Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong JYC, Filippi AR, Dabaja BS, Yahalom J, Specht L. Total body irradiation: guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int J Radiat Oncol Biol Phys. 2018;101(3):521–9.
Article
PubMed
Google Scholar
Carmel RJ, Kaplan HS. Mantle irradiation in Hodgkin’s disease. An analysis of technique, tumor eradication, and complications. Cancer. 1976;37(6):2813–25.
Article
CAS
PubMed
Google Scholar
Abdelsalam M, El-Husseiny G, Akhtar S, Khafaga Y, Al-Shabana M, AlHusaini H, El Weshi A, Rahal M, Maghfoor I. Improved survival with combined chemo-radiotherapy in primary central nervous system lymphoma. Hematol Oncol Stem Cell Ther. 2010;3(3):128–34.
Article
CAS
PubMed
Google Scholar
Gutterman J, Rodriguez V. Combination chemotherapy of advanced lymphoma. Mil Med. 1972;137(7):255–60.
Article
CAS
PubMed
Google Scholar
Rich DC, Corpron CA, Smith MB, Black CT, Lally KP, Andrassy RJ. Second malignant neoplasms in children after treatment of soft tissue sarcoma. J Pediatr Surg. 1997;32(2):369–72.
Article
CAS
PubMed
Google Scholar
Ozaki T, Sugihara S, Inoue H. Second malignant neoplasms after treatment for osteosarcoma: a report of three cases. Acta Med Okayama. 1993;47(2):129–33.
CAS
PubMed
Google Scholar
Klein G, Michaelis J, Spix C, Wibbing R, Eggers G, Ritter J, Kaatsch P. Second malignant neoplasms after treatment of childhood cancer. Eur J Cancer. 2003;39(6):808–17.
Article
CAS
PubMed
Google Scholar
Feig SA. Second malignant neoplasms after successful treatment of childhood cancers. Blood Cells Mol Dis. 2001;27(3):662–6.
Article
CAS
PubMed
Google Scholar
de Vathaire F, Hawkins M, Campbell S, Oberlin O, Raquin MA, Schlienger JY, Shamsaldin A, Diallo I, Bell J, Grimaud E, et al. Second malignant neoplasms after a first cancer in childhood: temporal pattern of risk according to type of treatment. Br J Cancer. 1999;79(11–12):1884–93.
Article
PubMed
PubMed Central
Google Scholar
Green DM, Hyland A, Barcos MP, Reynolds JA, Lee RJ, Hall BC, Zevon MA. Second malignant neoplasms after treatment for Hodgkin’s disease in childhood or adolescence. J Clin Oncol. 2000;18(7):1492–9.
Article
CAS
PubMed
Google Scholar
Attarbaschi A, Carraro E, Ronceray L, Andres M, Barzilai-Birenboim S, Bomken S, Brugieres L, Burkhardt B, Ceppi F, Chiang AKS, et al. Second malignant neoplasms after treatment of non-Hodgkin’s lymphoma-a retrospective multinational study of 189 children and adolescents. Leukemia. 2020;35(2):534–49.
Article
PubMed
Google Scholar
Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85.
Article
PubMed
Google Scholar
Travis LB, Curtis RE, Glimelius B, Holowaty E, Van Leeuwen FE, Lynch CF, Adami J, Gospodarowicz M, Wacholder S, Inskip P, et al. Second cancers among long-term survivors of non-Hodgkin’s lymphoma. J Natl Cancer Inst. 1993;85(23):1932–7.
Article
CAS
PubMed
Google Scholar
Tanaka H, Tsukuma H, Teshima H, Ajiki W, Koyama Y, Kinoshita N, Masaoka T, Oshima A. Second primary cancers following non-Hodgkin’s lymphoma in Japan: increased risk of hepatocellular carcinoma. Jpn J Cancer Res. 1997;88(6):537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mudie NY, Swerdlow AJ, Higgins CD, Smith P, Qiao Z, Hancock BW, Hoskin PJ, Linch DC. Risk of second malignancy after non-Hodgkin’s lymphoma: a British Cohort Study. J Clin Oncol. 2006;24(10):1568–74.
Article
PubMed
Google Scholar
Brennan P, Scelo G, Hemminki K, Mellemkjaer L, Tracey E, Andersen A, Brewster DH, Pukkala E, McBride ML, Kliewer EV, et al. Second primary cancers among 109 000 cases of non-Hodgkin’s lymphoma. Br J Cancer. 2005;93(1):159–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorffel W, Riepenhausenl M, Luders H, Bramswig J, Schellong G. Secondary malignancies following treatment for Hodgkin’s lymphoma in childhood and adolescence. Dtsch Arztebl Int. 2015;112(18):320–7.
