McCrimmon R. The mechanisms that underlie glucose sensing during hypoglycaemia in diabetes. Diabet Med. 2008;25(5):513–22.
Article
CAS
PubMed
Google Scholar
Choi YH, Fujikawa T, Lee J, Reuter A, Kim KW. Revisiting the ventral medial nucleus of the hypothalamus: the roles of SF-1 neurons in energy homeostasis. Front Neurosci. 2013;7:71.
Article
PubMed
PubMed Central
Google Scholar
Barron E, Bakhai C, Kar P, Weaver A, Bradley D, Ismail H, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Ma P, Zhang S, Song S, Wang Z, Ma Y, et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: a multi-centre retrospective study. Diabetologia. 2020;63(10):2102–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montefusco L, Nasr MB, D’Addio F, Loretelli C, Rossi A, Pastore I, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021. https://doi.org/10.1038/s42255-021-00407-6.
Article
PubMed
Google Scholar
C B. Chiens rendus diabetiques. C R Soc Bio (Pairs, France). 1849;1(14):60–63.
Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953;249(1):13–6.
Article
CAS
PubMed
Google Scholar
Anand BK, Chhina GS, Sharma KN, Dua S, Singh B. Activity of single neurons in the hypothalamic feeding centers: effect of glucose. Am J Physiol. 1964;207:1146–54.
Article
CAS
PubMed
Google Scholar
Oomura Y, Kimura K, Ooyama H, Maeno T, Iki M, Kuniyoshi M. Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats. Science. 1964;143(3605):484–5.
Article
CAS
PubMed
Google Scholar
Grayson BE, Seeley RJ, Sandoval DA. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nat Rev Neurosci. 2013;14(1):24–37.
Article
CAS
PubMed
Google Scholar
Schwartz MW, Seeley RJ, Tschöp MH, Woods SC, Morton GJ, Myers MG, et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature. 2013;503(7474):59–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimazu T, Fukuda A, Ban T. Reciprocal influences of the ventromedial and lateral hypothalamic nuclei on blood glucose level and liver glycogen content. Nature. 1966;210(5041):1178–9.
Article
CAS
PubMed
Google Scholar
Borg WP, During MJ, Sherwin RS, Borg MA, Brines ML, Shulman GI. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J Clin Invest. 1994;93(4):1677–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan O, Sherwin R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metab. 2013;24(12):616–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol. 2020;32(1): e12773.
Article
CAS
PubMed
Google Scholar
Deem JD, Muta K, Scarlett JM, Morton GJ, Schwartz MW. How should we think about the role of the brain in glucose homeostasis and diabetes? Diabetes. 2017;66(7):1758–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonge KM, D’lessio DA, Schwartz MW. Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes. Diabetologia. 2020. https://doi.org/10.1007/s00125-020-05293-3.
Article
PubMed
PubMed Central
Google Scholar
Hwang JJ, Jiang L, Rangel ES, Fan X, Ding Y, Lam W, et al. Glycemic variability and brain glucose levels in type 1 diabetes. Diabetes. 2019;68(1):163–71.
Article
CAS
PubMed
Google Scholar
Hwang JJ, Jiang L, Hamza M, Rangel ES, Dai F, Belfort-DeAguiar R, et al. Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM. JCI Insight. 2017. https://doi.org/10.1172/jci.insight.95913.
Article
PubMed
PubMed Central
Google Scholar
Myers MG, Refined AH, Richardson N, Schwartz MW. Central nervous system regulation of organismal energy and glucose homeostasis. Nat Metab. 2021;3(6):737–50.
Article
PubMed
CAS
Google Scholar
Faber CL, Deem JD, Campos CA, Taborsky GJ Jr, Morton GJ. CNS control of the endocrine pancreas. Diabetologia. 2020;63(10):2086–94.
Article
PubMed
PubMed Central
Google Scholar
Bentsen MA, Mirzadeh Z, Schwartz MW. Revisiting how the brain senses glucose-and why. Cell Metab. 2019;29(1):11–7.
Article
CAS
PubMed
Google Scholar
Marty N, Dallaporta M, Foretz M, Emery M, Tarussio D, Bady I, et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Investig. 2005;115(12):3545–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camandola S. Astrocytes, emerging stars of energy homeostasis. Cell Stress. 2018;2(10):246–52.
