rubenstein JL: Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that controls the generation of interneuron progenitors. Neuron. 2011, 70 (5): 939-950. 10.1016/j.neuron.2011.04.020
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M, Rubenstein JL, Westphal H: The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci U S A. 2003, 100 (15): 9005-9010. 10.1073/pnas.1537759100
Article
PubMed Central
CAS
PubMed
Google Scholar
Long JE, Cobos I, Potter GB, Rubenstein JL: Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. Cereb Cortex. 2009, 19 (Suppl 1): i96-i106.
Article
PubMed Central
PubMed
Google Scholar
Long JE, Swan C, Liang WS, Cobos I, Potter GB, Rubenstein JL: Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways. J Comp Neurol. 2009, 512 (4): 556-572. 10.1002/cne.21854
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanatani S, Yozu M, Tabata H, Nakajima K: COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. J Neurosci. 2008, 28 (50): 13582-13591. 10.1523/JNEUROSCI.2132-08.2008
Article
CAS
PubMed
Google Scholar
Willi-Monnerat S, Migliavacca E, Surdez D, Delorenzi M, Luthi-Carter R, Terskikh AV: Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision. Mol Cell Neurosci. 2008, 37 (4): 845-856. 10.1016/j.mcn.2008.01.009
Article
CAS
PubMed
Google Scholar
Casarosa S, Fode C, Guillemot F: Mash1 regulates neurogenesis in the ventral telencephalon. Development. 1999, 126 (3): 525-534.
CAS
PubMed
Google Scholar
Yun K, Fischman S, Johnson J, Hrabe de Angelis M, Weinmaster G, Rubenstein JL: Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon. Development. 2002, 129 (21): 5029-5040.
CAS
PubMed
Google Scholar
Horton S, Meredith A, Richardson JA, Johnson JE: Correct coordination of neuronal differentiation events in ventral forebrain requires the bHLH factor MASH1. Mol Cell Neurosci. 1999, 14 (4–5): 355-369.
Article
CAS
PubMed
Google Scholar
Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F: A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 2000, 14 (1): 67-80.
PubMed Central
CAS
PubMed
Google Scholar
Toresson H, Potter SS, Campbell K: Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development. 2000, 127 (20): 4361-4371.
CAS
PubMed
Google Scholar
Yun K, Potter S, Rubenstein JL: Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development. 2001, 128 (2): 193-205.
CAS
PubMed
Google Scholar
Waclaw RR, Wang B, Pei Z, Ehrman LA, Campbell K: Distinct temporal requirements for the homeobox gene Gsx2 in specifying striatal and olfactory bulb neuronal fates. Neuron. 2009, 63 (4): 451-465. 10.1016/j.neuron.2009.07.015
Article
PubMed Central
CAS
PubMed
Google Scholar
Panganiban G, Rubenstein JL: Developmental functions of the distal-less/Dlx homeobox genes. Development. 2002, 129 (19): 4371-4386.
CAS
PubMed
Google Scholar
Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA, Ghattas I, Puelles L, Rubenstein JL: DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol. 1999, 414 (2): 217-237. 10.1002/(SICI)1096-9861(19991115)414:2<217::AID-CNE6>3.0.CO;2-I
Article
CAS
PubMed
Google Scholar
Liu JK, Ghattas I, Liu S, Chen S, Rubenstein JL: Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev Dyn. 1997, 210 (4): 498-512. 10.1002/(SICI)1097-0177(199712)210:4<498::AID-AJA12>3.0.CO;2-3
Article
CAS
PubMed
Google Scholar
Anderson SA, Eisenstat DD, Shi L, Rubenstein JL: Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997, 278 (5337): 474-476. 10.1126/science.278.5337.474
Article
CAS
PubMed
Google Scholar
Gelman DM, Marin O, Rubenstein JLR: The Generation of Cortical Interneurons. Jasper’s Basic Mechanisms of the Epilepsies. 4th edition. Edited by: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV. Bethesda (MD);2012.
