Heron M, Anderson RN (2016) Changes in the leading cause of death: recent patterns in heart disease and cancer mortality. NCHS Data Brief. 1–8.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA A Cancer J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551.
Article
Google Scholar
Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018;9:1300. https://doi.org/10.3389/fphar.2018.01300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Article
CAS
PubMed
Google Scholar
Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805:105–17. https://doi.org/10.1016/j.bbcan.2009.11.002.
Article
CAS
PubMed
Google Scholar
Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–37. https://doi.org/10.1038/nature12624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501:346–54. https://doi.org/10.1038/nature12626.
Article
CAS
PubMed
Google Scholar
Brown HK, Tellez-Gabriel M, Cartron P-F, et al. Characterization of circulating tumor cells as a reflection of the tumor heterogeneity: myth or reality? Drug Discov Today. 2019;24:763–72. https://doi.org/10.1016/j.drudis.2018.11.017.
Article
PubMed
Google Scholar
Vallette FM, Olivier C, Lézot F, et al. Dormant, quiescent, tolerant and persister cells: four synonyms for the same target in cancer. Biochem Pharmacol. 2019;162:169–76. https://doi.org/10.1016/j.bcp.2018.11.004.
Article
CAS
PubMed
Google Scholar
Kersten K, De Visser KE, Van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9:137–53. https://doi.org/10.15252/emmm.201606857.
Article
CAS
PubMed
Google Scholar
Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc. 2009;4:1350–62. https://doi.org/10.1038/nprot.2009.120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemp CJ. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years. Cold Spring Harb Protoc. 2015;2015:865–74. https://doi.org/10.1101/pdb.top069906.
Article
PubMed
PubMed Central
Google Scholar
Son W-C, Gopinath C. Early occurrence of spontaneous tumors in CD-1 mice and Sprague-Dawley rats. Toxicol Pathol. 2004;32:371–4. https://doi.org/10.1080/01926230490440871.
Article
CAS
PubMed
Google Scholar
Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:R921–5. https://doi.org/10.1016/j.cub.2020.06.081.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arneth B (2019) Tumor microenvironment. Medicina (Kaunas) 56. https://doi.org/10.3390/medicina56010015.
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200. https://doi.org/10.1242/jcs.023820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, et al. Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med. 2020;18:1. https://doi.org/10.1186/s12967-019-02189-8.
Article
PubMed
PubMed Central
Google Scholar
Kim S, Kim A, Shin J-Y, Seo J-S. The tumor immune microenvironmental analysis of 2,033 transcriptomes across 7 cancer types. Sci Rep. 2020;10:9536. https://doi.org/10.1038/s41598-020-66449-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim G, Pastoriza JM, Condeelis JS, et al. The contribution of race to breast tumor microenvironment composition and disease progression. Front Oncol. 2020;10:1022. https://doi.org/10.3389/fonc.2020.01022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison RG. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J Exp Zool. 1910;142:5–73. https://doi.org/10.1002/jez.1401420103.
Article
Google Scholar
Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20:811–27. https://doi.org/10.1096/fj.05-5424rev.
Article
CAS
PubMed
Google Scholar
Discher DE, Janmey P, Wang Y-L. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43. https://doi.org/10.1126/science.1116995.
Article
CAS
PubMed
Google Scholar
Solon J, Levental I, Sengupta K, et al. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J. 2007;93:4453–61. https://doi.org/10.1529/biophysj.106.101386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nemir S, West JL. Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng. 2010;38:2–20. https://doi.org/10.1007/s10439-009-9811-1.
Article
PubMed
Google Scholar
Parreno J, Nabavi Niaki M, Andrejevic K, et al. Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture. J Anat. 2017;230:234–48. https://doi.org/10.1111/joa.12554.
Article
CAS
PubMed
Google Scholar
Zhou Y, Chen H, Li H, Wu Y. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension. J Cell Mol Med. 2017;21:1073–84. https://doi.org/10.1111/jcmm.12946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakubikova J, Cholujova D, Hideshima T, et al. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget. 2016;7:77326–41. https://doi.org/10.18632/oncotarget.12643.
Article
PubMed
PubMed Central
Google Scholar
Cukierman E, Bassi DE. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin Cancer Biol. 2010;20:139–45. https://doi.org/10.1016/j.semcancer.2010.04.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen-Ngoc K-V, Cheung KJ, Brenot A, et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci USA. 2012;109:E2595-2604. https://doi.org/10.1073/pnas.1212834109.
Article
PubMed
PubMed Central
Google Scholar
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406. https://doi.org/10.1083/jcb.201102147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kauppila S, Stenbäck F, Risteli J, et al. Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol. 1998;186:262–8. https://doi.org/10.1002/(SICI)1096-9896(1998110)186:3%3c262::AID-PATH191%3e3.0.CO;2-3.
Article
CAS
PubMed
Google Scholar
Senthebane DA, Jonker T, Rowe A, et al (2018) The role of tumor microenvironment in chemoresistance: 3D extracellular matrices as accomplices. Int J Mol Sci. 19. https://doi.org/10.3390/ijms19102861.
Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51. https://doi.org/10.1530/JOE-10-0377.
Article
CAS
PubMed
Google Scholar
Taherian A, Li X, Liu Y, Haas TA. Differences in integrin expression and signaling within human breast cancer cells. BMC Cancer. 2011;11:293. https://doi.org/10.1186/1471-2407-11-293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Liao K, Li C, et al (2017) Progress in integrative biomaterial systems to approach three-dimensional cell mechanotransduction. Bioengineering (Basel) 4. https://doi.org/10.3390/bioengineering4030072.