PubMed
PubMed Central
Google Scholar
Travis LB, Demark Wahnefried W, Allan JM, Wood ME, Ng AK. Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nat Rev Clin Oncol. 2013;10(5):289–301.
Article
CAS
PubMed
Google Scholar
Landgren O, Pfeiffer RM, Stewart L, Gridley G, Mellemkjaer L, Hemminki K, Goldin LR, Travis LB. Risk of second malignant neoplasms among lymphoma patients with a family history of cancer. Int J Cancer. 2007;120(5):1099–102.
Article
CAS
PubMed
Google Scholar
Hawkins MM, Draper GJ, Kingston JE. Incidence of second primary tumours among childhood cancer survivors. Br J Cancer. 1987;56(3):339–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawkins MM, Wilson LM, Burton HS, Potok MH, Winter DL, Marsden HB, Stovall MA. Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J Natl Cancer Inst. 1996;88(5):270–8.
Article
CAS
PubMed
Google Scholar
Eng C, Li FP, Abramson DH, Ellsworth RM, Wong FL, Goldman MB, Seddon J, Tarbell N, Boice JD Jr. Mortality from second tumors among long-term survivors of retinoblastoma. J Natl Cancer Inst. 1993;85(14):1121–8.
Article
CAS
PubMed
Google Scholar
Kony SJ, de Vathaire F, Chompret A, Shamsaldim A, Grimaud E, Raquin MA, Oberlin O, Brugieres L, Feunteun J, Eschwege F, et al. Radiation and genetic factors in the risk of second malignant neoplasms after a first cancer in childhood. Lancet. 1997;350(9071):91–5.
Article
CAS
PubMed
Google Scholar
Piris MA, Medeiros LJ, Chang KC. Hodgkin lymphoma: a review of pathological features and recent advances in pathogenesis. Pathology. 2020;52(1):154–65.
Article
CAS
PubMed
Google Scholar
Wong O, Harris F, Armstrong TW, Hua F. A hospital-based case-control study of non-Hodgkin lymphoid neoplasms in Shanghai: analysis of environmental and occupational risk factors by subtypes of the WHO classification. Chem Biol Interact. 2010;184(1–2):129–46.
Article
CAS
PubMed
Google Scholar
Morton LM, Holford TR, Leaderer B, Boyle P, Zahm SH, Zhang Y, Flynn S, Tallini G, Zhang B, Owens PH, et al. Cigarette smoking and risk of non-Hodgkin lymphoma subtypes among women. Br J Cancer. 2003;89(11):2087–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leon ME, Schinasi LH, Lebailly P, Beane Freeman LE, Nordby KC, Ferro G, Monnereau A, Brouwer M, Tual S, Baldi I, et al. Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium. Int J Epidemiol. 2019;48(5):1519–35.
Article
PubMed
PubMed Central
Google Scholar
El-Zaemey S, Schinasi LH, Ferro G, Tual S, Lebailly P, Baldi I, Nordby KC, Kjaerheim K, Schuz J, Monnereau A, et al. Animal farming and the risk of lymphohaematopoietic cancers: a meta-analysis of three cohort studies within the AGRICOH consortium. Occup Environ Med. 2019;76(11):827–37.
Article
PubMed
Google Scholar
Bertrand KA, Spiegelman D, Aster JC, Altshul LM, Korrick SA, Rodig SJ, Zhang SM, Kurth T, Laden F. Plasma organochlorine levels and risk of non-Hodgkin lymphoma in a cohort of men. Epidemiology. 2010;21(2):172–80.
Article
PubMed
PubMed Central
Google Scholar
Cocco P, Vermeulen R, Flore V, Nonne T, Campagna M, Purdue M, Blair A, Monnereau A, Orsi L, Clavel J, et al. Occupational exposure to trichloroethylene and risk of non-Hodgkin lymphoma and its major subtypes: a pooled InterLymph [correction of IinterLlymph] analysis. Occup Environ Med. 2013;70(11):795–802.
Article
CAS
PubMed
Google Scholar
Linet MS, Vajdic CM, Morton LM, de Roos AJ, Skibola CF, Boffetta P, Cerhan JR, Flowers CR, de Sanjose S, Monnereau A, et al. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):26–40.