Google Scholar
Gelman DM, Martini FJ, Nobrega-Pereira S, Pierani A, Kessaris N, Marin O: The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci. 2009, 29 (29): 9380-9389. 10.1523/JNEUROSCI.0604-09.2009
Article
CAS
PubMed
Google Scholar
Lodato S, Rouaux C, Quast KB, Jantrachotechatchawan C, Studer M, Hensch TK, Arlotta P: Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron. 2011, 69 (4): 763-779. 10.1016/j.neuron.2011.01.015
Article
PubMed Central
CAS
PubMed
Google Scholar
Sugiyama S, Di Nardo AA, Aizawa S, Matsuo I, Volovitch M, Prochiantz A, Hensch TK: Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell. 2008, 134 (3): 508-520. 10.1016/j.cell.2008.05.054
Article
CAS
PubMed
Google Scholar
Beurdeley M, Spatazza J, Lee HH, Sugiyama S, Bernard C, Di Nardo AA, Hensch TK, Prochiantz A: Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci. 2012, 32 (27): 9429-9437. 10.1523/JNEUROSCI.0394-12.2012
Article
PubMed Central
CAS
PubMed
Google Scholar
Petanjek Z, Kostovic I, Esclapez M: Primate-specific origins and migration of cortical GABAergic neurons. Front Neuroanat. 2009, 3: 26.
Article
PubMed Central
PubMed
Google Scholar
Letinic K, Zoncu R, Rakic P: Origin of GABAergic neurons in the human neocortex. Nature. 2002, 417 (6889): 645-649. 10.1038/nature00779
Article
CAS
PubMed
Google Scholar
Yu X, Zecevic N: Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain. J Neurosci. 2011, 31 (7): 2413-2420. 10.1523/JNEUROSCI.5249-10.2011
Article
PubMed Central
CAS
PubMed
Google Scholar
Fertuzinhos S, Krsnik Z, Kawasawa YI, Rasin MR, Kwan KY, Chen JG, Judas M, Hayashi M, Sestan N: Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. Cereb Cortex. 2009, 19 (9): 2196-2207. 10.1093/cercor/bhp009
Article
PubMed Central
PubMed
Google Scholar
Petanjek Z, Berger B, Esclapez M: Origins of cortical GABAergic neurons in the cynomolgus monkey. Cereb Cortex. 2009, 19 (2): 249-262.
Article
PubMed Central
PubMed
Google Scholar
Rakic S, Zecevic N: Early oligodendrocyte progenitor cells in the human fetal telencephalon. Glia. 2003, 41 (2): 117-127. 10.1002/glia.10140
Article
PubMed
Google Scholar
Zecevic N, Hu F, Jakovcevski I: Interneurons in the developing human neocortex. Dev Neurobiol. 2011, 71 (1): 18-33. 10.1002/dneu.20812
Article
PubMed Central
PubMed
Google Scholar
Jakovcevski I, Mayer N, Zecevic N: Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors. Cereb Cortex. 2011, 21 (8): 1771-1782. 10.1093/cercor/bhq245
Article
PubMed Central
PubMed
Google Scholar
Tanaka DH, Oiwa R, Sasaki E, Nakajima K: Changes in cortical interneuron migration contribute to the evolution of the neocortex. Proc Natl Acad Sci U S A. 2011, 108 (19): 8015-8020. 10.1073/pnas.1102153108
Article
PubMed Central
CAS
PubMed
Google Scholar
Corbin JG, Nery S, Fishell G: Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci. 2001, 4 (Suppl): 1177-1182.
Article
CAS
PubMed
Google Scholar
Marin O, Rubenstein JL: A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci. 2001, 2 (11): 780-790. 10.1038/35097509
Article
CAS
PubMed
Google Scholar
Marin O, Rubenstein JL: Cell migration in the forebrain. Annu Rev Neurosci. 2003, 26: 441-483. 10.1146/annurev.neuro.26.041002.131058
Article
CAS
PubMed
Google Scholar
Metin C, Baudoin JP, Rakic S, Parnavelas JG: Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur J Neurosci. 2006, 23 (4): 894-900. 10.1111/j.1460-9568.2006.04630.x
Article
PubMed
Google Scholar
Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG: The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci. 1999, 19 (18): 7881-7888.
CAS
PubMed
Google Scholar
Faux C, Rakic S, Andrews W, Yanagawa Y, Obata K, Parnavelas JG: Differential gene expression in migrating cortical interneurons during mouse forebrain development. J Comp Neurol. 2010, 518 (8): 1232-1248.
CAS
PubMed
Google Scholar
Marsh ED, Minarcik J, Campbell K, Brooks-Kayal AR, Golden JA: FACS-array gene expression analysis during early development of mouse telencephalic interneurons. Dev Neurobiol. 2008, 68 (4): 434-445. 10.1002/dneu.20602
Article
CAS
PubMed
Google Scholar
Powell EM, Mars WM, Levitt P: Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron. 2001, 30 (1): 79-89. 10.1016/S0896-6273(01)00264-1
Article
CAS
PubMed
Google Scholar
Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P: Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci. 2003, 23 (2): 622-631.