Lee J, Shin D, Roh J-L. Development of an in vitro cell-sheet cancer model for chemotherapeutic screening. Theranostics. 2018;8:3964–73. https://doi.org/10.7150/thno.26439.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Ramadan A, Mortensen AC, Carlsson J, Nestor MV. Analysis of radiation effects in two irradiated tumor spheroid models. Oncol Lett. 2018;15:3008–16. https://doi.org/10.3892/ol.2017.7716.
Article
CAS
PubMed
Google Scholar
Stöhr D, Schmid JO, Beigl TB, et al. Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids. Cell Death Differ. 2020;27:3037–52. https://doi.org/10.1038/s41418-020-0559-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noel P, Muñoz R, Rogers GW, et al. Preparation and metabolic assay of 3-dimensional spheroid co-cultures of pancreatic cancer cells and fibroblasts. J Vis Exp. 2017. https://doi.org/10.3791/56081.
Article
PubMed
PubMed Central
Google Scholar
Jaganathan H, Gage J, Leonard F, et al. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep. 2014;4:6468. https://doi.org/10.1038/srep06468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inch WR, McCredie JA, Sutherland RM. Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture. Growth. 1970;34:271–82.
CAS
PubMed
Google Scholar
Azar J, Bahmad HF, Daher D, et al. The use of stem cell-derived organoids in disease modeling: an update. Int J Mol Sci. 2021;22:7667. https://doi.org/10.3390/ijms22147667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, Uchimura K, Donnelly EL, et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell. 2018;23:869-881.e8. https://doi.org/10.1016/j.stem.2018.10.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5. https://doi.org/10.1038/nature07935.
Article
CAS
PubMed
Google Scholar
Ootani A, Li X, Sangiorgi E, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15:701–6. https://doi.org/10.1038/nm.1951.
Article
CAS
PubMed
PubMed Central
Google Scholar
Curcio E, Salerno S, Barbieri G, et al. Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials. 2007;28:5487–97. https://doi.org/10.1016/j.biomaterials.2007.08.033.
Article
CAS
PubMed
Google Scholar
Nakamura T, Kato Y, Fuji H, et al. E-cadherin-dependent intercellular adhesion enhances chemoresistance. Int J Mol Med. 2003;12:693–700.
CAS
PubMed
Google Scholar
Lovitt CJ, Shelper TB, Avery VM. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer. 2018;18:41. https://doi.org/10.1186/s12885-017-3953-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roulis M, Kaklamanos A, Schernthanner M, et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature. 2020;580:524–9. https://doi.org/10.1038/s41586-020-2166-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palikuqi B, Nguyen D-HT, Li G, et al (2020) Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature. 1–7. https://doi.org/10.1038/s41586-020-2712-z.
Wisdom KM, Adebowale K, Chang J, et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat Commun. 2018;9:4144. https://doi.org/10.1038/s41467-018-06641-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Zheng H, Zhan Y, Fan S. An emerging tumor invasion mechanism about the collective cell migration. Am J Transl Res. 2019;11:5301–12.
CAS
PubMed
PubMed Central
Google Scholar
Huang YL, Shiau C, Wu C, et al. The architecture of co-culture spheroids regulates tumor invasion within a 3D extracellular matrix. Biophys Rev Lett. 2020;15:131–41. https://doi.org/10.1142/s1793048020500034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elia I, Broekaert D, Christen S, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8:15267. https://doi.org/10.1038/ncomms15267.
Article
PubMed
PubMed Central
Google Scholar
Thippabhotla S, Zhong C, He M. 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep. 2019;9:13012. https://doi.org/10.1038/s41598-019-49671-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riedl A, Schlederer M, Pudelko K, et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J Cell Sci. 2017;130:203–18. https://doi.org/10.1242/jcs.188102.
Article
CAS
PubMed
Google Scholar
Gangadhara S, Smith C, Barrett-Lee P, Hiscox S. 3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response. BMC Cancer. 2016;16:345. https://doi.org/10.1186/s12885-016-2377-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zschenker O, Streichert T, Hehlgans S, Cordes N. Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair. PLoS ONE. 2012;7: e34279. https://doi.org/10.1371/journal.pone.0034279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bingel C, Koeneke E, Ridinger J, et al. Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance. Cell Death Dis. 2017;8: e3013. https://doi.org/10.1038/cddis.2017.398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed EM, Bandopadhyay G, Coyle B, Grabowska A. A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol (Dordr). 2018;41:319–28. https://doi.org/10.1007/s13402-018-0374-8.
Article
CAS
Google Scholar
Melissaridou S, Wiechec E, Magan M, et al. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int. 2019;19:16. https://doi.org/10.1186/s12935-019-0733-1.
Article
PubMed
PubMed Central
Google Scholar
Jia W, Jiang X, Liu W, et al. Effects of three-dimensional collagen scaffolds on the expression profiles and biological functions of glioma cells. Int J Oncol. 2018;52:1787–800. https://doi.org/10.3892/ijo.2018.4330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naruse M, Ochiai M, Sekine S, et al. Re-expression of REG family and DUOXs genes in CRC organoids by co-culturing with CAFs. Sci Rep. 2021;11:2077. https://doi.org/10.1038/s41598-021-81475-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Souza GR, Molina JR, Raphael RM, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol. 2010;5:291–6. https://doi.org/10.1038/nnano.2010.23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan PHS, Aung KZ, Toh SL, et al. Three-dimensional porous silk tumor constructs in the approximation of in vivo osteosarcoma physiology. Biomaterials. 2011;32:6131–7. https://doi.org/10.1016/j.biomaterials.2011.04.084.