Article
PubMed
PubMed Central
Google Scholar
Hosnijeh FS, Heederik D, Vermeulen R. A review of the role of lymphoma markers and occupational and environmental exposures. Vet Q. 2012;32(2):61–73.
Article
PubMed
Google Scholar
Blinder V, Fisher SG. Lymphoma Research Foundation NY: the role of environmental factors in the etiology of lymphoma. Cancer Invest. 2008;26(3):306–16.
Article
CAS
PubMed
Google Scholar
Moubadder L, McCullough LE, Flowers CR, Koff JL. Linking environmental exposures to molecular pathogenesis in non-hodgkin lymphoma subtypes. Cancer Epidemiol Biomarkers Prev. 2020;29(10):1844–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franklin J, Eichenauer DA, Becker I, Monsef I, Engert A. Optimisation of chemotherapy and radiotherapy for untreated Hodgkin lymphoma patients with respect to second malignant neoplasms, overall and progression-free survival: individual participant data analysis. Cochrane Database Syst Rev. 2017;9:CD008814.
PubMed
Google Scholar
Tarella C, Passera R, Magni M, Benedetti F, Rossi A, Gueli A, Patti C, Parvis G, Ciceri F, Gallamini A, et al. Risk factors for the development of secondary malignancy after high-dose chemotherapy and autograft, with or without rituximab: a 20-year retrospective follow-up study in patients with lymphoma. J Clin Oncol. 2011;29(7):814–24.
Article
CAS
PubMed
Google Scholar
Rigter LS, Snaebjornsson P, Rosenberg EH, Atmodimedjo PN, Aleman BM, Ten Hoeve J, Geurts-Giele WR, Group P, van Ravesteyn TW, Hoeksel J et al. Double somatic mutations in mismatch repair genes are frequent in colorectal cancer after Hodgkin's lymphoma treatment. Gut 2018; 67(3):447–455.
Rizzo JD, Curtis RE, Socie G, Sobocinski KA, Gilbert E, Landgren O, Travis LB, Travis WD, Flowers ME, Friedman DL, et al. Solid cancers after allogeneic hematopoietic cell transplantation. Blood. 2009;113(5):1175–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ringden O, Brazauskas R, Wang Z, Ahmed I, Atsuta Y, Buchbinder D, Burns LJ, Cahn JY, Duncan C, Hale GA, et al. Second solid cancers after allogeneic hematopoietic cell transplantation using reduced-intensity conditioning. Biol Blood Marrow Transplant. 2014;20(11):1777–84.
Article
PubMed
PubMed Central
Google Scholar
Majhail NS, Brazauskas R, Rizzo JD, Sobecks RM, Wang Z, Horowitz MM, Bolwell B, Wingard JR, Socie G. Secondary solid cancers after allogeneic hematopoietic cell transplantation using busulfan-cyclophosphamide conditioning. Blood. 2011;117(1):316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kasai S, Itonaga H, Niino D, Miyoshi H, Kato T, Imanishi D, Fujioka M, Furumoto T, Sato S, Sawayama Y, et al. Programmed death 1 ligand (PD-L1) in solid cancers after allogeneic hematopoietic stem cell transplantation: a retrospective analysis by the Nagasaki Transplant Group. Int J Hematol. 2020;112(4):524–34.
Article
CAS
PubMed
Google Scholar
Gallagher G, Forrest DL. Second solid cancers after allogeneic hematopoietic stem cell transplantation. Cancer. 2007;109(1):84–92.
Article
PubMed
Google Scholar
Brown JR, Yeckes H, Friedberg JW, Neuberg D, Kim H, Nadler LM, Freedman AS. Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(10):2208–14.
Article
CAS
PubMed
Google Scholar
Witherspoon RP, Fisher LD, Schoch G, Martin P, Sullivan KM, Sanders J, Deeg HJ, Doney K, Thomas D, Storb R, et al. Secondary cancers after bone marrow transplantation for leukemia or aplastic anemia. N Engl J Med. 1989;321(12):784–9.
Article
CAS
PubMed
Google Scholar
Bhatia S, Ramsay NK, Steinbuch M, Dusenbery KE, Shapiro RS, Weisdorf DJ, Robison LL, Miller JS, Neglia JP. Malignant neoplasms following bone marrow transplantation. Blood. 1996;87(9):3633–9.
Article
CAS
PubMed
Google Scholar
Danylesko I, Shimoni A. Second malignancies after hematopoietic stem cell transplantation. Curr Treat Options Oncol. 2018;19(2):9.
