Cohen-Cory S. The developing synapse: construction and modulation of synaptic structures and circuits. Science. 2002;298:770–6.
Article
CAS
PubMed
Google Scholar
Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol. 2011;3:a005678.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sanes JR, Lichtman JW. Development of the vertebrate neuromuscular junction. Annu Rev Neurosci. 1999;22:389–442.
Article
CAS
PubMed
Google Scholar
Court FA, Gillingwater TH, Melrose S, et al. Identity, developmental restriction and reactivity of extralaminar cells capping mammalian neuromuscular junctions. J Cell Sci. 2008;121:3901–11.
Article
CAS
PubMed
Google Scholar
Fox MA. Development of the vertebrate neuromuscular junction. In: Hortsch M, Umemori H, editors. The Sticky Synapse. Berlin: Springer; 2009.
Google Scholar
Li L, Xiong WC, Mei L. Neuromuscular junction formation, aging, and disorders. Annu Rev Physiol. 2018;80:159–88.
Article
CAS
PubMed
Google Scholar
Patton BL. Basal lamina and the organization of neuromuscular synapses. J Neurocytol. 2003;32:883–903.
Article
CAS
PubMed
Google Scholar
Blotnick-Rubin E, Anglister L. Fine localization of acetylcholinesterase in the synaptic cleft of the vertebrate neuromuscular junction. Front Mol Neurosci. 2018;11:123.
Article
PubMed
CAS
PubMed Central
Google Scholar
York AL, Zheng JQ. Super-resolution microscopy reveals a nanoscale organization of acetylcholine receptors for trans-synaptic alignment at neuromuscular synapses. eNeuro. 2017;4:4.
Article
Google Scholar
Marques MJ, Conchello JA, Lichtman JW. From plaque to pretzel: fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J Neurosci. 2000;20:3663–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Luo S, Wang Q, et al. LRP4 Serves as a Coreceptor of Agrin. Neuron. 2008;60:285–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castro R, Taetzsch T, Vaughan SK, et al. Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. eLife. 2020;9:1–19.
Article
Google Scholar
Chen J, Mizushige T, Nishimune H. Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol. 2012;520:434–52.
Article
PubMed
PubMed Central
Google Scholar
Desaki J, Uehara Y. Formation and maturation of subneural apparatuses at neuromuscular junctions in postnatal rats: a scanning and transmission electron microscopical study. Dev Biol. 1987;119:390–401.
Article
CAS
PubMed
Google Scholar
Matthews-Bellinger JA, Salpeter MM. Fine structural distribution of acetylcholine receptors at developing mouse neuromuscular junctions. J Neurosci. 1983;3:644–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan TJ, Grant SG. The origin and evolution of synapses. Nat Rev Neurosci. 2009;10:701–12.
Article
CAS
PubMed
Google Scholar
Westfall IA. Ultrastructure of synapses in the first-evolved nervous systems. J Neurocytol. 1996;25:735–46.
Article
CAS
PubMed
Google Scholar
Liebeskind BJ, Hofmann HA, Hillis DM, Zakon HH. Evolution of animal neural systems. Annu Rev Ecol Evol Syst. 2017;48:377–98.
Article
Google Scholar
Macrae EK. Observations on the fine structure of pharyngeal muscle in the Planarian Dugesia Tigrina. J Cell Biol. 1963;18:651–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurshan PT, Phan AQ, Wang GJ, et al. Regulation of synaptic extracellular matrix composition is critical for proper synapse morphology. J Neurosci. 2014;34:12678–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenbluth J. Ultrastructure of somatic muscle cells in Ascaris lumbricoides. II. Intermuscular junctions, neuromuscular junctions, and glycogen stores. J Cell Biol. 1965;26:579–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mill PJ, Knapp MF. Neuromuscular junctions in the body wall muscles of the earthworm, Lumbricus terrestris Linn. J Cell Sci. 1970;7:263–71.
