WHO: Global HIV/AIDS Response: Epidemic update and health sector progress towards Universal Access. Progress Report 2011. 2011, 1-224. World Health Organization (WHO), Geneva, Switzerland.
Google Scholar
Logsdon BC, Vickrey JF, Martin P, Proteasa G, Koepke JI, Terlecky SR, Wawrzak Z, Winters MA, Merigan TC, Kovari LC: Crystal structures of a multidrug-resistant human immunodeficiency virus type 1 protease reveal an expanded active-site cavity. J Virol. 2004, 78: 3123-3132. 10.1128/JVI.78.6.3123-3132.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Palmer S, Shafer RW, Merigan TC: Highly drug-resistant HIV-1 clinical isolates are cross-resistant to many antiretroviral compounds in current clinical development. Aids. 1999, 13: 661-667.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rhee SY, Taylor J, Fessel WJ, Kaufman D, Towner W, Troia P, Ruane P, Hellinger J, Shirvani V, Zolopa A, Shafer RW: HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrob Agents Chemother. 2010, 54: 4253-4261. 10.1128/AAC.00574-10
Article
PubMed Central
CAS
PubMed
Google Scholar
Imamichi T: Action of anti-HIV drugs and resistance: reverse transcriptase inhibitors and protease inhibitors. Curr Pharm Des. 2004, 10: 4039-4053. 10.2174/1381612043382440
Article
CAS
PubMed
Google Scholar
Dayam R, Neamati N: Small-molecule HIV-1 integrase inhibitors: the 2001–2002 update. Curr Pharm Des. 2003, 9: 1789-1802. 10.2174/1381612033454469
Article
CAS
PubMed
Google Scholar
Neamati N, Marchand C, Pommier Y: HIV-1 integrase inhibitors: past, present, and future. Adv Pharmacol. 2000, 49: 147-165.
Article
CAS
PubMed
Google Scholar
Pommier Y, Marchand C, Neamati N: Retroviral integrase inhibitors year 2000: update and perspectives. Antiviral Res. 2000, 47: 139-148. 10.1016/S0166-3542(00)00112-1
Article
CAS
PubMed
Google Scholar
Brik A, Wong CH: HIV-1 protease: mechanism and drug discovery. Org Biomol Chem. 2003, 1: 5-14. 10.1039/b208248a
Article
CAS
PubMed
Google Scholar
Hoggard PG, Owen A: The mechanisms that control intracellular penetration of the HIV protease inhibitors. J Antimicrob Chemother. 2003, 51: 493-496. 10.1093/jac/dkg137
Article
CAS
PubMed
Google Scholar
Perez MA, Fernandes PA, Ramos MJ: Substrate recognition in HIV-1 protease: a computational study. J Phys Chem B. 2010, 114: 2525-2532. 10.1021/jp910958u
Article
CAS
PubMed
Google Scholar
Pettit SC, Clemente JC, Jeung JA, Dunn BM, Kaplan AH: Ordered processing of the human immunodeficiency virus type 1 GagPol precursor is influenced by the context of the embedded viral protease. J Virol. 2005, 79: 10601-10607. 10.1128/JVI.79.16.10601-10607.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Krausslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter CA: Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc Natl Acad Sci U S A. 1989, 86: 807-811. 10.1073/pnas.86.3.807
Article
PubMed Central
CAS
PubMed
Google Scholar
De Oliveira T, Engelbrecht S, Janse van Rensburg E, Gordon M, Bishop K, Zur Megede J, Barnett SW, Cassol S: Variability at human immunodeficiency virus type 1 subtype C protease cleavage sites: an indication of viral fitness?. J Virol. 2003, 77: 9422-9430. 10.1128/JVI.77.17.9422-9430.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Barrie KA, Perez EE, Lamers SL, Farmerie WG, Dunn BM, Sleasman JW, Goodenow MM: Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1. Virology. 1996, 219: 407-416. 10.1006/viro.1996.0266
Article
CAS
PubMed
Google Scholar
Ridky TW, Cameron CE, Cameron J, Leis J, Copeland T, Wlodawer A, Weber IT, Harrison RW: Human immunodeficiency virus, type 1 protease substrate specificity is limited by interactions between substrate amino acids bound in adjacent enzyme subsites. J Biol Chem. 1996, 271: 4709-4717. 10.1074/jbc.271.9.4709
Article
CAS
PubMed
Google Scholar
Pearl LH, Taylor WR: A structural model for the retroviral proteases. Nature. 1987, 329: 351-354. 10.1038/329351a0
Article
CAS
PubMed
Google Scholar
Piana S, Carloni P, Rothlisberger U: Drug resistance in HIV-1 protease: Flexibility-assisted mechanism of compensatory mutations. Protein Sci. 2002, 11: 2393-2402.