Article
PubMed
Google Scholar
Bhatia S, Yasui Y, Robison LL, Birch JM, Bogue MK, Diller L, DeLaat C, Fossati-Bellani F, Morgan E, Oberlin O, et al. High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: report from the Late Effects Study Group. J Clin Oncol. 2003;21(23):4386–94.
Article
PubMed
Google Scholar
van Leeuwen FE, Klokman WJ, Veer MB, Hagenbeek A, Krol AD, Vetter UA, Schaapveld M, van Heerde P, Burgers JM, Somers R, et al. Long-term risk of second malignancy in survivors of Hodgkin’s disease treated during adolescence or young adulthood. J Clin Oncol. 2000;18(3):487–97.
Article
PubMed
Google Scholar
Bakkach J, Pellegrino B, Elghazawy H, Novosad O, Agrawal S, Bennani Mechita M. Current overview and special considerations for second breast cancer in Hodgkin lymphoma survivors. Crit Rev Oncol Hematol. 2021;157:103175.
Article
PubMed
Google Scholar
Lyman GH, Barron RL, Natoli JL, Miller RM. Systematic review of efficacy of dose-dense versus non-dose-dense chemotherapy in breast cancer, non-Hodgkin lymphoma, and non-small cell lung cancer. Crit Rev Oncol Hematol. 2012;81(3):296–308.
Article
PubMed
Google Scholar
Adams MJ, Constine LS, Lipshultz SE. Late effects of therapy for Hodgkin’s lymphoma. Curr Hematol Malig Rep. 2007;2(3):143–50.
Article
PubMed
Google Scholar
Ibrahim EM, Abouelkhair KM, Kazkaz GA, Elmasri OA, Al-Foheidi M. Risk of second breast cancer in female Hodgkin’s lymphoma survivors: a meta-analysis. BMC Cancer. 2012;12:197.
Article
PubMed
PubMed Central
Google Scholar
Cooke R, Jones ME, Cunningham D, Falk SJ, Gilson D, Hancock BW, Harris SJ, Horwich A, Hoskin PJ, Illidge T, et al. Breast cancer risk following Hodgkin lymphoma radiotherapy in relation to menstrual and reproductive factors. Br J Cancer. 2013;108(11):2399–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaapveld M, Aleman BM, van Eggermond AM, Janus CP, Krol AD, van der Maazen RW, Roesink J, Raemaekers JM, de Boer JP, Zijlstra JM, et al. Second Cancer Risk Up to 40 Years after treatment for Hodgkin’s Lymphoma. N Engl J Med. 2015;373(26):2499–511.
Article
CAS
PubMed
Google Scholar
Eguiguren JM, Ribeiro RC, Pui CH, Hancock ML, Pratt CB, Head DR, Crist WM. Secondary non-Hodgkin’s lymphoma after treatment for childhood cancer. Leukemia. 1991;5(10):908–11.
CAS
PubMed
Google Scholar
Tanaka H, Tsukuma H, Koyama H, Kinoshita Y, Kinoshita N, Oshima A. Second primary cancers following breast cancer in the Japanese female population. Jpn J Cancer Res. 2001;92(1):1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Li S, Lv M, Wu Y, Chen Z, Shen Y, Wang B, Chen L, Yi M, Yang J. Risk of subsequent primary malignancies among patients with prior colorectal cancer: a population-based cohort study. Onco Targets Ther. 2017;10:1535–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dutcher JP, Wiernik PH, Varella L, Chintapatla R. Occurrence of renal cell carcinoma and hematologic malignancies (predominantly lymphoid) in individuals and in families. Fam Cancer. 2016;15(4):677–87.
Article
PubMed
Google Scholar
Meng YN, Shi Q, Cheng S, Wang L, Zhao WL. Impact of solid tumor history on treatment response and survival of patients with diffuse large B-cell lymphoma. Zhonghua Xue Ye Xue Za Zhi. 2019;40(8):639–43.
CAS
PubMed
Google Scholar
Yokohama A, Abe T, Yamada T, Kojima A, Kobayashi I, Ishihara H, Iizuka H, Katagai S, Ito H, Takagi H. A case of jejunal malignant lymphoma resulting in perforation 2 years after transcatheter arterial embolization for hepatocellular carcinoma. Nihon Shokakibyo Gakkai Zasshi. 1996;93(8):578–82.