Article
CAS
PubMed
Google Scholar
Price CH, Fowle W, Rittenhouse AR. Anatomy and innervation of the anterior aorta of Aplysia and the ultrastructure of specialized neuromuscular junctions on vascular smooth muscle. J Comp Neurol. 1984;222:366–82.
Article
CAS
PubMed
Google Scholar
Feinstein N, Nsher N, Hochner B. Functional morphology of the neuromuscular systerm of the octopus vulgaris arm. VIE ET MILIEU-LIFE ENVIROMENT. 2011;61:219–29.
Google Scholar
Hirata K, Nakagawa M, Urbano FJ, et al. Reduced facilitation and vesicular uptake in crustacean and mammalian neuromuscular junction by T-588, a neuroprotective compound. Proc Natl Acad Sci U S A. 1999;96:14588–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharman A, Hirji R, Birmingham JT, Govind CK. Crab stomach pyloric muscles display not only excitatory but inhibitory and neuromodulatory nerve terminals. J Comp Neurol. 2000;425:70–81.
Article
CAS
PubMed
Google Scholar
Wasserthal LT, Wasserthal W. Innervation of heart and alary muscles in Sphinx ligustri L. (Lepidoptera). A scanning and transmission electron microscopic study. Cell Tissue Res. 1977;184:467–86.
Article
CAS
PubMed
Google Scholar
Edwards GA, Ruska H, De Harven E. Electron microscopy of peripheral nerves and neuromuscular junctions in the wasp leg. J Biophys Biochem Cytol. 1958;4:107–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards GA, Ruska H, De Harven E. Neuromuscular junctions in flight and tymbal muscles of the cicada. J Biophys Biochem Cytol. 1958;4:251–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Chen Y, Wang D, et al. Distinct presynaptic and postsynaptic dismantling processes of Drosophila neuromuscular junctions during metamorphosis. J Neurosci. 2010;30:11624–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marletaz F, Peijnenburg K, Goto T, et al. A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans. Curr Biol. 2019;29:312–8 e313.
Article
CAS
PubMed
Google Scholar
Duvert M. ALB. Ultrastructural studies of neuromuscular junctions in visceral and skeletal muscles of the chaetognath Sagitta setosa. Cell Tissue Res. 1983;233:657–69.
Article
CAS
PubMed
Google Scholar
Flood PR, Guthrie DM, Banks JR. Paramyosin muscle in the notochord of Amphioxus. Nature. 1969;222:87–8.
Article
CAS
PubMed
Google Scholar
Perrelet A, Garcia-Segura LM, Singh A, Orgi L. Distribution of cytochemically detectable cholesterol in the electric organ of Torpedo marmorata. Proc Natl Acad Sci U S A. 1982;79:2598–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bone Q. The dogfish neuromuscular junction: dual innervation of vertebrate striated muscle fibres? J Cell Sci. 1972;10:657–65.
Article
CAS
PubMed
Google Scholar
Witalinski W, Labuda H. Extraocular muscles in the lamprey, Lampetra fluviatilis L. II. motor ends plates. J Zool. 1985;207:311–8.
Article
Google Scholar
Best AC, Bone Q. The terminal neuromuscular junctions of lower chordates. Z Zellforsch Mikrosk Anat. 1973;143:495–504.
Article
CAS
PubMed
Google Scholar
Hertwig I, Eichelberg H, Schneider H. The fine structure of the fin musculature in two teleost species with different swimming modes, the puffer, Tetraodon steindachneri, and the goldfish, Carassius auratus. Cell Tissue Res. 1989;255:363–9.
Article
Google Scholar
Bergman RA. Motor nerve endings of twitch muscle fibers in Hippocampus hudsonius. J Cell Biol. 1967;32:751–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakajima Y. Fine structure of red and white muscle fibers and their neuromuscular junctions in the snake fish (Ophiocephalus argus). Tissue Cell. 1969;1:229–46.
Article
CAS
PubMed
Google Scholar
Davey DF, Mark RF, Marotte LR, Proske U. Structure and innervation of extraocular muscles of Carassius. J Anat. 1975;120:131–47.