Article
PubMed Central
CAS
PubMed
Google Scholar
Todd MJ, Freire E: The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease. Proteins. 1999, 36: 147-156. 10.1002/(SICI)1097-0134(19990801)36:2<147::AID-PROT2>3.0.CO;2-3
Article
CAS
PubMed
Google Scholar
Todd MJ, Semo N, Freire E: The structural stability of the HIV-1 protease. J Mol Biol. 1998, 283: 475-488. 10.1006/jmbi.1998.2090
Article
CAS
PubMed
Google Scholar
Toth G, Borics A: Flap opening mechanism of HIV-1 protease. J Mol Graph Model. 2006, 24: 465-474. 10.1016/j.jmgm.2005.08.008
Article
CAS
PubMed
Google Scholar
Velazquez-Campoy A, Muzammil S, Ohtaka H, Schon A, Vega S, Freire E: Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design. Curr Drug Targets Infect Disord. 2003, 3: 311-328. 10.2174/1568005033481051
Article
CAS
PubMed
Google Scholar
Luque I, Freire E: Structural stability of binding sites: consequences for binding affinity and allosteric effects. Proteins. 2000, Suppl 4: 63-71.
Article
CAS
PubMed
Google Scholar
Lapatto R, Blundell T, Hemmings A, Overington J, Wilderspin A, Wood S, Merson JR, Whittle PJ, Danley DE, Geoghegan KF: X-ray analysis of HIV-1 proteinase at 2.7 A resolution confirms structural homology among retroviral enzymes. Nature. 1989, 342: 299-302. 10.1038/342299a0
Article
CAS
PubMed
Google Scholar
Spinelli S, Liu QZ, Alzari PM, Hirel PH, Poljak RJ: The three-dimensional structure of the aspartyl protease from the HIV-1 isolate BRU. Biochimie. 1991, 73: 1391-1396. 10.1016/0300-9084(91)90169-2
Article
CAS
PubMed
Google Scholar
Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SB: Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989, 245: 616-621. 10.1126/science.2548279
Article
CAS
PubMed
Google Scholar
Louis JM, Dyda F, Nashed NT, Kimmel AR, Davies DR: Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease. Biochemistry. 1998, 37: 2105-2110. 10.1021/bi972059x
Article
CAS
PubMed
Google Scholar
Prabu-Jeyabalan M, Nalivaika E, Schiffer CA: How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J Mol Biol. 2000, 301: 1207-1220. 10.1006/jmbi.2000.4018
Article
CAS
PubMed
Google Scholar
Coffin JM: HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995, 267: 483-489. 10.1126/science.7824947
Article
CAS
PubMed
Google Scholar
Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SB, Wlodawer A: Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science. 1989, 246: 1149-1152. 10.1126/science.2686029
Article
CAS
PubMed
Google Scholar
Rick SW, Erickson JW, Burt SK: Reaction path and free energy calculations of the transition between alternate conformations of HIV-1 protease. Proteins. 1998, 32: 7-16. 10.1002/(SICI)1097-0134(19980701)32:1<7::AID-PROT3>3.0.CO;2-K
Article
CAS
PubMed
Google Scholar
Scott WR, Schiffer CA: Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance. Structure. 2000, 8: 1259-1265. 10.1016/S0969-2126(00)00537-2
Article
CAS
PubMed
Google Scholar
Collins JR, Burt SK, Erickson JW: Flap opening in HIV-1 protease simulated by 'activated' molecular dynamics. Nat Struct Biol. 1995, 2: 334-338. 10.1038/nsb0495-334
Article
CAS
PubMed
Google Scholar
Levy JA: Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993, 57: 183-289.