Article
CAS
PubMed
Google Scholar
Weeber F, van de Wetering M, Hoogstraat M, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA. 2015;112:13308–11. https://doi.org/10.1073/pnas.1516689112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganesh K, Wu C, O’Rourke KP, et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 2019;25:1607–14. https://doi.org/10.1038/s41591-019-0584-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20:273–86. https://doi.org/10.1093/biostatistics/kxx069.
Article
PubMed
Google Scholar
Imamura Y, Mukohara T, Shimono Y, et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep. 2015;33:1837–43. https://doi.org/10.3892/or.2015.3767.
Article
CAS
PubMed
Google Scholar
Ward JP, King JR. Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math Biosci. 2003;181:177–207. https://doi.org/10.1016/s0025-5564(02)00148-7.
Article
CAS
PubMed
Google Scholar
Gong X, Lin C, Cheng J, et al. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE. 2015;10: e0130348. https://doi.org/10.1371/journal.pone.0130348.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ong S-M, Zhao Z, Arooz T, et al. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Biomaterials. 2010;31:1180–90. https://doi.org/10.1016/j.biomaterials.2009.10.049.
Article
CAS
PubMed
Google Scholar
Ma H, Jiang Q, Han S, et al. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Mol Imaging. 2012;11:487–98.
Article
CAS
Google Scholar
Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14:191–201. https://doi.org/10.1016/j.drup.2011.03.001.
Article
CAS
PubMed
Google Scholar
Pasch CA, Favreau PF, Yueh AE, et al. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin Cancer Res. 2019;25:5376–87. https://doi.org/10.1158/1078-0432.CCR-18-3590.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dijkstra KK, Cattaneo CM, Weeber F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018;174:1586-1598.e12. https://doi.org/10.1016/j.cell.2018.07.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varesano S, Zocchi MR, Poggi A. Zoledronate triggers Vδ2 T cells to destroy and kill spheroids of colon carcinoma: quantitative image analysis of three-dimensional cultures. Front Immunol. 2018;9:998. https://doi.org/10.3389/fimmu.2018.00998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Research C for DE and (2019) FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine release syndrome. FDA.
Research C for DE and (2019) FDA approves tisagenlecleucel for adults with relapsed or refractory large B-cell lymphoma. FDA.
Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180:188-204.e22. https://doi.org/10.1016/j.cell.2019.11.036.
Article
CAS
PubMed
Google Scholar
Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334:197. https://doi.org/10.1136/bmj.39048.407928.BE.
Article
CAS
PubMed
Google Scholar
Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6:114–8.
PubMed
PubMed Central
Google Scholar
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45. https://doi.org/10.1016/j.cell.2015.03.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172:373-386.e10. https://doi.org/10.1016/j.cell.2017.11.010.
Article
CAS
PubMed
Google Scholar
Beshiri ML, Tice CM, Tran C, et al. A PDX/Organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 2018;24:4332–45. https://doi.org/10.1158/1078-0432.CCR-18-0409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YF, Gao Y, Liang BW, et al. Patient-derived organoids of non-small cells lung cancer and their application for drug screening. Neoplasma. 2020;67:430–7. https://doi.org/10.4149/neo_2020_190417N346.
Article
CAS
PubMed
Google Scholar
Vaira V, Fedele G, Pyne S, et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci USA. 2010;107:8352–6. https://doi.org/10.1073/pnas.0907676107.
Article
PubMed
PubMed Central
Google Scholar
Naipal KAT, Verkaik NS, Sánchez H, et al. Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer. 2016;16:78. https://doi.org/10.1186/s12885-016-2119-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miura S, Suzuki H, Bae YH. A multilayered cell culture model for transport study in solid tumors: evaluation of tissue penetration of polyethyleneimine based cationic micelles. Nano Today. 2014;9:695–704. https://doi.org/10.1016/j.nantod.2014.10.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Movia D, Bazou D, Volkov Y, Prina-Mello A. Multilayered cultures of NSCLC cells grown at the air-liquid interface allow the efficacy testing of inhaled anti-cancer drugs. Sci Rep. 2018;8:12920. https://doi.org/10.1038/s41598-018-31332-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiswald L-B, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17:1–15. https://doi.org/10.1016/j.neo.2014.12.004.
Article
PubMed
PubMed Central
Google Scholar
Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25:1783–5. https://doi.org/10.1245/s10434-018-6486-6.
Article
PubMed
Google Scholar
Gao D, Nolan DJ, Mellick AS, et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science. 2008;319:195–8. https://doi.org/10.1126/science.1150224.
Article
CAS
PubMed
Google Scholar
Hu J, Mirshahidi S, Simental A, et al. Cancer stem cell self-renewal as a therapeutic target in human oral cancer. Oncogene. 2019;38:5440–56. https://doi.org/10.1038/s41388-019-0800-z.
Article
CAS
PubMed
Google Scholar
Han J, Fujisawa T, Husain SR, Puri RK. Identification and characterization of cancer stem cells in human head and neck squamous cell carcinoma. BMC Cancer. 2014;14:173. https://doi.org/10.1186/1471-2407-14-173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arima Y, Nobusue H, Saya H. Targeting of cancer stem cells by differentiation therapy. Cancer Sci. 2020;111:2689–95. https://doi.org/10.1111/cas.14504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan CT. Cancer stem cells: controversial or just misunderstood? Cell Stem Cell. 2009;4:203–5. https://doi.org/10.1016/j.stem.2009.02.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma X-L, Sun Y-F, Wang B-L, et al. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer. 2019;19:760. https://doi.org/10.1186/s12885-019-5963-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poon C. Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. 2020.