CAS
PubMed
PubMed Central
Google Scholar
Sakharov DA, Kashapova LA. The primitive pattern of the vertebrate body muscle innervation: ultrastructural evidence for two synaptic transmitters. Comp Biochem Physiol Part A: Physiol. 1979;62:771–6.
Article
Google Scholar
Ono RD. Dual motor innervation in the axial musculature of fishes. J Fish Biol. 1983;22:395–408.
Article
Google Scholar
Gopalakrishnakone P. The structure of the ileofibularis muscle in the turtle Trionyx sinensis. Arch Histol Jpn. 1987;50:61–71.
Article
CAS
PubMed
Google Scholar
Wilkinson RS, Teng H. The nerve-muscle synapse of the garter snake. J Neurocytol. 2003;32:523–38.
Article
CAS
PubMed
Google Scholar
Reger JF. The fine structure of iridial constrictor pupillae muscle of Alligator mississippiensis. Anat Rec. 1966;155:197–215.
Article
CAS
PubMed
Google Scholar
Marciniak M. Morphometric ultrastructural evaluation of the axonal endings in the neuromuscular junctions of pigeons after long lasting limitation of movement. Exp Pathol. 1983;23:27–34.
Article
CAS
PubMed
Google Scholar
Ovalle WK, Dow PR, Nahirney PC. Structure, distribution and innervation of muscle spindles in avian fast and slow skeletal muscle. J Anat. 1999;194(Pt 3):381–94.
Article
PubMed
PubMed Central
Google Scholar
Boaro SN, Soares JC, Konig B. Jr. Comparative structural analysis of neuromuscular junctions in mice at different ages. Ann Anat. 1998;180:173–9.
Article
CAS
PubMed
Google Scholar
Wilkes MK, McKerrell RE, Patterson RC, Palmer AC. Ultrastructure of motor endplates in canine congenital myasthenia gravis. J Comp Pathol. 1987;97:247–56.
Article
CAS
PubMed
Google Scholar
Wokke JH, Jennekens FG, van den Oord CJ, et al. Morphological changes in the human end plate with age. J Neurol Sci. 1990;95:291–310.
Article
CAS
PubMed
Google Scholar
Russell RG, Oteruelo FT. Ultrastructural abnormalities of muscle and neuromuscular junction differentiation in a bovine congenital neuromuscular disease. Acta Neuropathol. 1983;62:112–20.
Article
CAS
PubMed
Google Scholar
Ryuichi O, Teruaki U. Further Studies on Histochemical and Ultrastructural Properties of the Pectoral Muscles of Bats. Journal of the Faculty of Agriculture, Kyushu University. 1979;24:145.
Article
Google Scholar
Tulsi RS. Proceedings: Some observations on the morphology of neuromuscular junction and muscle spindle in the dorsal muscle of the South Australian bottle-nose dolphin. Journal of Anatomy. 1974;118:397.
CAS
PubMed
Google Scholar
Ilana Cohen M, Rimer T, Lømo, McMahan UJ. Agrin-Innduced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Mol Cell Neurosci. 1997;9:237–53.
Article
Google Scholar
Martins J-MF, Cornelius Fischer AU, Ramon Vidal SK, et al. Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell. 2020;26:172–86.
Article
CAS
Google Scholar
Zhang K, Bai L, Xu W, Shen C. Human neuromuscular junction three-dimensional organoid models and the insight in motor disorders. J Mol Cell Biol. 2021;13:767–73.
Article
PubMed Central
Google Scholar
D’Amelio F, Daunton NG. Effects of Spaceflight in the Adductor Longus Muscle of Rats Flown in the Soviet Biosatellite COSMOS 2044. A Study Employing Neural Cell Adhesion Molecule (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy). J Neuropathol Exp Neurol. 1992;51:415–31.
Article
PubMed
Google Scholar
Slater CR. Structural Ffactors influencing the efficacy of neuromuscular transmission. Ann N Y Acad Sci. 2008;1132:1–12.
Article
PubMed
Google Scholar
Misgeld T, Burgess RW, Lewis RM, et al. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron. 2002;36:635–48.