PubMed Central
CAS
PubMed
Google Scholar
Voss TG, Fermin CD, Levy JA, Vigh S, Choi B, Garry RF: Alteration of intracellular potassium and sodium concentrations correlates with induction of cytopathic effects by human immunodeficiency virus. J Virol. 1996, 70: 5447-5454.
PubMed Central
CAS
PubMed
Google Scholar
Blanco R, Carrasco L, Ventoso I: Cell killing by HIV-1 protease. J Biol Chem. 2003, 278: 1086-1093. 10.1074/jbc.M205636200
Article
CAS
PubMed
Google Scholar
Ventoso I, Navarro J, Munoz MA, Carrasco L: Involvement of HIV-1 protease in virus-induced cell killing. Antiviral Res. 2005, 66: 47-55. 10.1016/j.antiviral.2004.12.008
Article
CAS
PubMed
Google Scholar
Shoeman RL, Honer B, Stoller TJ, Kesselmeier C, Miedel MC, Traub P, Graves MC: Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sci U S A. 1990, 87: 6336-6340. 10.1073/pnas.87.16.6336
Article
PubMed Central
CAS
PubMed
Google Scholar
Shoeman RL, Huttermann C, Hartig R, Traub P: Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells. Mol Biol Cell. 2001, 12: 143-154.
Article
PubMed Central
CAS
PubMed
Google Scholar
Konvalinka J, Litterst MA, Welker R, Kottler H, Rippmann F, Heuser AM, Krausslich HG: An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. J Virol. 1995, 69: 7180-7186.
PubMed Central
CAS
PubMed
Google Scholar
Tomasselli AG, Hui JO, Adams L, Chosay J, Lowery D, Greenberg B, Yem A, Deibel MR, Zurcher-Neely H, Heinrikson RL: Actin, troponin C, Alzheimer amyloid precursor protein and pro-interleukin 1 beta as substrates of the protease from human immunodeficiency virus. J Biol Chem. 1991, 266: 14548-14553.
CAS
PubMed
Google Scholar
Shoeman RL, Sachse C, Honer B, Mothes E, Kaufmann M, Traub P: Cleavage of human and mouse cytoskeletal and sarcomeric proteins by human immunodeficiency virus type 1 protease. Actin, desmin, myosin, and tropomyosin. Am J Pathol. 1993, 142: 221-230.
PubMed Central
CAS
PubMed
Google Scholar
Honer B, Shoeman RL, Traub P: Human immunodeficiency virus type 1 protease microinjected into cultured human skin fibroblasts cleaves vimentin and affects cytoskeletal and nuclear architecture. J Cell Sci. 1991, 100 (Pt 4): 799-807.
PubMed
Google Scholar
Strack PR, Frey MW, Rizzo CJ, Cordova B, George HJ, Meade R, Ho SP, Corman J, Tritch R, Korant BD: Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc Natl Acad Sci U S A. 1996, 93: 9571-9576. 10.1073/pnas.93.18.9571
Article
PubMed Central
CAS
PubMed
Google Scholar
Korant BD, Strack P, Frey MW, Rizzo CJ: A cellular anti-apoptosis protein is cleaved by the HIV-1 protease. Adv Exp Med Biol. 1998, 436: 27-29. 10.1007/978-1-4615-5373-1_3
Article
CAS
PubMed
Google Scholar
Elmore S: Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007, 35: 495-516. 10.1080/01926230701320337
Article
PubMed Central
CAS
PubMed
Google Scholar
Vlahakis SR: Cell Death In HIV Infection: gp120. Cell Death During HIV Infection. Edited by: Badley AD. 2006, 95-108. CRC Press, Taylor and Francis Group, Florida,
Google Scholar
Cory S, Huang DC, Adams JM: The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003, 22: 8590-8607. 10.1038/sj.onc.1207102
Article
CAS
PubMed
Google Scholar
Rapp UR, Rennefahrt U, Troppmair J: Bcl-2 proteins: master switches at the intersection of death signaling and the survival control by Raf kinases. Biochim Biophys Acta. 2004, 1644: 149-158. 10.1016/j.bbamcr.2003.10.015
Article
CAS
PubMed
Google Scholar
Nie Z, Bren GD, Vlahakis SR, Schimnich AA, Brenchley JM, Trushin SA, Warren S, Schnepple DJ, Kovacs CM, Loutfy MR, Douek DC, Badley AD: Human immunodeficiency virus type 1 protease cleaves procaspase 8 in vivo. J Virol. 2007, 81: 6947-6956. 10.1128/JVI.02798-06