Article
PubMed
PubMed Central
Google Scholar
Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. Diabetes. 1993;42(11):1663–72.
Article
CAS
PubMed
Google Scholar
Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 2014;19(5):741–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and-independent manner. J Neuroendocrinol. 2021;33(4): e12941.
Article
CAS
PubMed
Google Scholar
Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab. 2021;52: 101234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272(5656):827–9.
Article
CAS
PubMed
Google Scholar
Kang L, Routh VH, Kuzhikandathil EV, Gaspers LD, Levin BE. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes. 2004;53(3):549–59.
Article
CAS
PubMed
Google Scholar
Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376–82.
Article
CAS
PubMed
Google Scholar
Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5(6):438–49.
Article
PubMed
CAS
Google Scholar
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, et al. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol. 2021;33(4): e12937.
Article
CAS
PubMed
Google Scholar
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.
Article
CAS
PubMed
Google Scholar
Casanueva FF, Dieguez C. Neuroendocrine regulation and actions of leptin. Front Neuroendocrinol. 1999;20(4):317–63.
Article
CAS
PubMed
Google Scholar
Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D, Lasser G, et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes. 1996;45(4):531–5.
Article
CAS
PubMed
Google Scholar
Cheng W, Ndoka E, Hutch C, Roelofs K, MacKinnon A, Khoury B, et al. Leptin receptor-expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.134359.
Article
PubMed
PubMed Central
Google Scholar
Flak JN, Patterson CM, Garfield AS, D’Agostino G, Goforth PB, Sutton AK, et al. Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance. Nat Neurosci. 2014;17(12):1744–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hidaka S, Yoshimatsu H, Kondou S, Tsuruta Y, Oka K, Noguchi H, et al. Chronic central leptin infusion restores hyperglycemia independent of food intake and insulin level in streptozotocin-induced diabetic rats. FASEB J. 2002;16(6):509–18.
Article
CAS
PubMed
Google Scholar
Fujikawa T, Chuang J-C, Sakata I, Ramadori G, Coppari R. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc Natl Acad Sci. 2010;107(40):17391–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
German JP, Thaler JP, Wisse BE, oh-I S, Sarruf DA, Matsen ME, et al. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology. 2011;152(2):394–404.
Article
CAS
PubMed
Google Scholar
Lin C-Y, Higginbotham DA, Judd RL, White BD. Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2002;282(5):E1084–91.
Article
CAS
PubMed
Google Scholar
Fan S, Xu Y, Lu Y, Jiang Z, Li H, Morrill JC, et al. A neural basis for brain leptin action on reducing type 1 diabetic hyperglycemia. Nat Commun. 2021;12(1):2662.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papazoglou I, Lee J-H, Cui Z, Li C, Fulgenzi G, Bahn YJ, et al. A distinct hypothalamus-to-β cell circuit modulates insulin secretion. Cell Metab. 2022;34(2):285-298 e287.
Article
CAS
PubMed
Google Scholar
Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab. 2015;26(1):22–9.
Article
CAS
PubMed
Google Scholar
Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20(4):670–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT, Stefanovski D, et al. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Investig. 2013;123(11):4799–808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scarlett JM, Rojas JM, Matsen ME, Kaiyala KJ, Stefanovski D, Bergman RN, et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med. 2016;22(7):800–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suh JM, Jonker JW, Ahmadian M, Goetz R, Lackey D, Osborn O, et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature. 2014;513(7518):436–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Böhlen P, Esch F, Baird A, Gospodarowicz D. Acidic fibroblast growth factor (FGF) from bovine brain: amino-terminal sequence and comparison with basic FGF. EMBO J. 1985;4(8):1951–6.
Article
PubMed
PubMed Central
Google Scholar
Scarlett JM, Muta K, Brown JM, Rojas JM, Matsen ME, Acharya NK, et al. Peripheral mechanisms mediating the sustained antidiabetic action of FGF1 in the brain. Diabetes. 2019;68(3):654–64.
Article
CAS
PubMed
Google Scholar
Brown JM, Scarlett JM, Matsen ME, Nguyen HT, Secher A, Jorgensen R, et al. The hypothalamic arcuate nucleus–median eminence is a target for sustained diabetes remission induced by fibroblast growth factor 1. Diabetes. 2019;68(5):1054–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bentsen MA, Rausch DM, Mirzadeh Z, Muta K, Scarlett JM, Brown JM, et al. Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nat Commun. 2020;11(1):1–16.
