Broers MC, Bunschoten C, Nieboer D, Lingsma HF, Jacobs BC. Incidence and prevalence of chronic inflammatory demyelinating polyradiculoneuropathy: a systematic review and meta-analysis. Neuroepidemiology. 2019;52(3–4):161–72.
Article
Google Scholar
Latov N. Diagnosis and treatment of chronic acquired demyelinating polyneuropathies. Nat Rev Neurol. 2014;10(8):435–46.
Article
CAS
Google Scholar
Lehmann HC, Burke D, Kuwabara S. Chronic inflammatory demyelinating polyneuropathy: update on diagnosis, immunopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2019;90(9):981–7.
Article
Google Scholar
Mathey EK, Park SB, Hughes RA, Pollard JD, Armati PJ, Barnett MH, et al. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry. 2015;86(9):973–85.
Article
Google Scholar
Van den Bergh PY, Hadden RD, Bouche P, Cornblath DR, Hahn A, Illa I, et al. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society - first revision. Eur J Neurol. 2010;17(3):356–63.
Article
Google Scholar
Klehmet J, Marschenz S, Ruprecht K, Wunderlich B, Buttner T, Hiemann R, et al. Analysis of anti-ganglioside antibodies by a line immunoassay in patients with chronic-inflammatory demyelinating polyneuropathies (CIDP). Clin Chem Lab Med. 2018;56(6):919–26.
Article
CAS
Google Scholar
Diederich JM, Staudt M, Meisel C, Hahn K, Meinl E, Meisel A, et al. Neurofascin and compact myelin antigen-specific t cell response pattern in chronic inflammatory demyelinating polyneuropathy subtypes. Front Neurol. 2018;9:171.
Article
Google Scholar
Staudt M, Diederich JM, Meisel C, Meisel A, Klehmet J. Differences in peripheral myelin antigen-specific T cell responses and T memory subsets in atypical versus typical CIDP. BMC Neurol. 2017;17(1):81.
Article
CAS
Google Scholar
Gruter T, Motte J, Fisse AL, Bulut Y, Kose N, Athanasopoulos D, et al. Pathological spontaneous activity as a prognostic marker in chronic inflammatory demyelinating polyneuropathy. Eur J Neurol. 2020;27(12):2595–603.
Article
CAS
Google Scholar
Kerasnoudis A, Pitarokoili K, Behrendt V, Gold R, Yoon MS. Correlation of nerve ultrasound, electrophysiological and clinical findings in chronic inflammatory demyelinating polyneuropathy. J Neuroimaging. 2015;25(2):207–16.
Article
CAS
Google Scholar
Hughes RA, Cornblath DR. Guillain-Barre syndrome. Lancet. 2005;366(9497):1653–66.
Article
CAS
Google Scholar
Sharma A, Lal V, Modi M, Vaishnavi C, Prabhakar S. Campylobacter jejuni infection in Guillain-Barre syndrome: a prospective case control study in a tertiary care hospital. Neurol India. 2011;59(5):717–21.
Article
CAS
Google Scholar
Jacobs BC, Rothbarth PH, van der Meche FG, Herbrink P, Schmitz PI, de Klerk MA, et al. The spectrum of antecedent infections in Guillain-Barre syndrome: a case-control study. Neurology. 1998;51(4):1110–5.
Article
CAS
Google Scholar
Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barre syndrome. Lancet. 2016;388(10045):717–27.
Article
Google Scholar
Shahrizaila N, Lehmann HC, Kuwabara S. Guillain-Barre syndrome. Lancet. 2021;397(10280):1214–28.
Article
CAS
Google Scholar
Gorson KC, Allam G, Ropper AH. Chronic inflammatory demyelinating polyneuropathy: clinical features and response to treatment in 67 consecutive patients with and without a monoclonal gammopathy. Neurology. 1997;48(2):321–8.
Article
CAS
Google Scholar
McCombe PA, Pollard JD, McLeod JG. Chronic inflammatory demyelinating polyradiculoneuropathy. A clinical and electrophysiological study of 92 cases. Brain. 1987;110(Pt 6):1617–30.
Article
Google Scholar
Simmons Z, Albers JW, Bromberg MB, Feldman EL. Presentation and initial clinical course in patients with chronic inflammatory demyelinating polyradiculoneuropathy: comparison of patients without and with monoclonal gammopathy. Neurology. 1993;43(11):2202–9.
Article
CAS
Google Scholar
Simmons Z, Wald JJ, Albers JW. Chronic inflammatory demyelinating polyradiculoneuropathy in children: I. Presentation, electrodiagnostic studies, and initial clinical course, with comparison to adults. Muscle Nerve. 1997;20(8):1008–15.
Article
CAS
Google Scholar
Kuitwaard K, Bos-Eyssen ME, Blomkwist-Markens PH, van Doorn PA. Recurrences, vaccinations and long-term symptoms in GBS and CIDP. J Peripher Nerv Syst. 2009;14(4):310–5.