CAS
PubMed
Google Scholar
Friedman WJ, Black IB, Kaplan DR: Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience. 1998, 84 (1): 101-114. 10.1016/S0306-4522(97)00526-5
Article
CAS
PubMed
Google Scholar
Fukumitsu H, Furukawa Y, Tsusaka M, Kinukawa H, Nitta A, Nomoto H, Mima T, Furukawa S: Simultaneous expression of brain-derived neurotrophic factor and neurotrophin-3 in Cajal-Retzius, subplate and ventricular progenitor cells during early development stages of the rat cerebral cortex. Neuroscience. 1998, 84 (1): 115-127. 10.1016/S0306-4522(97)00505-8
Article
CAS
PubMed
Google Scholar
Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, Lindsay RM, Yancopoulos GD: NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron. 1990, 5 (4): 501-509. 10.1016/0896-6273(90)90089-X
Article
CAS
PubMed
Google Scholar
Timmusk T, Belluardo N, Metsis M, Persson H: Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues. Eur J Neurosci. 1993, 5 (6): 605-613. 10.1111/j.1460-9568.1993.tb00526.x
Article
CAS
PubMed
Google Scholar
Gorba T, Wahle P: Expression of TrkB and TrkC but not BDNF mRNA in neurochemically identified interneurons in rat visual cortex in vivo and in organotypic cultures. Eur J Neurosci. 1999, 11 (4): 1179-1190. 10.1046/j.1460-9568.1999.00551.x
Article
CAS
PubMed
Google Scholar
Klein R, Martin-Zanca D, Barbacid M, Parada LF: Expression of the tyrosine kinase receptor gene trkB is confined to the murine embryonic and adult nervous system. Development. 1990, 109 (4): 845-850.
CAS
PubMed
Google Scholar
Brunstrom JE, Gray-Swain MR, Osborne PA, Pearlman AL: Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron. 1997, 18 (3): 505-517. 10.1016/S0896-6273(00)81250-7
Article
CAS
PubMed
Google Scholar
Fiumelli H, Kiraly M, Ambrus A, Magistretti PJ, Martin JL: Opposite regulation of calbindin and calretinin expression by brain-derived neurotrophic factor in cortical neurons. J Neurochem. 2000, 74 (5): 1870-1877.
Article
CAS
PubMed
Google Scholar
Arenas E, Akerud P, Wong V, Boylan C, Persson H, Lindsay RM, Altar CA: Effects of BDNF and NT-4/5 on striatonigral neuropeptides or nigral GABA neurons in vivo. Eur J Neurosci. 1996, 8 (8): 1707-1717. 10.1111/j.1460-9568.1996.tb01314.x
Article
CAS
PubMed
Google Scholar
Jones KR, Farinas I, Backus C, Reichardt LF: Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell. 1994, 76 (6): 989-999. 10.1016/0092-8674(94)90377-8
Article
PubMed Central
CAS
PubMed
Google Scholar
Pozas E, Ibanez CF: GDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons. Neuron. 2005, 45 (5): 701-713. 10.1016/j.neuron.2005.01.043
Article
CAS
PubMed
Google Scholar
Airaksinen MS, Saarma M: The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002, 3 (5): 383-394. 10.1038/nrn812
Article
CAS
PubMed
Google Scholar
Canty AJ, Dietze J, Harvey M, Enomoto H, Milbrandt J, Ibanez CF: Regionalized loss of parvalbumin interneurons in the cerebral cortex of mice with deficits in GFRalpha1 signaling. J Neurosci. 2009, 29 (34): 10695-10705. 10.1523/JNEUROSCI.2658-09.2009
Article
CAS
PubMed
Google Scholar
Wichterle H, Alvarez-Dolado M, Erskine L, Alvarez-Buylla A: Permissive corridor and diffusible gradients direct medial ganglionic eminence cell migration to the neocortex. Proc Natl Acad Sci U S A. 2003, 100 (2): 727-732. 10.1073/pnas.242721899
Article
PubMed Central
CAS
PubMed
Google Scholar
Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL: Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science. 2001, 293 (5531): 872-875. 10.1126/science.1061891
Article
CAS
PubMed
Google Scholar
Tamamaki N, Fujimori K, Nojyo Y, Kaneko T, Takauji R: Evidence that Sema3A and Sema3F regulate the migration of GABAergic neurons in the developing neocortex. J Comp Neurol. 2003, 455 (2): 238-248. 10.1002/cne.10476
Article
CAS
PubMed
Google Scholar
Zimmer G, Schanuel SM, Burger S, Weth F, Steinecke A, Bolz J, Lent R: Chondroitin sulfate acts in concert with semaphorin 3A to guide tangential migration of cortical interneurons in the ventral telencephalon. Cereb Cortex. 2010, 20 (10): 2411-2422. 10.1093/cercor/bhp309