Fröhlich E, Bonstingl G, Höfler A, et al. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol In Vitro. 2013;27–360:409–17. https://doi.org/10.1016/j.tiv.2012.08.008.
Article
CAS
PubMed Central
Google Scholar
Nader E, Skinner S, Romana M, et al. Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front Physiol. 2019;10:1329. https://doi.org/10.3389/fphys.2019.01329.
Article
PubMed
PubMed Central
Google Scholar
Kenner T. The measurement of blood density and its meaning. Basic Res Cardiol. 1989;84:111–24. https://doi.org/10.1007/BF01907921.
Article
CAS
PubMed
Google Scholar
Carlsson J, Yuhas JM. Liquid-overlay culture of cellular spheroids. Recent Results Cancer Res. 1984;95:1–23. https://doi.org/10.1007/978-3-642-82340-4_1.
Article
CAS
PubMed
Google Scholar
Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4:309–24. https://doi.org/10.1038/nprot.2008.226.
Article
CAS
PubMed
Google Scholar
Xiang X, Phung Y, Feng M, et al. The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy. PLoS ONE. 2011;6: e14640. https://doi.org/10.1371/journal.pone.0014640.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen. 2006;11:922–32. https://doi.org/10.1177/1087057106292763.
Article
CAS
PubMed
Google Scholar
Zhang S, Zhang H, Ghia EM, et al. Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody. Proc Natl Acad Sci USA. 2019;116:1370–7. https://doi.org/10.1073/pnas.1816262116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Froehlich K, Haeger J-D, Heger J, et al. Generation of multicellular breast cancer tumor spheroids: comparison of different protocols. J Mammary Gland Biol Neoplasia. 2016;21:89–98. https://doi.org/10.1007/s10911-016-9359-2.
Article
PubMed
Google Scholar
Dubois C, Dufour R, Daumar P, et al. Development and cytotoxic response of two proliferative MDA-MB-231 and non-proliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines. Oncotarget. 2017;8:95316–31. https://doi.org/10.18632/oncotarget.20517.
Article
PubMed
PubMed Central
Google Scholar
Carvalho MP, Costa EC, Correia IJ. Assembly of breast cancer heterotypic spheroids on hyaluronic acid coated surfaces. Biotechnol Prog. 2017;33:1346–57. https://doi.org/10.1002/btpr.2497.
Article
CAS
PubMed
Google Scholar
Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–65. https://doi.org/10.1038/nmeth1015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kano J, Ishiyama T, Nakamura N, et al. Establishment of hepatic stem-like cell lines from normal adult porcine liver in a poly-d-lysine-coated dish with NAIR-1 medium. In Vitro Cell Dev Biol Anim. 2003;39:440–8. https://doi.org/10.1290/1543-706X(2003)039%3c0440:EOHSCL%3e2.0.CO;2.
Article
CAS
PubMed
Google Scholar
Frøen RC, Johnsen EO, Petrovski G, et al. Pigment epithelial cells isolated from human peripheral iridectomies have limited properties of retinal stem cells. Acta Ophthalmol. 2011;89:e635-644. https://doi.org/10.1111/j.1755-3768.2011.02198.x.
Article
PubMed
Google Scholar
Fleurence J, Cochonneau D, Fougeray S, et al. Targeting and killing glioblastoma with monoclonal antibody to O-acetyl GD2 ganglioside. Oncotarget. 2016;7:41172–85. https://doi.org/10.18632/oncotarget.9226.
Article
PubMed
PubMed Central
Google Scholar
Maliszewska-Olejniczak K, Brodaczewska KK, Bielecka ZF, Czarnecka AM. Three-dimensional cell culture model utilization in renal carcinoma cancer stem cell research. Methods Mol Biol. 2018;1817:47–66. https://doi.org/10.1007/978-1-4939-8600-2_6.
Article
CAS
PubMed
Google Scholar
Wang X, Yang P. In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method. J Vis Exp. 2008. https://doi.org/10.3791/825.
Article
PubMed
PubMed Central
Google Scholar
Leung BM, Lesher-Perez SC, Matsuoka T, et al. Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater Sci. 2015;3:336–44. https://doi.org/10.1039/c4bm00319e.
Article
CAS
PubMed
Google Scholar
Raghavan S, Mehta P, Horst EN, et al. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 2016;7:16948–61. https://doi.org/10.18632/oncotarget.7659.
Article
PubMed
PubMed Central
Google Scholar
Eder T, Eder IE. 3D hanging drop culture to establish prostate cancer organoids. Methods Mol Biol. 2017;1612:167–75. https://doi.org/10.1007/978-1-4939-7021-6_12.
Article
CAS
PubMed
Google Scholar
Létourneau IJ, Quinn MCJ, Wang L-L, et al. Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer. BMC Cancer. 2012;12:379. https://doi.org/10.1186/1471-2407-12-379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al Habyan S, Kalos C, Szymborski J, McCaffrey L. Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer. Oncogene. 2018;37:5127–35. https://doi.org/10.1038/s41388-018-0317-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tung Y-C, Hsiao AY, Allen SG, et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136:473–8. https://doi.org/10.1039/c0an00609b.
Article
CAS
PubMed
Google Scholar
Sutherland RM, Sordat B, Bamat J, et al. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 1986;46:5320–9.
CAS
PubMed
Google Scholar
Hystad ME, Rofstad EK. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids. Int J Cancer. 1994;57:532–7. https://doi.org/10.1002/ijc.2910570416.