Article
PubMed Central
CAS
PubMed
Google Scholar
Nie Z, Phenix BN, Lum JJ, Alam A, Lynch DH, Beckett B, Krammer PH, Sekaly RP, Badley AD: HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Differ. 2002, 9: 1172-1184. 10.1038/sj.cdd.4401094
Article
CAS
PubMed
Google Scholar
Nie Z, Bren GD, Rizza SA, Badley AD: HIV Protease Cleavage of Procaspase 8 is Necessary for Death of HIV-Infected Cells. Open Virol J. 2008, 2: 1-7. 10.2174/1874357900802010001
Article
PubMed Central
CAS
PubMed
Google Scholar
Sainski AM, Natesampillai S, Cummins NW, Bren GD, Taylor J, Saenz DT, Poeschla EM, Badley AD: The HIV-1-specific protein Casp8p41 induces death of infected cells through Bax/Bak. J Virol. 2011, 85: 7965-7975. 10.1128/JVI.02515-10
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakagawa F, Lodwick RK, Smith CJ, Smith R, Cambiano V, Lundgren JD, Delpech V, Phillips AN: Projected life expectancy of people with HIV according to timing of diagnosis. Aids. 2012, 26: 335-343. 10.1097/QAD.0b013e32834dcec9
Article
PubMed
Google Scholar
Hartman TL, Buckheit RW: The Continuing Evolution of HIV-1 Therapy: Identification and Development of Novel Antiretroviral Agents Targeting Viral and Cellular Targets. Mol Biol Int. 2012, 2012: 401965.
Article
PubMed Central
PubMed
Google Scholar
Vlahakis SR, Bennett SA, Whitehead SN, Badley AD: HIV protease inhibitors modulate apoptosis signaling in vitro and in vivo. Apoptosis. 2007, 12: 969-977. 10.1007/s10495-007-0755-3
Article
CAS
PubMed
Google Scholar
Rizza SA, Badley AD: HIV protease inhibitors impact on apoptosis. Med Chem. 2008, 4: 75-79. 10.2174/157340608783331443
Article
PubMed Central
CAS
PubMed
Google Scholar
FDA-Approved Anti-HIV Medications.http://www.aidsinfo.nih.gov/contentfiles/ApprovedMedstoTreatHIV_FS_en.pdf,
Anderson J, Schiffer C, Lee SK, Swanstrom R: Viral protease inhibitors. Handb Exp Pharmacol. 2009, 189: 85-110. 10.1007/978-3-540-79086-0_4
Article
CAS
PubMed
Google Scholar
Chang MW, Giffin MJ, Muller R, Savage J, Lin YC, Hong S, Jin W, Whitby LR, Elder JH, Boger DL, Torbett BE: Identification of broad-based HIV-1 protease inhibitors from combinatorial libraries. Biochem J. 2010, 429: 527-532. 10.1042/BJ20091645
Article
PubMed Central
CAS
PubMed
Google Scholar
Agniswamy J, Shen CH, Aniana A, Sayer JM, Louis JM, Weber IT: HIV-1 protease with 20 mutations exhibits extreme resistance to clinical inhibitors through coordinated structural rearrangements. Biochemistry. 2012, 51: 2819-2828. 10.1021/bi2018317
Article
PubMed Central
CAS
PubMed
Google Scholar
Judd DA, Nettles JH, Nevins N, Snyder JP, Liotta DC, Tang J, Ermolieff J, Schinazi RF, Hill CL: Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition. J Am Chem Soc. 2001, 123: 886-897. 10.1021/ja001809e
Article
CAS
PubMed
Google Scholar
Moskovitz BL: Clinical trial of tolerance of HPA-23 in patients with acquired immune deficiency syndrome. Antimicrob Agents Chemother. 1988, 32: 1300-1303. 10.1128/AAC.32.9.1300
Article
PubMed Central
CAS
PubMed
Google Scholar
Flutsch A, Schroeder T, Grutter MG, Patzke GR: HIV-1 protease inhibition potential of functionalized polyoxometalates. Bioorg Med Chem Lett. 2011, 21: 1162-1166. 10.1016/j.bmcl.2010.12.103
Article
PubMed
Google Scholar
Ghosh AK, Chapsal BD, Parham GL, Steffey M, Agniswamy J, Wang YF, Amano M, Weber IT, Mitsuya H: Design of HIV-1 protease inhibitors with C3-substituted hexahydrocyclopentafuranyl urethanes as P2-ligands: synthesis, biological evaluation, and protein-ligand X-ray crystal structure. J Med Chem. 2011, 54: 5890-5901. 10.1021/jm200649p
Article
PubMed Central
CAS
PubMed
Google Scholar