Article
CAS
PubMed
Google Scholar
Yang X, Arber S, William C, et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron. 2001;30:399–410.
Article
CAS
PubMed
Google Scholar
Shen C, Li L, Zhao K, et al. Motoneuron Wnts regulate neuromuscular junction development. Elife. 2018. 7: e23645
Article
Google Scholar
Zhang B, Liang C, Bates R, et al. Wnt proteins regulate acetylcholine receptor clustering in muscle cells. Mol Brain. 2012;5:7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varoqueaux F, Sons MS, Plomp JJ, Brose N. Aberrant morphology and residual transmitter release at the Munc13-deficient mouse neuromuscular synapse. Mol Cell Biol. 2005;25:5973–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzenbach HR, Waser PG. Electron microscopic studies of degeneration and regeneration of rat neuromuscular junctions. Brain Res. 1973;63:167–74.
Article
CAS
PubMed
Google Scholar
Torrejais MM, Soares JC, Matheus SMM, et al. Morphometric morphological analysis of neuromuscular junction alterations in the denervated rat diaphragm. Int J Morphology. 2009;27:1235–42.
Article
Google Scholar
Moss BL, Schuetze SM. Development of rat soleus endplate membrane following denervation at birth. J Neurobiol. 1987;18:101–18.
Article
CAS
PubMed
Google Scholar
Lin W, Sanchez HB, Deerinck T, et al. Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc Natl Acad Sci U S A. 2000;97:1299–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt N, Akaaboune M, Gajendran N, et al. Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of alpha-dystrobrevin. J Cell Biol. 2011;195:1171–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barik A, Li L, Sathyamurthy A, et al. Schwann cells in neuromuscular junction formation and maintenance. J Neurosci. 2016;36:9770–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halstead SK, Morrison I, O’Hanlon GM, et al. Anti-disialosyl antibodies mediate selective neuronal or Schwann cell injury at mouse neuromuscular junctions. Glia. 2005;52:177–89.
Article
PubMed
Google Scholar
Sanes JR, Marshall LM, McMahan UJ. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978;78:176–98.
Article
CAS
PubMed
Google Scholar
Burden SJ, Sargent PB, McMahan UJ. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol. 1979;82:412–25.
Article
CAS
PubMed
Google Scholar
Wu H, Lu Y, Barik A, et al. beta-Catenin gain of function in muscles impairs neuromuscular junction formation. Development. 2012;139:2392–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fox MA, Ho MS, Smyth N, Sanes JR. A synaptic nidogen: developmental regulation and role of nidogen-2 at the neuromuscular junction. Neural Dev. 2008;3:24.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol. 2017;57–58:86–105.
Article
PubMed
CAS
Google Scholar
Helbling-Leclerc A, Zhang X, Topaloglu H, et al. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet. 1995;11:216–8.
Article
CAS
PubMed
Google Scholar
Patton BL, Cunningham JM, Thyboll J, et al. Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nat Neurosci. 2001;4:597–604.
Article
CAS
PubMed
Google Scholar
Nishimune H, Valdez G, Jarad G, et al. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. J Cell Biol. 2008;182:1201–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patton BL, Miner JH, Chiu AY, Sanes JR. Distribution and function of Laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol. 1997;139:1507–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miner JH, Go G, Cunningham J, et al. Transgenic isolation of skeletal muscle and kidney defects in laminin beta2 mutant mice: implications for Pierson syndrome. Development. 2006;133:967–75.
Article
CAS
PubMed
Google Scholar
Condomitti G, de Wit J. Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front Mol Neurosci. 2018;11:14.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kamimura K, Maeda N. Glypicans and Heparan sulfate in synaptic development, neural plasticity, and neurological disorders. Front Neural Circuits. 2021;15:595596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautam M, Noakes PG, Moscoso L, et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell. 1996;85:525–35.
Article
CAS
PubMed
Google Scholar
Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y. Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nat Neurosci. 2002;5:119–23.