Article
CAS
Google Scholar
Tennant KG, Lindsley SR, Kirigiti MA, True C, Kievit P. Central and peripheral administration of fibroblast growth factor 1 improves pancreatic islet insulin secretion in diabetic mouse models. Diabetes. 2019;68(7):1462–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Routh VH. Glucose sensing neurons in the ventromedial hypothalamus. Sensors (Basel). 2010;10(10):9002–25.
Article
CAS
Google Scholar
Routh VH. Glucose-sensing neurons: are they physiologically relevant? Physiol Behav. 2002;76(3):403–13.
Article
CAS
PubMed
Google Scholar
Lamy CM, Sanno H, Labouebe G, Picard A, Magnan C, Chatton JY, et al. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab. 2014;19(3):527–38.
Article
CAS
PubMed
Google Scholar
Adachi A, Kobashi M, Funahashi M. Glucose-responsive neurons in the brainstem. Obes Res. 1995;3(Suppl 5):735S-740S.
Article
CAS
PubMed
Google Scholar
Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007;449(7159):228–32.
Article
CAS
PubMed
Google Scholar
Melnick IV, Price CJ, Colmers WF. Glucosensing in parvocellular neurons of the rat hypothalamic paraventricular nucleus. Eur J Neurosci. 2011;34(2):272–82.
Article
PubMed
Google Scholar
Song Z, Levin BE, Stevens W, Sladek CD. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors. Am J Physiol Regul Integr Comp Physiol. 2014;306(7):R447-456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda). 2007;22:241–51.
CAS
Google Scholar
Yoon NA, Diano S. Hypothalamic glucose-sensing mechanisms. Diabetologia. 2021. https://doi.org/10.1007/s00125-021-05395-6.
Article
PubMed
PubMed Central
Google Scholar
Khodai T, Luckman SM. Ventromedial nucleus of the hypothalamus neurons under the magnifying glass. Endocrinology. 2021;162(10):bqab141.
Article
PubMed
PubMed Central
Google Scholar
Liu H, Xu Y, Hu F. AMPK in the ventromedial nucleus of the hypothalamus: a key regulator for thermogenesis. Front Endocrinol. 2020. https://doi.org/10.3389/fendo.2020.578830.
Article
Google Scholar
Hetherington A, Ranson S. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78(2):149–72.
Article
Google Scholar
Song Z, Levin BE, McArdle JJ, Bakhos N, Routh VH. Convergence of pre-and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes. 2001;50(12):2673–81.
Article
CAS
PubMed
Google Scholar
Hanna L, Kawalek TJ, Beall C, Ellacott KL. Changes in neuronal activity across the mouse ventromedial nucleus of the hypothalamus in response to low glucose: evaluation using an extracellular multi-electrode array approach. J Neuroendocrinol. 2020;32(3): e12824.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Xu P, Wang C, Xia Y, Yu M, Yang Y, et al. Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance. Nat Commun. 2020;11(1):2165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wick AN, Drury DR, Nakada HI, Wolfe JB. Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem. 1957;224(2):963–9.
Article
CAS
PubMed
Google Scholar
Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes. 1995;44(2):180–4.
Article
CAS
PubMed
Google Scholar
Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Investig. 1997;99(2):361–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong Q, Ye C, McCrimmon RJ, Dhillon H, Choi B, Kramer MD, et al. Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 2007;5(5):383–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toda C, Kim JD, Impellizzeri D, Cuzzocrea S, Liu Z-W, Diano S. UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness. Cell. 2016;164(5):872–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X, Nectow AR, et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature. 2016;531(7596):647–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinbusch LK, Picard A, Bonnet MS, Basco D, Labouèbe G, Thorens B. Sex-specific control of fat mass and counterregulation by hypothalamic glucokinase. Diabetes. 2016;65(10):2920–31.
Article
CAS
PubMed
Google Scholar
Garfield AS, Shah BP, Madara JC, Burke LK, Patterson CM, Flak J, et al. A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia. Cell Metab. 2014;20(6):1030–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meek TH, Nelson JT, Matsen ME, Dorfman MD, Guyenet SJ, Damian V, et al. Functional identification of a neurocircuit regulating blood glucose. Proc Natl Acad Sci USA. 2016;113(14):E2073-2082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolborea M, Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013;36(2):91–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodríguez EM, Blázquez JL, Pastor FE, Peláez B, Pena P, Peruzzo B, et al. Hypothalamic tanycytes: a key component of brain–endocrine interaction. Int Rev Cytol. 2005;247:89–164.