Ghosh AK, Chapsal BD, Steffey M, Agniswamy J, Wang YF, Amano M, Weber IT, Mitsuya H: Substituent effects on P2-cyclopentyltetrahydrofuranyl urethanes: design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors. Bioorg Med Chem Lett. 2012, 22: 2308-2311. 10.1016/j.bmcl.2012.01.061
Article
PubMed Central
CAS
PubMed
Google Scholar
Bouras A, Boggetto N, Benatalah Z, de Rosny E, Sicsic S, Reboud-Ravaux M: Design, synthesis, and evaluation of conformationally constrained tongs, new inhibitors of HIV-1 protease dimerization. J Med Chem. 1999, 42: 957-962. 10.1021/jm9803976
Article
CAS
PubMed
Google Scholar
Shultz MD, Ham YW, Lee SG, Davis DA, Brown C, Chmielewski J: Small-molecule dimerization inhibitors of wild-type and mutant HIV protease: a focused library approach. J Am Chem Soc. 2004, 126: 9886-9887. 10.1021/ja048139n
Article
CAS
PubMed
Google Scholar
Bowman MJ, Byrne S, Chmielewski J: Switching between allosteric and dimerization inhibition of HIV-1 protease. Chem Biol. 2005, 12: 439-444. 10.1016/j.chembiol.2005.02.004
Article
CAS
PubMed
Google Scholar
Bowman MJ, Chmielewski J: Novel strategies for targeting the dimerization interface of HIV protease with cross-linked interfacial peptides. Biopolymers. 2002, 66: 126-133. 10.1002/bip.10232
Article
CAS
PubMed
Google Scholar
Shultz MD, Bowman MJ, Ham YW, Zhao X, Tora G, Chmielewski J: Small-Molecule Inhibitors of HIV-1 Protease Dimerization Derived from Cross-Linked Interfacial Peptides This work was supported by NIH (GM52739) and NSF (9457372-CHE). Angew Chem Int Ed Engl. 2000, 39: 2710-2713. 10.1002/1521-3773(20000804)39:15<2710::AID-ANIE2710>3.0.CO;2-P
Article
CAS
PubMed
Google Scholar
Hwang YS, Chmielewski J: Development of low molecular weight HIV-1 protease dimerization inhibitors. J Med Chem. 2005, 48: 2239-2242. 10.1021/jm049581j
Article
CAS
PubMed
Google Scholar
Cheng TJ, Brik A, Wong CH, Kan CC: Model system for high-throughput screening of novel human immunodeficiency virus protease inhibitors in Escherichia coli. Antimicrob Agents Chemother. 2004, 48: 2437-2447. 10.1128/AAC.48.7.2437-2447.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheng YS, Lo KH, Hsu HH, Shao YM, Yang WB, Lin CH, Wong CH: Screening for HIV protease inhibitors by protection against activity-mediated cytotoxicity in Escherichia coli. J Virol Methods. 2006, 137: 82-87. 10.1016/j.jviromet.2006.06.003
Article
CAS
PubMed
Google Scholar
Lindsten K, Uhlikova T, Konvalinka J, Masucci MG, Dantuma NP: Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity. Antimicrob Agents Chemother. 2001, 45: 2616-2622. 10.1128/AAC.45.9.2616-2622.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Fuse T, Watanabe K, Kitazato K, Kobayashi N: Establishment of a new cell line inducibly expressing HIV-1 protease for performing safe and highly sensitive screening of HIV protease inhibitors. Microbes Infect. 2006, 8: 1783-1789. 10.1016/j.micinf.2006.02.016
Article
CAS
PubMed
Google Scholar
Hu K, Clement JF, Abrahamyan L, Strebel K, Bouvier M, Kleiman L, Mouland AJ: A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. J Virol Methods. 2005, 128: 93-103. 10.1016/j.jviromet.2005.04.012
Article
CAS
PubMed
Google Scholar
Cheng YS, Yin FH, Foundling S, Blomstrom D, Kettner CA: Stability and activity of human immunodeficiency virus protease: comparison of the natural dimer with a homologous, single-chain tethered dimer. Proc Natl Acad Sci U S A. 1990, 87: 9660-9664. 10.1073/pnas.87.24.9660
Article
PubMed Central
CAS
PubMed
Google Scholar
Patterson CE, Seetharam R, Kettner CA, Cheng YS: Human immunodeficiency virus type 1 and type 2 protease monomers are functionally interchangeable in the dimeric enzymes. J Virol. 1992, 66: 1228-1231.