Article
CAS
PubMed
Google Scholar
Xie W, Stribley JA, Chatonnet A, et al. Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J Pharmacol Exp Ther. 2000;293:896–902.
CAS
PubMed
Google Scholar
Feng G, Krejci E, Molgo J, et al. Genetic Analysis of Collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. The Journal of Cell Biology. 1999;144:1349.
Article
CAS
PubMed
PubMed Central
Google Scholar
VanSaun M, Herrera AA, Werle MJ. Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J Neurocytol. 2003;32:1129–42.
Article
CAS
PubMed
Google Scholar
Werle MJ. Cell-to-cell signaling at the neuromuscular junction: the dynamic role of the extracellular matrix. Ann N Y Acad Sci. 2008;1132:13–8.
Article
CAS
PubMed
Google Scholar
Ito K, Ohkawara B, Yagi H, et al. Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters. Sci Rep. 2018;8:434.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fox MA, Sanes JR, Borza DB, et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell. 2007;129:179–93.
Article
CAS
PubMed
Google Scholar
Latvanlehto A, Fox MA, Sormunen R, et al. Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction. J Neurosci. 2010;30:12230–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haronen H, Zainul Z, Naumenko N, et al. Correct expression and localization of collagen XIII are crucial for the normal formation and function of the neuromuscular system. Eur J Neurosci. 2019;49:1491–511.
Article
PubMed
Google Scholar
Schwarz H, Giese G, Muller H, et al. Different functions of fetal and adult AChR subtypes for the formation and maintenance of neuromuscular synapses revealed in epsilon-subunit-deficient mice. Eur J Neurosci. 2000;12:3107–16.
Article
CAS
PubMed
Google Scholar
Barik A, Lu Y, Sathyamurthy XA, et al. LRP4 is critical for neuromuscular junction maintenance. J Neurosci. 2014;34:13892–905.
Article
PubMed
CAS
PubMed Central
Google Scholar
Voigt T, Neve A, Schumperli D. The craniosacral progression of muscle development influences the emergence of neuromuscular junction alterations in a severe murine model for spinal muscular atrophy. Neuropathol Appl Neurobiol. 2014;40:416–34.
Article
PubMed
Google Scholar
Stephens RF, Guan W, Zhorov BS, Spafford JD. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. Front Physiol. 2015;6:153.
Article
PubMed
PubMed Central
Google Scholar
Jenkins PM, Kim N, Jones SL, et al. Giant ankyrin-G: a critical innovation in vertebrate evolution of fast and integrated neuronal signaling. Proc Natl Acad Sci U S A. 2015;112:957–64.
Article
CAS
PubMed
Google Scholar
Vautrin J, Mambrini J. Synaptic current between neuromuscular junction folds. J Theor Biol. 1989;140:479–98.
Article
CAS
PubMed
Google Scholar
Wood SJ, Slater CR. beta-Spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction. J Cell Biol. 1998;140:675–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett V, Healy J. Membrane domains based on ankyrin and spectrin associated with cell-cell interactions. Cold Spring Harb Perspect Biol. 2009;1:a003012.
Article
PubMed
PubMed Central
Google Scholar
Mahmud M, Rahman MM, Vassanelli S. Na + channels at postsynaptic muscle membrane affects synaptic transmission at neuromuscular junction: a simulation study. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3616–9.
PubMed
Google Scholar
Pielage J, Fetter RD, Davis GW. A postsynaptic spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. J Cell Biol. 2006;175:491–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandela P, Yankova M, Conti LH, et al. Kalrn plays key roles within and outside of the nervous system. BMC Neurosci. 2012;13:136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Joshi A, Liu Y, et al. Ankyrin-dependent Na(+) channel clustering prevents neuromuscular synapse fatigue. Curr Biol. 2021;31:3810–9 e3814.
Article
CAS
PubMed
Google Scholar
Mihailovska E, Raith M, Valencia RG, et al. Neuromuscular synapse integrity requires linkage of acetylcholine receptors to postsynaptic intermediate filament networks via rapsyn-plectin 1f complexes. Mol Biol Cell. 2014;25:4130–49.