Article
PubMed
Google Scholar
Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL, Tessier-Lavigne M: Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron. 2002, 33 (2): 233-248. 10.1016/S0896-6273(02)00561-5
Article
CAS
PubMed
Google Scholar
Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A: Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol. 2002, 442 (2): 130-155. 10.1002/cne.10068
Article
PubMed
Google Scholar
Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, Chedotal A, Ghosh A: Regulation of cortical dendrite development by slit-robo interactions. Neuron. 2002, 33 (1): 47-61. 10.1016/S0896-6273(01)00566-9
Article
CAS
PubMed
Google Scholar
Yuan W, Zhou L, Chen JH, Wu JY, Rao Y, Ornitz DM: The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev Biol. 1999, 212 (2): 290-306. 10.1006/dbio.1999.9371
Article
CAS
PubMed
Google Scholar
Andrews W, Barber M, Hernadez-Miranda LR, Xian J, Rakic S, Sundaresan V, Rabbitts TH, Pannell R, Rabbitts P, Thompson H: The role of slit-robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev Biol. 2008, 313 (2): 648-658. 10.1016/j.ydbio.2007.10.052
Article
CAS
PubMed
Google Scholar
Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, Murakami F, Parnavelas JG, Sundaresan V, Richards LJ: Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development. 2006, 133 (11): 2243-2252. 10.1242/dev.02379
Article
CAS
PubMed
Google Scholar
Andrews WD, Barber M, Parnavelas JG: Slit-robo interactions during cortical development. J Anat. 2007, 211 (2): 188-198. 10.1111/j.1469-7580.2007.00750.x
Article
PubMed Central
PubMed
Google Scholar
Barber M, Di Meglio T, Andrews WD, Hernandez-Miranda LR, Murakami F, Chedotal A, Parnavelas JG: The role of Robo3 in the development of cortical interneurons. Cereb Cortex. 2009, 19 (Suppl 1): i22-i31.
Article
PubMed Central
PubMed
Google Scholar
Zimmer G, Garcez P, Rudolph J, Niehage R, Weth F, Lent R, Bolz J: Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons. Eur J Neurosci. 2008, 28 (1): 62-73. 10.1111/j.1460-9568.2008.06320.x
Article
PubMed
Google Scholar
Rudolph J, Zimmer G, Steinecke A, Barchmann S, Bolz J: Ephrins guide migrating cortical interneurons in the basal telencephalon. Cell Adh Migr. 2010, 4 (3): 400-408. 10.4161/cam.4.3.11640
Article
PubMed Central
PubMed
Google Scholar
Sanchez-Alcaniz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, Lopez-Bendito G, Stumm R, Marin O: Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron. 2011, 69 (1): 77-90. 10.1016/j.neuron.2010.12.006
Article
CAS
PubMed
Google Scholar
Tiveron MC, Rossel M, Moepps B, Zhang YL, Seidenfaden R, Favor J, Konig N, Cremer H: Molecular interaction between projection neuron precursors and invading interneurons via stromal-derived factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular zone/intermediate zone. J Neurosci. 2006, 26 (51): 13273-13278. 10.1523/JNEUROSCI.4162-06.2006
Article
CAS
PubMed
Google Scholar
Li G, Adesnik H, Li J, Long J, Nicoll RA, Rubenstein JL, Pleasure SJ: Regional distribution of cortical interneurons and development of inhibitory tone are regulated by Cxcl12/Cxcr4 signaling. J Neurosci. 2008, 28 (5): 1085-1098. 10.1523/JNEUROSCI.4602-07.2008
Article
PubMed Central
CAS
PubMed
Google Scholar
Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C, Lai C, Rubenstein JL, Marin O: Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron. 2004, 44 (2): 251-261. 10.1016/j.neuron.2004.09.028
Article
CAS
PubMed
Google Scholar
Martini FJ, Valiente M, Lopez Bendito G, Szabo G, Moya F, Valdeolmillos M, Marin O: Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development. 2009, 136 (1): 41-50. 10.1242/dev.025502
Article
CAS
PubMed
Google Scholar
Yau HJ, Wang HF, Lai C, Liu FC: Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb Cortex. 2003, 13 (3): 252-264. 10.1093/cercor/13.3.252
Article
PubMed
Google Scholar
Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003, 425 (6961): 917-925. 10.1038/nature02033
Article
CAS
PubMed
Google Scholar
Alifragis P, Liapi A, Parnavelas JG: Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J Neurosci. 2004, 24 (24): 5643-5648. 10.1523/JNEUROSCI.1245-04.2004
Article
CAS
PubMed
Google Scholar
Nobrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marin O: Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron. 2008, 59 (5): 733-745. 10.1016/j.neuron.2008.07.024
Article
PubMed Central
CAS
PubMed
Google Scholar
Cobos I, Borello U, Rubenstein JL: Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron. 2007, 54 (6): 873-888. 10.1016/j.neuron.2007.05.024
Article
CAS
PubMed
Google Scholar
Cobos I, Broccoli V, Rubenstein JL: The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J Comp Neurol. 2005, 483 (3): 292-303. 10.1002/cne.20405
Article
CAS
PubMed
Google Scholar
Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, Rubenstein JL, Broccoli V: Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation. J Neurosci. 2007, 27 (17): 4786-4798. 10.1523/JNEUROSCI.0417-07.2007
Article
CAS
PubMed
Google Scholar
Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K: Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet. 2002, 32 (3): 359-369. 10.1038/ng1009
Article
CAS
PubMed
Google Scholar
Marsh E, Fulp C, Gomez E, Nasrallah I, Minarcik J, Sudi J, Christian SL, Mancini G, Labosky P, Dobyns W: Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain. 2009, 132 (Pt 6): 1563-1576.
Article
PubMed Central
PubMed
Google Scholar
Cuzon VC, Yeh PW, Cheng Q, Yeh HH: Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex. 2006, 16 (10): 1377-1388.
Article
PubMed
Google Scholar
Lopez-Bendito G, Lujan R, Shigemoto R, Ganter P, Paulsen O, Molnar Z: Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb Cortex. 2003, 13 (9): 932-942. 10.1093/cercor/13.9.932
Article
PubMed
Google Scholar
Cuzon Carlson VC, Yeh HH: GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence. Cereb Cortex. 2011, 21 (8): 1792-1802. 10.1093/cercor/bhq247
Article
PubMed Central
PubMed
Google Scholar
Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren JQ, Bhide PG: Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci. 2007, 27 (14): 3813-3822. 10.1523/JNEUROSCI.5124-06.2007
Article
PubMed Central
CAS
PubMed
Google Scholar
Ohtani N, Goto T, Waeber C, Bhide PG: Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci. 2003, 23 (7): 2840-2850.
PubMed Central
CAS
PubMed
Google Scholar
Sahara S, Yanagawa Y, O’Leary DD, Stevens CF: The fraction of cortical GABAergic neurons is constant from near the start of cortical neurogenesis to adulthood. J Neurosci. 2012, 32 (14): 4755-4761. 10.1523/JNEUROSCI.6412-11.2012
Article
PubMed Central
CAS
PubMed
Google Scholar
Faux C, Rakic S, Andrews W, Britto JM: Neurons on the move: migration and lamination of cortical interneurons. Neurosignals. 2012, 20 (3): 168-189. 10.1159/000334489
Article
CAS
PubMed
Google Scholar
Bortone D, Polleux F: KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron. 2009, 62 (1): 53-71. 10.1016/j.neuron.2009.01.034
Article
PubMed Central
CAS
PubMed
Google Scholar
Elvevag B, Goldberg TE: Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol. 2000, 14 (1): 1-21.
Article
CAS
PubMed
Google Scholar
Sitskoorn MM, Aleman A, Ebisch SJ, Appels MC, Kahn RS: Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophr Res. 2004, 71 (2–3): 285-295.
Article
PubMed
Google Scholar
Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL: Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 1991, 48 (11): 996-1001. 10.1001/archpsyc.1991.01810350036005
Article
CAS
PubMed
Google Scholar
Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, Jones EG: Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995, 52 (4): 258-266. 10.1001/archpsyc.1995.03950160008002
Article
CAS
PubMed
Google Scholar
Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003, 23 (15): 6315-6326.