Article
Google Scholar
Rajabally YA, Peric S, Bozovic I, Loo LK, Kalac A, Palibrk A, et al. Antecedent infections and vaccinations in chronic inflammatory demyelinating polyneuropathy: a European collaborative study. Muscle Nerve. 2021;64(6):657–61.
Article
CAS
Google Scholar
Berger AR, Bradley WG, Brannagan TH, Busis NA, Cros DP, Dalakas MC, et al. Guidelines for the diagnosis and treatment of chronic inflammatory demyelinating polyneuropathy. J Peripher Nerv Syst. 2003;8(4):282–4.
Article
Google Scholar
Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83.
Article
CAS
Google Scholar
Sarafian MH, Gaudin M, Lewis MR, Martin FP, Holmes E, Nicholson JK, et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal Chem. 2014;86(12):5766–74.
Article
CAS
Google Scholar
Ben Salem K, Ben AA. Principal component analysis (PCA). Tunis Med. 2021;99(4):383–9.
Google Scholar
Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, et al. A tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015;879:10–23.
Article
CAS
Google Scholar
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6. https://doi.org/10.1093/bioinformatics/btv033.
Article
CAS
Google Scholar
Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010;38(12): e132.
Article
Google Scholar
Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DG. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737-43.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
Google Scholar
Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43:D261-9.
Article
CAS
Google Scholar
Poux S, Arighi CN, Magrane M, Bateman A, Wei CH, Lu Z, et al. On expert curation and scalability: UniProtKB/Swiss-Prot as a case study. Bioinformatics. 2017;33(21):3454–60.
Article
CAS
Google Scholar
Woods CT, Robertson S, Sinclair WH, Collier NF. Non-metric multidimensional performance indicator scaling reveals seasonal and team dissimilarity within the National Rugby League. J Sci Med Sport. 2018;21(4):410–5.
Article
Google Scholar
Wang ST, Meng XZ, Zhang JH, Dai YF, Shen Y, Xu XY, et al. 16S rRNA sequencing analysis of the correlation between the intestinal microbiota and body-mass of grass carp (Ctenopharyngodon idella). Comp Biochem Physiol Part D Genomics Proteomics. 2020;35: 100699.
Article
CAS
Google Scholar
Walters KE, Martiny JBH. Alpha-, beta-, and gamma-diversity of bacteria varies across habitats. PLoS ONE. 2020;15(9): e0233872.
Article
CAS
Google Scholar
Hoxha M. Arachidonic acid mediators and their role in neurological disease. CNS Neurol Disord Drug Targets. 2022;21(2):106–7.
Article
CAS
Google Scholar
Hoxha M, Rovati GE, Cavanillas AB. The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. Eur J Clin Pharmacol. 2017;73(7):799–809.
Article
CAS
Google Scholar
Szczuko M, Koziol I, Kotlega D, Brodowski J, Drozd A. The role of thromboxane in the course and treatment of ischemic stroke: review. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222111644.
Article
Google Scholar
von Tils D, Bladel I, Schmidt MA, Heusipp G. Type II secretion in Yersinia-a secretion system for pathogenicity and environmental fitness. Front Cell Infect Microbiol. 2012;2:160.
Google Scholar
Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol. 2009;7(9):654–65.
Article
CAS
Google Scholar
Skoog EC, Martin ME, Barrozo RM, Hansen LM, Cai LP, Lee SJ, et al. Maintenance of type IV secretion function during Helicobacter pylori infection in Mice. mBio. 2020. https://doi.org/10.1128/mBio.03147-20.
Article
Google Scholar
Loeven NA, Perault AI, Cotter PA, Hodges CA, Schwartzman JD, Hampton TH, et al. The Burkholderia cenocepacia Type VI secretion system effector TecA Is a virulence factor in mouse models of lung infection. mBio. 2021;12(5):e0209821.
Article
Google Scholar
Bowman L, Palmer T. The type VII secretion system of Staphylococcus. Annu Rev Microbiol. 2021;75:471–94.
Article
Google Scholar
Kim YS, Yang CS, Nguyen LT, Kim JK, Jin HS, Choe JH, et al. Mycobacterium abscessus ESX-3 plays an important role in host inflammatory and pathological responses during infection. Microbes Infect. 2017;19(1):5–17.
Article
CAS
Google Scholar
Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11(2):158–71.
Article
Google Scholar
Sakon H, Nagai F, Morotomi M, Tanaka R. Sutterella parvirubra sp. nov., and Megamonas funiformis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2008;58(4):970–5.
Article
Google Scholar
Ren X, Xu J, Zhang Y, Chen G, Zhang Y, Huang Q, et al. Bacterial alterations in post-cholecystectomy patients are associated with colorectal cancer. Front Oncol. 2020;10:1418.