Article
CAS
PubMed
Google Scholar
Durand RE, Sutherland RM. Effects of intercellular contact on repair of radiation damage. Exp Cell Res. 1972;71:75–80. https://doi.org/10.1016/0014-4827(72)90265-0.
Article
CAS
PubMed
Google Scholar
Hirschhaeuser F, Leidig T, Rodday B, et al. Test system for trifunctional antibodies in 3D MCTS culture. J Biomol Screen. 2009;14:980–90. https://doi.org/10.1177/1087057109341766.
Article
CAS
PubMed
Google Scholar
Masiello T, Dhall A, Hemachandra LPM, et al. A dynamic culture method to produce ovarian cancer spheroids under physiologically-relevant shear stress. Cells. 2018; 7. https://doi.org/10.3390/cells7120277.
Ingram M, Techy GB, Saroufeem R, et al. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell DevBiol-Animal. 1997;33:459–66. https://doi.org/10.1007/s11626-997-0064-8.
Article
CAS
Google Scholar
McNeill EP, Reese RW, Tondon A, et al. Three-dimensional in vitro modeling of malignant bone disease recapitulates experimentally accessible mechanisms of osteoinhibition. Cell Death Dis. 2018; 9. https://doi.org/10.1038/s41419-018-1203-8.
Zanoni M, Piccinini F, Arienti C, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103. https://doi.org/10.1038/srep19103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen AK-L, Chen X, Choo ABH, et al. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 2011;7:97–111. https://doi.org/10.1016/j.scr.2011.04.007.
Article
CAS
PubMed
Google Scholar
Santini MT, Rainaldi G, Indovina PL. Multicellular tumour spheroids in radiation biology. Int J Radiat Biol. 1999;75:787–99. https://doi.org/10.1080/095530099139845.
Article
CAS
PubMed
Google Scholar
Pan Y, Robertson G, Pedersen L, et al. miR-509-3p is clinically significant and strongly attenuates cellular migration and multi-cellular spheroids in ovarian cancer. Oncotarget. 2016;7:25930–48. https://doi.org/10.18632/oncotarget.8412.
Article
PubMed
PubMed Central
Google Scholar
Urbanczyk M, Zbinden A, Layland SL, et al. Controlled heterotypic pseudo-islet assembly of human β-cells and human umbilical vein endothelial cells using magnetic levitation. Tissue Eng Part A. 2020;26:387–99. https://doi.org/10.1089/ten.TEA.2019.0158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo WM, Loh XJ, Tan EY, et al. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening. Mol Pharm. 2014;11:2182–9. https://doi.org/10.1021/mp5000604.
Article
CAS
PubMed
Google Scholar
Wang Z, Yang P, Xu H, et al. Inhibitory effects of a gradient static magnetic field on normal angiogenesis. Bioelectromagnetics. 2009;30:446–53. https://doi.org/10.1002/bem.20501.
Article
PubMed
Google Scholar
Zablotskii V, Polyakova T, Lunov O, Dejneka A. How a high-gradient magnetic field could affect cell life. Sci Rep. 2016;6:37407. https://doi.org/10.1038/srep37407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto Y, Kawasumi M, Saito M. Effect of static magnetic field on cell migration. Electr Eng Japan. 2007;160:46–52. https://doi.org/10.1002/eej.20203.
Article
Google Scholar
Rao SS, Dejesus J, Short AR, et al. Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl Mater Interfaces. 2013;5:9276–84. https://doi.org/10.1021/am402097j.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z-L, Wang Z-J, Wei G-H, et al. Changes in extracellular matrix in different stages of colorectal cancer and their effects on proliferation of cancer cells. World J Gastrointest Oncol. 2020;12:267–75. https://doi.org/10.4251/wjgo.v12.i3.267.
Article
PubMed
PubMed Central
Google Scholar
Naba A, Clauser KR, Whittaker CA, et al. Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer. 2014;14:518. https://doi.org/10.1186/1471-2407-14-518.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58. https://doi.org/10.1146/annurev.biochem.77.032207.120833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szot CS, Buchanan CF, Freeman JW, Rylander MN. 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials. 2011;32:7905–12. https://doi.org/10.1016/j.biomaterials.2011.07.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng L, Hu X, Huang Y, et al. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study. Biomed Mater. 2015;10: 015016. https://doi.org/10.1088/1748-6041/10/1/015016.
Article
CAS
PubMed
Google Scholar
Dangi-Garimella S, Sahai V, Ebine K, et al. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression. PLoS ONE. 2013;8: e64566. https://doi.org/10.1371/journal.pone.0064566.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayuso JM, Vitek R, Swick AD, et al. Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells. Sci Rep. 2019;9:12480. https://doi.org/10.1038/s41598-019-48764-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yip D, Cho CH. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem Biophys Res Commun. 2013;433:327–32. https://doi.org/10.1016/j.bbrc.2013.03.008.
Article
CAS
PubMed
Google Scholar
Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15:378–86. https://doi.org/10.1016/j.semcancer.2005.05.004.
Article
CAS
PubMed
Google Scholar
Benton G, Arnaoutova I, George J, et al. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev. 2014;79–80:3–18. https://doi.org/10.1016/j.addr.2014.06.005.
Article
CAS
PubMed
Google Scholar
Zhang Y, Jiang B, Lee MH. A novel 3D model for visualization and tracking of fibroblast-guided directional cancer cell migration. Biology (Basel) 2020; 9. https://doi.org/10.3390/biology9100328.