Article
PubMed
CAS
Google Scholar
Garcia MdlA, Millán C, Balmaceda-Aguilera C, Castro T, Pastor P, Montecinos H, et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem. 2003;86(3):709–24.
Article
PubMed
CAS
Google Scholar
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-neuronal cells in the hypothalamic adaptation to metabolic signals. Front Endocrinol. 2017;8:51.
Article
Google Scholar
Elizondo-Vega RJ, Recabal A, Oyarce K. Nutrient sensing by hypothalamic tanycytes. Front Endocrinol. 2019;10:244.
Article
Google Scholar
Cortés-Campos C, Elizondo R, Llanos P, Uranga RM, Nualart F, García MA. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction. PLoS ONE. 2011;6(1): e16411.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elizondo-Vega R, Cortés-Campos C, Barahona MJ, Carril C, Ordenes P, Salgado M, et al. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression. Sci Rep. 2016;6(1):1–13.
Article
CAS
Google Scholar
Uranga RM, Millán C, Barahona MJ, Recabal A, Salgado M, Martinez F, et al. Adenovirus-mediated suppression of hypothalamic glucokinase affects feeding behavior. Sci Rep. 2017;7(1):1–13.
Article
CAS
Google Scholar
Barahona MJ, Llanos P, Recabal A, Escobar-Acuña K, Elizondo-Vega R, Salgado M, et al. Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior. Glia. 2018;66(3):592–605.
Article
PubMed
Google Scholar
Rohrbach A, Caron E, Dali R, Brunner M, Pasquettaz R, Kolotuev I, et al. Ablation of glucokinase-expressing tanycytes impacts energy balance and increases adiposity in mice. Mol Metab. 2021;53: 101311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lhomme T, Clasadonte J, Imbernon M, Fernandois D, Sauve F, Caron E, et al. Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J Clin Investig. 2021. https://doi.org/10.1172/JCI140521.
Article
PubMed
PubMed Central
Google Scholar
Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19(4):235–49.
Article
CAS
PubMed
Google Scholar
Testa D, Prochiantz A, Di Nardo AA. Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol. 2019;89:125–35.
Article
PubMed
Google Scholar
Alonge KM, Mirzadeh Z, Scarlett JM, Logsdon AF, Brown JM, Cabrales E, et al. Hypothalamic perineuronal net assembly is required for sustained diabetes remission induced by fibroblast growth factor 1 in rats. Nat Metab. 2020;2(10):1025–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirzadeh Z, Alonge KM, Cabrales E, Herranz-Pérez V, Scarlett JM, Brown JM, et al. Perineuronal net formation during the critical period for neuronal maturation in the hypothalamic arcuate nucleus. Nat Metab. 2019;1(2):212–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang N, Yan Z, Liu H, Yu M, He Y, Liu H, et al. Hypothalamic perineuronal nets are regulated by sex and dietary interventions. Front Physiol. 2021;12: 714104.
Article
PubMed
PubMed Central
Google Scholar
Verberne AJM, Sabetghadam A, Korim WS. Neural pathways that control the glucose counterregulatory response. Front Neurosci. 2014;8:38–38.
Article
PubMed
PubMed Central
Google Scholar
McCrimmon R. Glucose sensing during hypoglycemia: lessons from the lab. Diabetes Care. 2009;32(8):1357–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fioramonti X, Chretien C, Leloup C, Penicaud L. Recent advances in the cellular and molecular mechanisms of hypothalamic neuronal glucose detection. Front Physiol. 2017;8:875.
Article
PubMed
PubMed Central
Google Scholar
Quenneville S, Labouèbe G, Basco D, Metref S, Viollet B, Foretz M, et al. Hypoglycemia-sensing neurons of the ventromedial hypothalamus require AMPK-induced Txn2 expression but are dispensable for physiological counterregulation. Diabetes. 2020;69(11):2253–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
López M, Nogueiras R, Tena-Sempere M, Diéguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol. 2016;12(7):421–32.