Article
PubMed
PubMed Central
Google Scholar
Flucher BE, Daniels MP. Distribution of Na + channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein. Neuron. 1989;3:163–75.
Article
CAS
PubMed
Google Scholar
Adams ME, Kramarcy N, Krall SP, et al. Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol. 2000;150:1385–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Badawi Y, Nishimune H. Presynaptic active zones of mammalian neuromuscular junctions: nanoarchitecture and selective impairments in aging. Neurosci Res. 2018;127:78–88.
Article
CAS
PubMed
Google Scholar
Matthews-Bellinger J, Salpeter MM. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J Physiol. 1978;279:197–213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plomp JJ. Trans-synaptic homeostasis at the myasthenic neuromuscular junction. Front Biosci (Landmark Ed). 2017;22:1033–51.
Article
CAS
Google Scholar
Wood SJ, Slater CR. Safety factor at the neuromuscular junction. 2001;64:393–429.
CAS
Google Scholar
Slater CR. The structure of human neuromuscular junctions: some unanswered molecular questions. Int J Mol Sci. 2017;18:2183.
Article
CAS
PubMed Central
Google Scholar
Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present, and future. J Clin Investig. 2006;116:2843–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Habbout K, Poulin H, Rivier F, et al. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology. 2016;86:161–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serra A, Ruff RL, Leigh RJ. Neuromuscular transmission failure in myasthenia gravis: decrement of safety factor and susceptibility of extraocular muscles. Ann N Y Acad Sci. 2012;1275:129–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eshed-Eisenbach Y, Peles E. The clustering of voltage-gated sodium channels in various excitable membranes. Dev Neurobiol. 2021;81:427–37.
Article
CAS
PubMed
Google Scholar
Motomura M, Nakata R, Shiraishi H. Lambert–Eaton myasthenic syndrome: clinical review. Clin experimental Neuroimmunol. 2016;7:238–45.
Article
CAS
Google Scholar
Simkin D, Bendahhou S. Skeletal muscle na channel disorders. Front Pharmacol. 2011;2:63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gromova A, Spada ARL. Harmony Lost:cell–cell communication at the neuromuscular junction in motor neuron disease. Trends Neurosci. 2020;43:709–24.
Article
CAS
PubMed
Google Scholar
Shiraishi H, Motomura M, Yoshimura T, et al. Acetylcholine receptors loss and postsynaptic damage in musk antibody–positive Myasthenia Gravis. Am Neurol Association. 2005;57:289–93.
Article
CAS
Google Scholar
Rash JE, Albuquerque EX, Hudson CS, et al. Studies of human myasthenia gravis: electrophysiological and ultrastructural evidence compatible with antibody attachment to acetylcholine receptor complex. Proc Natl Acad Sci USA. 1976;73:4584–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi K, Niiya T, Takada Y, et al. Severity of Myasthenia Gravis influences the relationship between train-of-four ratio and twitch tension and run-down of rat endplate potentials. Anesthesiology. 2016;124:369–77.
Article
CAS
PubMed
Google Scholar
Maselli RA, Fernandez JM, Arredondo J, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet. 2012;131:1123–35.
Article
CAS
PubMed
Google Scholar
Selcen D, Ohkawara B, Shen X-M, et al. Impaired synaptic development, maintenance, and neuromuscular transmission in LRP4 Myasthenia. JAMA Neurol. 2015;72:889–96.
Article
PubMed
PubMed Central
Google Scholar
Richman DP, Nishi K, Morell SW, et al. Acute Ssevere animal model of muscle-specific kinase myasthenia: combined postsynaptic and presynaptic changes. Arch Neurol. 2012;69:453–60.
Article
PubMed
Google Scholar
Klooster R, Plomp JJ, Huijbers MG, et al. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain. 2012;135:1081–101.
Article
PubMed
Google Scholar
Mori S, Kubo S, Akiyoshi T, et al. Antibodies againstmuscle-specific kinase impair both presynaptic and postsynaptic functions in a Murine model of Myasthenia Gravis. Am J Pathol. 2012;180:798–810.