Bahmad HF, Cheaito K, Chalhoub RM, et al. Sphere-formation assay: three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front Oncol. 2018;8:347. https://doi.org/10.3389/fonc.2018.00347.
Article
PubMed
PubMed Central
Google Scholar
Bodgi L, Bahmad HF, Araji T, et al. Assessing radiosensitivity of bladder cancer in vitro: a 2D vs. 3D approach. Front Oncol. 2019;9:153. https://doi.org/10.3389/fonc.2019.00153.
Article
PubMed
PubMed Central
Google Scholar
Boj SF, Hwang C-I, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38. https://doi.org/10.1016/j.cell.2014.12.021.
Article
CAS
PubMed
Google Scholar
Seppälä TT, Zimmerman JW, Sereni E, et al. Patient-derived organoid pharmacotyping is a clinically tractable strategy for precision medicine in pancreatic cancer. Ann Surg. 2020;272:427–35. https://doi.org/10.1097/SLA.0000000000004200.
Article
PubMed
Google Scholar
Jiang S, Zhao H, Zhang W, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep Med. 2020;1: 100161. https://doi.org/10.1016/j.xcrm.2020.100161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe Y, Tada A, Isoyama J, et al. Improved phosphoproteomic analysis for phosphosignaling and active-kinome profiling in Matrigel-embedded spheroids and patient-derived organoids. Sci Rep. 2018;8:11401. https://doi.org/10.1038/s41598-018-29837-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson J, Sharick JT, Skala MC, Li L. Sample preparation strategies for high-throughput mass spectrometry imaging of primary tumor organoids. J Mass Spectrom. 2020;55: e4452. https://doi.org/10.1002/jms.4452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weyers A, Yang B, Yoon DS, et al. A structural analysis of glycosaminoglycans from lethal and nonlethal breast cancer tissues: toward a novel class of theragnostics for personalized medicine in oncology? OMICS. 2012;16:79–89. https://doi.org/10.1089/omi.2011.0102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell JJ, Davidenko N, Caffarel MM, et al. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology. PLoS ONE. 2011;6: e25661. https://doi.org/10.1371/journal.pone.0025661.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Gurski LA, Zhang C, et al. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials. 2012;33:9049–60. https://doi.org/10.1016/j.biomaterials.2012.08.061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao W, Zhang R, Sohrabi A, et al. Brain-mimetic 3D culture platforms allow investigation of cooperative effects of extracellular matrix features on therapeutic resistance in glioblastoma. Cancer Res. 2018;78:1358–70. https://doi.org/10.1158/0008-5472.CAN-17-2429.
Article
CAS
PubMed
Google Scholar
Gurski LA, Xu X, Labrada LN, et al. Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase impact prostate cancer cell behavior and invadopodia formation in 3D HA-based hydrogels. PLoS ONE. 2012;7: e50075. https://doi.org/10.1371/journal.pone.0050075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen Y-I, Abaci HE, Krupsi Y, et al. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting. Biomater Sci. 2014;2:655–65. https://doi.org/10.1039/C3BM60274E.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H-Y, Korc M, Lin C-C. Biomimetic and enzyme-responsive dynamic hydrogels for studying cell–matrix interactions in pancreatic ductal adenocarcinoma. Biomaterials. 2018;160:24–36. https://doi.org/10.1016/j.biomaterials.2018.01.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurski LA, Jha AK, Zhang C, et al. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials. 2009;30:6076–85. https://doi.org/10.1016/j.biomaterials.2009.07.054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Y, Huang B, Dong Y, et al. Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy. J Biomater Sci Polym Ed. 2017;28:1603–16. https://doi.org/10.1080/09205063.2017.1338502.
Article
CAS
PubMed
Google Scholar
Liu C, Lewin Mejia D, Chiang B, et al. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Acta Biomater. 2018;75:213–25. https://doi.org/10.1016/j.actbio.2018.06.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen D, Qu Y, Hua X, et al. A hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells. Eye (Lond). 2017;31:962–71. https://doi.org/10.1038/eye.2017.8.
Article
CAS
Google Scholar
Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int. 2017;2017:9831534. https://doi.org/10.1155/2017/9831534.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto ML, Rios E, Silva AC, et al. Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials. 2017;124:211–24. https://doi.org/10.1016/j.biomaterials.2017.02.004.
Article
CAS
PubMed
Google Scholar
Hoshiba T, Tanaka M. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochim Biophys Acta. 2016;1863:2749–57. https://doi.org/10.1016/j.bbamcr.2016.08.009.
Article
CAS
PubMed
Google Scholar
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639–56. https://doi.org/10.1016/j.biomaterials.2010.02.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sieh S, Taubenberger AV, Rizzi SC, et al. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment. PLoS ONE. 2012;7: e40217. https://doi.org/10.1371/journal.pone.0040217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pradhan S, Slater JH. Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy. MethodsX. 2019;6:2744–66. https://doi.org/10.1016/j.mex.2019.11.011.
Article
PubMed
PubMed Central
Google Scholar
Liang Y, Jeong J, DeVolder RJ, et al. A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials. 2011;32:9308–15. https://doi.org/10.1016/j.biomaterials.2011.08.045.
Article
CAS
PubMed
Google Scholar
Kaphle P, Li Y, Yao L. The mechanical and pharmacological regulation of glioblastoma cell migration in 3D matrices. J Cell Physiol. 2019;234:3948–60. https://doi.org/10.1002/jcp.27209.