Article
PubMed
CAS
Google Scholar
Seoane-Collazo P, Roa J, Rial-Pensado E, Liñares-Pose L, Beiroa D, Ruíz-Pino F, et al. SF1-specific AMPKα1 deletion protects against diet-induced obesity. Diabetes. 2018;67(11):2213–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Milbank E, Dragano NRV, González-García I, Garcia MR, Rivas-Limeres V, Perdomo L, et al. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nat Metab. 2021;3(10):1415–31.
Article
CAS
PubMed
Google Scholar
Fioramonti X, Marsollier N, Song Z, Fakira KA, Patel RM, Brown S, et al. Ventromedial hypothalamic nitric oxide production is necessary for hypoglycemia detection and counterregulation. Diabetes. 2010;59(2):519–28.
Article
CAS
PubMed
Google Scholar
Faber CL, Matsen ME, Velasco KR, Damian V, Phan BA, Adam D, et al. Distinct neuronal projections from the hypothalamic ventromedial nucleus mediate glycemic and behavioral effects. Diabetes. 2018;67(12):2518–29.
Article
PubMed
PubMed Central
Google Scholar
Akbari P, Gilani A, Sosina O, Kosmicki JA, Khrimian L, Fang YY, et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science. 2021;373(6550):eabf8683.
Article
CAS
PubMed
Google Scholar
Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science. 1999;283(5401):496–7.
Article
CAS
PubMed
Google Scholar
Cardoso FL, Brites D, Brito MA. Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64(2):328–63.
Article
CAS
PubMed
Google Scholar
Dunn-Meynell AA, Sanders NM, Compton D, Becker TC, Eiki JI, Zhang BB, et al. Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding. J Neurosci. 2009;29(21):7015–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab. 2002;22(3):271–9.
Article
CAS
PubMed
Google Scholar
McNay EC, Gold PE. Extracellular glucose concentrations in the rat hippocampus measured by zero-net-flux: effects of microdialysis flow rate, strain, and age. J Neurochem. 1999;72(2):785–90.
Article
CAS
PubMed
Google Scholar
Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 2013;17(4):607–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004;42(6):983–91.
Article
CAS
PubMed
Google Scholar
Yamamoto R, Ahmed N, Ito T, Gungor NZ, Pare D. Optogenetic study of anterior BNST and basomedial amygdala projections to the ventromedial hypothalamus. ENeuro. 2018. https://doi.org/10.1523/ENEURO.0204-18.2018.
Article
PubMed
PubMed Central
Google Scholar
Fu LY, van den Pol AN. Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons. J Neurosci. 2008;28(21):5433–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan O, Zhu W, Ding Y, McCrimmon RJ, Sherwin RS. Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes. 2006;55(4):1080–7.
Article
CAS
PubMed
Google Scholar
Chan O, Cheng H, Herzog R, Czyzyk D, Zhu W, Wang A, et al. Increased GABAergic tone in the ventromedial hypothalamus contributes to suppression of counterregulatory responses after antecedent hypoglycemia. Diabetes. 2008;57(5):1363–70.
Article
CAS
PubMed
Google Scholar
Majdic G, Young M, Gomez-Sanchez E, Anderson P, Szczepaniak LS, Dobbins RL, et al. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology. 2002;143(2):607–14.
Article
CAS
PubMed
Google Scholar
Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron. 2006;49(2):191–203.
Article
CAS
PubMed
Google Scholar
Coutinho EA, Okamoto S, Ishikawa AW, Yokota S, Wada N, Hirabayashi T, et al. Activation of SF1 neurons in the ventromedial hypothalamus by DREADD technology increases insulin sensitivity in peripheral tissues. Diabetes. 2017;66(9):2372–86.
Article
CAS
PubMed
Google Scholar
Zhang J, Chen D, Sweeney P, Yang Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat Commun. 2020;11(1):6326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Viskaitis P, Irvine EE, Smith MA, Choudhury AI, Alvarez-Curto E, Glegola JA, et al. Modulation of SF1 neuron activity coordinately regulates both feeding behavior and associated emotional states. Cell Rep. 2017;21(12):3559–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Chen IZ, Lin D. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron. 2015;85(6):1344–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rouabhi M, Guo DF, Morgan DA, Zhu Z, López M, Zingman L, et al. BBSome ablation in SF1 neurons causes obesity without comorbidities. Mol Metab. 2021;13(48): 101211.
Article
CAS
Google Scholar
Kaneko K, Lin HY, Fu Y, Saha PK, De la Puente-Gomez AB, Xu Y, et al. Rap1 in the VMH regulates glucose homeostasis. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.142545.