Article
Google Scholar
Wan L, Zhou X, Wang C, Chen Z, Peng H, Hou X, et al. Alterations of the gut microbiota in multiple system atrophy patients. Front Neurosci. 2019;13:1102.
Article
Google Scholar
Liu P, Jiang Y, Gu S, Xue Y, Yang H, Li Y, et al. Metagenome-wide association study of gut microbiome revealed potential microbial marker set for diagnosis of pediatric myasthenia gravis. BMC Med. 2021;19(1):159.
Article
Google Scholar
Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med. 2017;14(4):3122–6.
Article
CAS
Google Scholar
Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes Dyslipidemia, and Nonalcoholic fatty liver disease. Gastroenterology. 2017;152(7):1679–94.
Article
CAS
Google Scholar
Woodhams L, Al-Salami H. The roles of bile acids and applications of microencapsulation technology in treating type 1 diabetes mellitus. Ther Deliv. 2017;8(6):401–9.
Article
CAS
Google Scholar
Sipe LM, Chaib M, Pingili AK, Pierre JF, Makowski L. Microbiome, bile acids, and obesity: how microbially modified metabolites shape anti-tumor immunity. Immunol Rev. 2020;295(1):220–39.
Article
CAS
Google Scholar
MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome. Alzheimers Dement. 2019;15(1):76–92.
Article
Google Scholar
Zangerolamo L, Vettorazzi JF, Rosa LRO, Carneiro EM, Barbosa HCL. The bile acid TUDCA and neurodegenerative disorders: an overview. Life Sci. 2021;272: 119252.
Article
CAS
Google Scholar
Han X, Wang J, Gu H, Guo H, Cai Y, Liao X, et al. Predictive value of serum bile acids as metabolite biomarkers for liver cirrhosis: a systematic review and meta-analysis. Metabolomics. 2022;18(7):43.
Article
CAS
Google Scholar
Koike S, Miyaji Y, Sano H, Aikawa N, Kai M, Kasahara S, et al. Simultaneous determination of five bile acids as potential biomarkers for Alzheimer’s disease in mouse brain and plasma. Anal Sci. 2021;37(8):1165–70.
Article
CAS
Google Scholar
Tao Y, Zheng F, Cui D, Huang F, Wu X. A combination of three plasma bile acids as a putative biomarker for schizophrenia. Acta Neuropsychiatr. 2021;33(1):51–4.
Article
Google Scholar
Cuevas E, Burks S, Raymick J, Robinson B, Gomez-Crisostomo NP, Escudero-Lourdes C, et al. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in a chronic mouse model of Parkinson’s disease. Nutr Neurosci. 2022;25(7):1374–91.
Article
CAS
Google Scholar
Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci U S A. 2002;99(16):10671–6.
Article
CAS
Google Scholar
Lo AC, Callaerts-Vegh Z, Nunes AF, Rodrigues CM, D’Hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol Dis. 2013;50:21–9.
Article
CAS
Google Scholar
Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A. 2008;105(36):13580–5.
Article
CAS
Google Scholar
Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59.
Article
CAS
Google Scholar
Ridlon JM, Alves JM, Hylemon PB, Bajaj JS. Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes. 2013;4(5):382–7.
Article
Google Scholar
Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gerard P, et al. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res. 2019;60(2):323–32.
Article
CAS
Google Scholar
Dediukhina EG, Chistiakova TI, Vainshtein MB. Biosynthesis of arachidonic acid by micromycetes (review). Prikl Biokhim Mikrobiol. 2011;47(2):125–34.
CAS
Google Scholar
Sakuradani E, Ando A, Ogawa J, Shimizu S. Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol. 2009;84(1):1–10.
Article
CAS
Google Scholar
Sakuradani E, Shimizu S. Single cell oil production by Mortierella alpina. J Biotechnol. 2009;144(1):31–6.
Article
CAS
Google Scholar
Zhao M, Dai C-c, Guan X-y, Tao J. Genome shuffling amplifies the carbon source spectrum and improves arachidonic acid production in Diasporangium sp. Enzyme Microbial Technol. 2009;45(6–7):419–25.
Article
CAS
Google Scholar
Cmwthgr DR. Fungal production of eicosapentaenoic and arachidonic acids from industrial waste streams and crude soybean oil. Bioresour Technol. 1999;67:101–10.
Article
Google Scholar
Saelao S, Kanjana-Opas A, Kaewsuwan S. Optimization of biomass and arachidonic acid production by Aureispira maritima using response surface methodology. J Am Oil Chem Soc. 2010;88(5):619–29.
Article
Google Scholar
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.
Article
Google Scholar
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.
Article
CAS
Google Scholar
Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol. 2020;11:24.
Article
Google Scholar
Foley MH, O’Flaherty S, Allen G, Rivera AJ, Stewart AK, Barrangou R, et al. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2017709118.
Article
Google Scholar