Article
CAS
PubMed
Google Scholar
Reynolds DS, Bougher KM, Letendre JH, et al. Mechanical confinement via a PEG/collagen interpenetrating network inhibits behavior characteristic of malignant cells in the triple negative breast cancer cell line MDA.MB.231. Acta Biomater. 2018;77:85–95. https://doi.org/10.1016/j.actbio.2018.07.032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsao C-T, Kievit FM, Wang K, et al. Chitosan-based thermoreversible hydrogel as an in vitro tumor microenvironment for testing breast cancer therapies. Mol Pharm. 2014;11:2134–42. https://doi.org/10.1021/mp5002119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang F-C, Tsao C-T, Lin A, et al. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells. Polymers (Basel) 2016; 8. https://doi.org/10.3390/polym8040112.
Chang F-C, Levengood SL, Cho N, et al. Crosslinked chitosan-PEG hydrogel for culture of human glioblastoma cell spheroids and drug screening. Adv Ther (Weinh). 2018; 1. https://doi.org/10.1002/adtp.201800058.
Beck JN, Singh A, Rothenberg AR, et al. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials. 2013;34:9486–95. https://doi.org/10.1016/j.biomaterials.2013.08.077.
Article
CAS
PubMed
Google Scholar
You Z, Cao H, Gao J, et al. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials. 2010;31:3129–38. https://doi.org/10.1016/j.biomaterials.2010.01.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103–14. https://doi.org/10.1016/0142-9612(96)85755-3.
Article
PubMed
Google Scholar
Fong ELS, Lamhamedi-Cherradi S-E, Burdett E, et al. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci USA. 2013;110:6500–5. https://doi.org/10.1073/pnas.1221403110.
Article
PubMed
PubMed Central
Google Scholar
Balachander GM, Talukdar PM, Debnath M, et al. Inflammatory role of cancer-associated fibroblasts in invasive breast tumors revealed using a fibrous polymer scaffold. ACS Appl Mater Interfaces. 2018;10:33814–26. https://doi.org/10.1021/acsami.8b07609.
Article
CAS
PubMed
Google Scholar
Nayak B, Balachander GM, Manjunath S, et al. Tissue mimetic 3D scaffold for breast tumor-derived organoid culture toward personalized chemotherapy. Colloids Surf B Biointerfaces. 2019;180:334–43. https://doi.org/10.1016/j.colsurfb.2019.04.056.
Article
CAS
PubMed
Google Scholar
Girard YK, Wang C, Ravi S, et al. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS ONE. 2013;8: e75345. https://doi.org/10.1371/journal.pone.0075345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21:1171–8. https://doi.org/10.1038/nbt874.
Article
CAS
PubMed
Google Scholar
Lee S, Trinh THT, Yoo M, et al. Self-assembling peptides and their application in the treatment of diseases. Int J Mol Sci 2019; 20. https://doi.org/10.3390/ijms20235850.
Ashworth JC, Thompson JL, James JR, et al. Peptide gels of fully-defined composition and mechanics for probing cell–cell and cell–matrix interactions in vitro. Matrix Biol. 2020;85–86:15–33. https://doi.org/10.1016/j.matbio.2019.06.009.
Article
CAS
PubMed
Google Scholar
Liu J, Huang W, Pang Y, et al. Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy. Angew Chem Int Ed Engl. 2011;50:9162–6. https://doi.org/10.1002/anie.201102280.
Article
CAS
PubMed
Google Scholar
Worthington P, Pochan DJ, Langhans SA. Peptide hydrogels—versatile matrices for 3D cell culture in cancer medicine. Front Oncol. 2015;5:92. https://doi.org/10.3389/fonc.2015.00092.
Article
PubMed
PubMed Central
Google Scholar
Tang C, Shao X, Sun B, et al. The effect of self-assembling peptide RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Int J Mol Sci. 2009;10:2136–45. https://doi.org/10.3390/ijms10052136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi K, Wang G, Liu Z, et al. Influence of a self-assembling peptide, RADA16, compared with collagen I and Matrigel on the malignant phenotype of human breast-cancer cells in 3D cultures and in vivo. Macromol Biosci. 2009;9:437–43. https://doi.org/10.1002/mabi.200800262.
Article
CAS
PubMed
Google Scholar
Betriu N, Semino CE. Development of a 3D co-culture system as a cancer model using a self-assembling peptide scaffold. Gels. 2018; 4. https://doi.org/10.3390/gels4030065.
Wu LY, Di Carlo D, Lee LP. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices. 2008;10:197–202. https://doi.org/10.1007/s10544-007-9125-8.
Article
CAS
PubMed
Google Scholar
Tellez-Gabriel M, Cochonneau D, Cadé M, et al. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers (Basel). 2018; 11. https://doi.org/10.3390/cancers11010019.
Jeon JS, Bersini S, Gilardi M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci USA. 2015;112:214–9. https://doi.org/10.1073/pnas.1417115112.
Article
CAS
PubMed
Google Scholar
Toh Y-C, Raja A, Yu H, van Noort D. A 3D microfluidic model to recapitulate cancer cell migration and invasion. Bioengineering (Basel). 2018;5. https://doi.org/10.3390/bioengineering5020029.
Miller CP, Tsuchida C, Zheng Y, et al. A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia. 2018;20:610–20. https://doi.org/10.1016/j.neo.2018.02.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinho D, Santos D, Vila A, Carvalho S. Establishment of colorectal cancer organoids in microfluidic-based system. Micromachines (Basel). 2021;12:497. https://doi.org/10.3390/mi12050497.
Article
Google Scholar
Schuster B, Junkin M, Kashaf SS, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun. 2020;11:5271. https://doi.org/10.1038/s41467-020-19058-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berthier E, Young EWK, Beebe D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip. 2012;12:1224–37. https://doi.org/10.1039/c2lc20982a.