Article
PubMed
PubMed Central
Google Scholar
Fagan MP, Ameroso D, Meng A, Rock A, Maguire J, Rios M. Essential and sex-specific effects of mGluR5 in ventromedial hypothalamus regulating estrogen signaling and glucose balance. Proc Natl Acad Sci USA. 2020;117(32):19566–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castorena CM, Caron A, Michael NJ, Ahmed NI, Arnold AG, Lee J, et al. CB1Rs in VMH neurons regulate glucose homeostasis but not body weight. Am J Physiol Endocrinol Metab. 2021. https://doi.org/10.1152/ajpendo.00044.2021.
Article
PubMed
Google Scholar
Zhang R, Dhillon H, Yin H, Yoshimura A, Lowell BB, Maratos-Flier E, et al. Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology. 2008;149(11):5654–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonçalves GHM, Tristão SM, Volpi RE, Almeida-Pereira G, de Carvalho BB, Donato J, et al. STAT3 but not ERK2 is a crucial mediator against diet-induced obesity via VMH neurons. Diabetes. 2021. https://doi.org/10.2337/db20-0658.
Article
PubMed
Google Scholar
Lee M-L, Matsunaga H, Sugiura Y, Hayasaka T, Yamamoto I, Ishimoto T, et al. Prostaglandin in the ventromedial hypothalamus regulates peripheral glucose metabolism. Nat Commun. 2021;12(1):1–15.
CAS
Google Scholar
Fosch A, Zagmutt S, Casals N, Rodríguez-Rodríguez R. New insights of SF1 neurons in hypothalamic regulation of obesity and diabetes. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22126186.
Article
PubMed
PubMed Central
Google Scholar
Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A ras-related gene with transformation suppressor activity. Cell. 1989;56(1):77–84.
Article
CAS
PubMed
Google Scholar
Matschinsky FM, Wilson DF. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in Islets of Langerhans. Front Physiol. 2019. https://doi.org/10.3389/fphys.2019.00148.
Article
PubMed
PubMed Central
Google Scholar
Salas M, Vinuela E, Sols A. Insulin-dependent synthesis of liver glucokinase in the rat. J Biol Chem. 1963;238:3535–8.
Article
CAS
PubMed
Google Scholar
Cuesta-Muñoz AL, Huopio H, Otonkoski T, Gomez-Zumaquero JM, Näntö-Salonen K, Rahier J, et al. Severe persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation. Diabetes. 2004;53(8):2164–8.
Article
PubMed
Google Scholar
Meglasson MD, Matschinsky FM. New perspectives on pancreatic islet glucokinase. Am J Physiol. 1984;246(1Pt1):E1-13.
CAS
PubMed
Google Scholar
Stanley S, Domingos AI, Kelly L, Garfield A, Damanpour S, Heisler L, et al. Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia. Cell Metab. 2013;18(4):596–607.
Article
CAS
PubMed
Google Scholar
Bingham NC, Anderson KK, Reuter AL, Stallings NR, Parker KL. Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology. 2008;149(5):2138–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minokoshi Y, Haque MS, Shimazu T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes. 1999;48(2):287–91.
Article
CAS
PubMed
Google Scholar
Sabatini PV, Wang J, Rupp AC, Affinati AH, Flak JN, Li C, et al. tTARGIT AAVs mediate the sensitive and flexible manipulation of intersectional neuronal populations in mice. Elife. 2021;10: e66835.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6(7):736–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci. 2007;27(52):14265–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maekawa F, Fujiwara K, Toriya M, Maejima Y, Nishio T, Toyoda Y, et al. Brain-derived neurotrophic factor in VMH as the causal factor for and therapeutic tool to treat visceral adiposity and hyperleptinemia in type 2 diabetic Goto-Kakizaki rats. Front Synaptic Neurosci. 2013. https://doi.org/10.3389/fnsyn.2013.00007.
Article
PubMed
PubMed Central
Google Scholar
Kamitakahara A, Xu B, Simerly R. Ventromedial hypothalamic expression of Bdnf is required to establish normal patterns of afferent GABAergic connectivity and responses to hypoglycemia. Mol Metab. 2016;5(2):91–101.