Article
CAS
PubMed
Google Scholar
Ohno K, Engel AG, Shen X-M, et al. Rapsyn Mutations in Humans Cause Endplate Acetylcholine-Receptor Deficiency and Myasthenic Syndrome. Am J Hum Genet. 2002;70:875–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing G, Jing H, Zhang L, et al. A mechanism in agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome. Elife. 2019;8:e49180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maselli RA, Dunne V, Pascual-Pascual SI, et al. Rapsyn mutations in myasthenic syndrome due to impaired receptor clustering. Muscle Nerve. 2003;28:293–301.
Article
CAS
PubMed
Google Scholar
Milone M, Shen XM, D Selcen KO, et al. Myasthenic syndrome due to defects in rapsyn. Clinical and molecular findings in 39 patients. Neurology. 2009;73:228–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fedik Rahimov LMK. Cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol. 2013;201:499–510.
Article
PubMed
CAS
PubMed Central
Google Scholar
Deconinck AE, Rafael JA, Skinner JA, et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell. 1997;90:717–27.
Article
CAS
PubMed
Google Scholar
Torres LF, Duchen LW. The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates. Brain. 1987;110(Pt 2):269–99.
Article
PubMed
Google Scholar
Termblay JP, Gregoire L, Sassville R, et al. Reduction of Postjunctional Fold Density and Depth in Dystrophic Mice. SYNAPSE. 1988;2:148–56.
Article
Google Scholar
Grady RM, Merlie JP, Sanes JR. Subtle neuromuscular defects in utrophin-deficient mice. J Cell Biol. 1997;136:871–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grady RM, Teng H, Nichol MC, et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell. 1997;90:729–38.
Article
CAS
PubMed
Google Scholar
Patton BL, Cunningham JM, Thyboll J, et al. Properly formed but improperly localized synaptic specializations in the absence of laminin alpha4. Nat Neurosci. 2001;4:597–604.
Article
CAS
PubMed
Google Scholar
Amenta AR, Creely HE, Mercado ML, et al. Biglycan is an extracellular MuSK binding protein important for synapse stability. J Neurosci. 2012;32:2324–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cappello V, Francolini M. Neuromuscular Junction Dismantling in Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2017;18:2092.
Article
CAS
PubMed Central
Google Scholar
Vinsant S, Mansfield C, Jimenez-Moreno R, et al. Characterization of early pathogenesis in the SOD1G93A mouse model of ALS: part II, results and discussion. Brain and Behavior. 2013;3:431–57.
Article
PubMed
PubMed Central
Google Scholar
Picchiarelli G, Demestre M, Zuko A, et al. FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nat Neurosci. 2019;22:1793–805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Yi, Mikesh M, Smith I, et al. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev Biol. 2011;356:432–44.
Article
PubMed
CAS
Google Scholar
Alhindi A, Boehm I, Chaytow H. Small junction, big problems: Neuromuscular junction pathology in mouse models of amyotrophic lateral sclerosis (ALS). J Anat. 2021;00:1–19.
CAS
Google Scholar
Fish LA, Fallon JR. Multiple MuSK signaling pathways and the aging neuromuscular junction. Neurosci Lett. 2020;731:135014.
Article
CAS
PubMed
PubMed Central
Google Scholar
CardasisS CA, LaFontaine DM. Aging rat neuromuscular junctions: a morphometric study of cholinesterase-stained whole mounts and ultrastructure. Muscle Nerve. 1987;10:200–13.
Article
Google Scholar
Shigemoto K, Kubo S, Mori S, et al. Muscle weakness and neuromuscular junctions in aging and disease. Geriatr Gerontol Int. 2010;10:137–47.
Article
Google Scholar
Ito M, Suzuki Y, Okada T, et al. Protein-anchoring strategy for delivering acetylcholinesterase to the neuromuscular junction. Mol Ther. 2012;20:1384–92.
Article
CAS
PubMed
PubMed Central
Google Scholar