Article
CAS
PubMed
Google Scholar
Ko J, Ahn J, Kim S, et al. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip. 2019;19:2822–33. https://doi.org/10.1039/c9lc00140a.
Article
CAS
PubMed
Google Scholar
Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials (Basel). 2018; 11. https://doi.org/10.3390/ma11112199.
Rider P, Kačarević ŽP, Alkildani S, et al. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018;9:2041731418802090. https://doi.org/10.1177/2041731418802090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gómez-Oliva R, Domínguez-García S, Carrascal L, et al. Evolution of experimental models in the study of glioblastoma: toward finding efficient treatments. Front Oncol 2021; 10. https://doi.org/10.3389/fonc.2020.614295.
Heinrich MA, Bansal R, Lammers T, et al. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics. Adv Mater. 2019;31: e1806590. https://doi.org/10.1002/adma.201806590.
Article
CAS
PubMed
Google Scholar
Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22:11. https://doi.org/10.1186/s40824-018-0122-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SH, Yeon YK, Lee JM, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun. 2018;9:1620. https://doi.org/10.1038/s41467-018-03759-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petta D, Armiento AR, Grijpma D, et al. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking. Biofabrication. 2018;10: 044104. https://doi.org/10.1088/1758-5090/aadf58.
Article
CAS
PubMed
Google Scholar
Rutz AL, Hyland KE, Jakus AE, et al. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 2015;27:1607–14. https://doi.org/10.1002/adma.201405076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012.
Article
CAS
PubMed
Google Scholar
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85. https://doi.org/10.1038/nbt.2958.
Article
CAS
PubMed
Google Scholar
Hölzl K, Lin S, Tytgat L, et al. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8: 032002. https://doi.org/10.1088/1758-5090/8/3/032002.
Article
CAS
PubMed
Google Scholar
Derakhshanfar S, Mbeleck R, Xu K, et al. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3:144–56. https://doi.org/10.1016/j.bioactmat.2017.11.008.
Article
PubMed
PubMed Central
Google Scholar
Kirchmajer DM, Gorkin Iii R, In Het Panhuis M. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B. 2015;3:4105–17. https://doi.org/10.1039/c5tb00393h.
Article
CAS
PubMed
Google Scholar
Ning L, Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J. 2017; 12. https://doi.org/10.1002/biot.201600671.
Pedde RD, Mirani B, Navaei A, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater. 2017; 29:. https://doi.org/10.1002/adma.201606061.
Malda J, Visser J, Melchels FP, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25:5011–28. https://doi.org/10.1002/adma.201302042.
Article
CAS
PubMed
Google Scholar
Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338:921–6. https://doi.org/10.1126/science.1226340.
Article
CAS
PubMed
Google Scholar
Ferris CJ, Gilmore KG, Wallace GG, In het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol. 2013;97:4243–58. https://doi.org/10.1007/s00253-013-4853-6.
Article
CAS
PubMed
Google Scholar
Maloney E, Clark C, Sivakumar H, et al. Immersion bioprinting of tumor organoids in multi-well plates for increasing chemotherapy screening throughput. Micromachines (Basel). 2020;11:208. https://doi.org/10.3390/mi11020208.
Article
PubMed Central
Google Scholar
Catros S, Fricain J-C, Guillotin B, et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 2011;3: 025001. https://doi.org/10.1088/1758-5082/3/2/025001.
Article
CAS
PubMed
Google Scholar
Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater. 2018;30: e1800242. https://doi.org/10.1002/adma.201800242.
Article
CAS
PubMed
Google Scholar
Soman P, Chung PH, Zhang AP, Chen S. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng. 2013;110:3038–47. https://doi.org/10.1002/bit.24957.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu L, Sheybani N, Yeudall WA, Yang H. The effect of photoinitiators on intracellular AKT signaling pathway in tissue engineering application. Biomater Sci. 2015;3:250–5. https://doi.org/10.1039/C4BM00245H.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bassi G, Panseri S, Dozio SM, et al. Scaffold-based 3D cellular models mimicking the heterogeneity of osteosarcoma stem cell niche. Sci Rep. 2020;10:22294. https://doi.org/10.1038/s41598-020-79448-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edelman LB, Eddy JA, Price ND. In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med. 2010;2:438–59. https://doi.org/10.1002/wsbm.75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jean-Quartier C, Jeanquartier F, Jurisica I, Holzinger A. In silico cancer research towards 3R. BMC Cancer. 2018;18:408. https://doi.org/10.1186/s12885-018-4302-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riss T, Trask OJ Jr. Factors to consider when interrogating 3D culture models with plate readers or automated microscopes. In Vitro Cell Dev Biol -Animal. 2021;57:238–56. https://doi.org/10.1007/s11626-020-00537-3.
Article
CAS
Google Scholar
Thurber GM, Wittrup KD. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Cancer Res. 2008;68:3334–41. https://doi.org/10.1158/0008-5472.CAN-07-3018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tchoryk A, Taresco V, Argent RH, et al. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug Chem. 2019;30:1371–84. https://doi.org/10.1021/acs.bioconjchem.9b00136.
Article
CAS
PubMed
Google Scholar
Smyrek I, Stelzer EHK. Quantitative three-dimensional evaluation of immunofluorescence staining for large whole mount spheroids with light sheet microscopy. Biomed Opt Express. 2017;8:484–99. https://doi.org/10.1364/BOE.8.000484.
Article
CAS
PubMed
PubMed Central
Google Scholar