Article
CAS
PubMed
Google Scholar
Flak JN, Goforth PB, Dell’Orco J, Sabatini PV, Li C, Bozadjieva N, et al. Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. J Clin Invest. 2020;130(6):2943–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begriche K, Levasseur PR, Zhang J, Rossi J, Skorupa D, Solt LA, et al. Genetic dissection of the functions of the melanocortin-3 receptor, a seven-transmembrane G-protein-coupled receptor, suggests roles for central and peripheral receptors in energy homeostasis. J Biol Chem. 2011;286(47):40771–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutton AK, Goforth PB, Gonzalez IE, Dell’Orco J, Pei H, Myers MG, et al. Melanocortin 3 receptor-expressing neurons in the ventromedial hypothalamus promote glucose disposal. Proc Natl Acad Sci. 2021. https://doi.org/10.1073/pnas.2103090118.
Article
PubMed
PubMed Central
Google Scholar
Lippert RN, Ellacott KL, Cone RD. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology. 2014;155(5):1718–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Butler AA, Girardet C, Mavrikaki M, Trevaskis JL, Macarthur H, Marks DL, et al. A life without hunger: the ups (and downs) to modulating melanocortin-3 receptor signaling. Front Neurosci. 2017;11:128.
Article
PubMed
PubMed Central
Google Scholar
Khodai T, Nunn N, Worth AA, Feetham CH, Belle MDC, Piggins HD, et al. PACAP neurons in the ventromedial hypothalamic ncleus are glucose inhibited and their selective activation induces hyperglycaemia. Front Endocrinol (Lausanne). 2018;9:632.
Article
Google Scholar
Resch JM, Boisvert JP, Hourigan AE, Mueller CR, Yi SS, Choi S. Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. Am J Physiol Regul Integr Comp Physiol. 2011;301(6):R1625–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen TT, Kambe Y, Kurihara T, Nakamachi T, Shintani N, Hashimoto H, et al. Pituitary adenylate cyclase-activating polypeptide in the ventromedial hypothalamus is responsible for food intake behavior by modulating the expression of agouti-related peptide in mice. Mol Neurobiol. 2020;57(4):2101–14.
Article
CAS
PubMed
Google Scholar
Canabal DD, Song Z, Potian JG, Beuve A, McArdle JJ, Routh VH. Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1418–28.
Article
CAS
PubMed
Google Scholar
Cheung CC, Kurrasch DM, Liang JK, Ingraham HA. Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH. J Comp Neurol. 2013;521(6):1268–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, López M. Central regulation of energy metabolism by estrogens. Mol Metab. 2018;15:104–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Nedungadi TP, Zhu L, Sobhani N, Irani BG, Davis KE, et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 2011;14(4):453–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kammel LG, Correa SM. Selective sexual differentiation of neurone populations may contribute to sex-specific outputs of the ventromedial nucleus of the hypothalamus. J Neuroendocrinol. 2020;32(1): e12801.
Article
CAS
PubMed
Google Scholar
Yang T, Shah NM. Molecular and neural control of sexually dimorphic social behaviors. Curr Opin Neurobiol. 2016;38:89–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krause WC, Rodriguez R, Gegenhuber B, Matharu N, Rodriguez AN, Padilla-Roger AM, et al. Oestrogen engages brain MC4R signalling to drive physical activity in female mice. Nature. 2021;599(7883):131–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Veen JE, Kammel LG, Bunda PC, Shum M, Reid MS, Massa MG, et al. Hypothalamic estrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure. Nat Metab. 2020;2(4):351–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim DW, Yao Z, Graybuck LT, Kim TK, Nguyen TN, Smith KA, et al. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell. 2019;179(3):713-728 e717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santiago AM, Clegg DJ, Routh VH. Estrogens modulate ventrolateral ventromedial hypothalamic glucose-inhibited neurons. Mol Metab. 2016;5(10):823–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flanagan-Cato LM. Sex differences in the neural circuit that mediates female sexual receptivity. Front Neuroendocrinol. 2011;32(2):124–36.
Article
PubMed
PubMed Central
Google Scholar
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell. 2021. https://doi.org/10.1007/s13238-021-00834-x.
Article
PubMed
PubMed Central
Google Scholar
Wang C, Xu Y. Mechanisms for sex differences in energy homeostasis. J Mol Endocrinol. 2019;62(2):R129–43.
Article
CAS
PubMed
PubMed Central
Google Scholar