PubMed Central
CAS
PubMed
Google Scholar
Takegawa K, Tohda H, Sasaki M, Idiris A, Ohashi T, Mukaiyama H, Giga-Hama Y, Kumagai H: Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem. 2009, 53: 227-235. 10.1042/BA20090048
Article
CAS
PubMed
Google Scholar
Zhao Y, Lieberman HB: Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA Cell Biol. 1995, 14: 359-371. 10.1089/dna.1995.14.359
Article
CAS
PubMed
Google Scholar
Giga-Hama Y, Kumagai H: Expression system for foreign genes using the fission yeast Schizosaccharomyces pombe. Biotechnol Appl Biochem. 1999, 30 (Pt 3): 235-244.
CAS
PubMed
Google Scholar
Lu Q, Bauer JC, Greener A: Using Schizosaccharomyces pombe as a host for expression and purification of eukaryotic proteins. Gene. 1997, 200: 135-144. 10.1016/S0378-1119(97)00393-4
Article
CAS
PubMed
Google Scholar
Zhao Y, Elder RT: Yeast perspectives on HIV-1 VPR. Front Biosci. 2000, 5: D905-916. 10.2741/zhao
Article
CAS
PubMed
Google Scholar
Li G, Bukrinsky M, Zhao RY: HIV-1 viral protein R (Vpr) and its interactions with host cell. Curr HIV Res. 2009, 7: 178-183. 10.2174/157016209787581436
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao RY, Elder RT: Viral infections and cell cycle G2/M regulation. Cell Res. 2005, 15: 143-149. 10.1038/sj.cr.7290279
Article
CAS
PubMed
Google Scholar
Zhao Y, Cao J, O'Gorman MR, Yu M, Yogev R: Effect of human immunodeficiency virus type 1 protein R (vpr) gene expression on basic cellular function of fission yeast Schizosaccharomyces pombe. J Virol. 1996, 70: 5821-5826.
PubMed Central
CAS
PubMed
Google Scholar
Zhao RY, Bukrinsky M, Elder RT: HIV-1 viral protein R (Vpr) & host cellular responses. Indian J Med Res. 2005, 121: 270-286.
CAS
PubMed
Google Scholar
Zhao RY, Elder RT, Bukrinsky M: Interactions of HIV-1 viral protein R with host cell proteins. Adv Pharmacol. 2007, 55: 233-260.
Article
CAS
PubMed
Google Scholar
Huard S, Chen M, Burdette KE, Fenyvuesvolgyi C, Yu M, Elder RT, Zhao RY: HIV-1 Vpr-induced cell death in Schizosaccharomyces pombe is reminiscent of apoptosis. Cell Res. 2008, 18: 961-973. 10.1038/cr.2008.272
Article
CAS
PubMed
Google Scholar
Benko Z, Elder R, Liang D, Zhao R: Fission yeast as a HTS platform for molecular probes of HIV-1 Vpr-induced cell death. Int J High Throughput Screen. 2010, 1: 151-162.
CAS
Google Scholar