CAS
PubMed
Google Scholar
Lewis DA, Sweet RA: Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. J Clin Invest. 2009, 119 (4): 706-716. 10.1172/JCI37335
Article
PubMed Central
CAS
PubMed
Google Scholar
Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA: Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008, 31 (5): 234-242. 10.1016/j.tins.2008.02.005
Article
PubMed Central
CAS
PubMed
Google Scholar
Barr MS, Farzan F, Tran LC, Chen R, Fitzgerald PB, Daskalakis ZJ: Evidence for excessive frontal evoked gamma oscillatory activity in schizophrenia during working memory. Schizophr Res. 2010, 121 (1–3): 146-152.
Article
CAS
PubMed
Google Scholar
Farzan F, Barr MS, Levinson AJ, Chen R, Wong W, Fitzgerald PB, Daskalakis ZJ: Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain. 2010, 133 (Pt 5): 1505-1514.
Article
PubMed
Google Scholar
Haenschel C, Bittner RA, Waltz J, Haertling F, Wibral M, Singer W, Linden DE, Rodriguez E: Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci. 2009, 29 (30): 9481-9489. 10.1523/JNEUROSCI.1428-09.2009
Article
CAS
PubMed
Google Scholar
Uhlhaas PJ, Singer W: Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010, 11 (2): 100-113. 10.1038/nrn2774
Article
CAS
PubMed
Google Scholar
Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, Gunnarsdottir S, Walker N, Petursson H, Crombie C: Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet. 2003, 72 (1): 83-87. 10.1086/345442
Article
PubMed Central
CAS
PubMed
Google Scholar
Harrison PJ, Law AJ: Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry. 2006, 60 (2): 132-140. 10.1016/j.biopsych.2005.11.002
Article
CAS
PubMed
Google Scholar
Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, Yin DM, Lai C, Terry AV Jr, Vazdarjanova A: Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci U S A. 2010, 107 (3): 1211-1216. 10.1073/pnas.0910302107
Article
PubMed Central
CAS
PubMed
Google Scholar
Mei L, Xiong WC: Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008, 9 (6): 437-452.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K, Lerma J, Marin O, Rico B: Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature. 2010, 464 (7293): 1376-1380. 10.1038/nature08928
Article
CAS
PubMed
Google Scholar
Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ, Buonanno A: Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci. 2009, 29 (39): 12255-12264. 10.1523/JNEUROSCI.2454-09.2009
Article
PubMed Central
CAS
PubMed
Google Scholar
Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, St Clair DM, Muir WJ, Blackwood DH: Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000, 9 (9): 1415-1423. 10.1093/hmg/9.9.1415
Article
CAS
PubMed
Google Scholar
Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andrade M, Tankou S: Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A. 2007, 104 (36): 14501-14506. 10.1073/pnas.0704774104
Article
PubMed Central
CAS
PubMed
Google Scholar
Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K, Lu L, Tomisato S, Jaaro-Peled H, Seshadri S: Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron. 2010, 65 (4): 480-489. 10.1016/j.neuron.2010.01.019
Article
PubMed Central
CAS
PubMed
Google Scholar
Porteous DJ, Millar JK, Brandon NJ, Sawa A: DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med. 2011, 17 (12): 699-706. 10.1016/j.molmed.2011.09.002
Article
PubMed Central
CAS
PubMed
Google Scholar
Ji Y, Yang F, Papaleo F, Wang HX, Gao WJ, Weinberger DR, Lu B: Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc Natl Acad Sci U S A. 2009, 106 (46): 19593-19598. 10.1073/pnas.0904289106
Article
PubMed Central
CAS
PubMed
Google Scholar
Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B: Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet. 2002, 71 (2): 337-348. 10.1086/341750
Article
PubMed Central
CAS
PubMed
Google Scholar
Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE: Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest. 2004, 113 (9): 1353-1363.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM, Herman MM, Weinberger DR, Kleinman JE: Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry. 2004, 61 (6): 544-555. 10.1001/archpsyc.61.6.544
Article
CAS
PubMed
Google Scholar
Ottis P, Bader V, Trossbach SV, Kretzschmar H, Michel M, Leliveld SR, Korth C: Convergence of two independent mental disease genes on the protein level: recruitment of dysbindin to cell-invasive disrupted-in-schizophrenia 1 aggresomes. Biol Psychiatry. 2011, 70 (7): 604-610. 10.1016/j.biopsych.2011.03.027
Article
CAS
PubMed
Google Scholar