CAS
PubMed
Google Scholar
Ohzato Y, Murakami M, Shimizu J, Koga C, Marukawa D, Yoshida Y, Yasuyama A, Matsumura T, Takada A, Kameda C, et al. A case report of inguinal malignant lymphoma after surgery for hepatocellular carcinoma. Gan To Kagaku Ryoho. 2017;44(12):1638–40.
PubMed
Google Scholar
Torres HA, Mahale P. Most patients with HCV-associated lymphoma present with mild liver disease: a call to revise antiviral treatment prioritization. Liver Int. 2015;35(6):1661–4.
Article
PubMed
Google Scholar
Hu J, Liu K, Luo J. HIV-HBV and HIV-HCV coinfection and liver cancer development. Cancer Treat Res. 2019;177:231–50.
Article
CAS
PubMed
Google Scholar
Fiorino S, Cuppini A, Castellani G, Bacchi-Reggiani ML, Jovine E. HBV- and HCV-related infections and risk of pancreatic cancer. JOP. 2013;14(6):603–9.
PubMed
Google Scholar
Borsetto D, Fussey J, Fabris L, Bandolin L, Gaudioso P, Phillips V, Polesel J, Boscolo-Rizzo P. HCV infection and the risk of head and neck cancer: A meta-analysis. Oral Oncol. 2020;109:104869.
Article
PubMed
Google Scholar
Lee MH, Lin YC, Cheng HT, Chuang WY, Huang HC, Kao HW. Coexistence of hepatoma with mantle cell lymphoma in a hepatitis B carrier. World J Gastroenterol. 2015;21(45):12981–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SI, Heo NY, Park SH, Joo YD, Kim IH, Park JI, Kim JY, Kim SH, Shim HK. Synchronous hepatocellular carcinoma and B-cell non-Hodgkin’s lymphoma in chronic hepatitis C patient. Korean J Gastroenterol. 2014;64(3):168–72.
Article
PubMed
Google Scholar
Yeo W, Hui P, Chow JH, Mok TS. Hepatocellular carcinoma and lymphoma–two hepatitis B virus-related malignant diseases. Lancet Oncol. 2001;2(9):543.
Article
CAS
PubMed
Google Scholar
Shapira MY, Muszkat M, Braunstein I, Gotsman I. Co-occurrence of hepatocellular carcinoma and lymphoma in patients with hepatitis C virus cirrhosis. J Clin Gastroenterol. 2001;32(4):368–9.
Article
CAS
PubMed
Google Scholar
Li K, Wang L, Cheng J, Lu YY, Zhang LX, Mu JS, Hong Y, Liu Y, Duan HJ, Wang G, et al. Interaction between hepatitis C virus core protein and translin protein–a possible molecular mechanism for hepatocellular carcinoma and lymphoma caused by hepatitis C virus. World J Gastroenterol. 2003;9(2):300–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen ES, Omland LH, Jepsen P, Krarup H, Christensen PB, Obel N, Weis N, Study DC. Risk of all-type cancer, hepatocellular carcinoma, non-Hodgkin lymphoma and pancreatic cancer in patients infected with hepatitis B virus. J Viral Hepat 2015; 22(10):828-834
Omland LH, Jepsen P, Krarup H, Christensen PB, Weis N, Nielsen L, Obel N, Sorensen HT, Stuver SO, Study DC. Liver cancer and non-Hodgkin lymphoma in hepatitis C virus-infected patients: results from the DANVIR cohort study. Int J Cancer 2012; 130(10):2310-2317
Persico M, Aglitti A, Caruso R, De Renzo A, Selleri C, Califano C, Abenavoli L, Federico A, Masarone M. Efficacy and safety of new direct antiviral agents in hepatitis C virus-infected patients with diffuse large B-cell non-Hodgkin’s lymphoma. Hepatology. 2018;67(1):48–55.
Article
CAS
PubMed
Google Scholar
Hermine O, Lefrere F, Bronowicki JP, Mariette X, Jondeau K, Eclache-Saudreau V, Delmas B, Valensi F, Cacoub P, Brechot C, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med. 2002;347(2):89–94.
Article
CAS
PubMed
Google Scholar
Levine AM, Shimodaira S, Lai MM. Treatment of HCV-related mantle-cell lymphoma with ribavirin and pegylated interferon Alfa. N Engl J Med. 2003;349(21):2078–9.
Article
CAS
PubMed
Google Scholar
Fournillier A, Freida D, Defrance T, Merle P, Trepo C, Inchauspe G. Analysis of B-lymphocyte differentiation in patients infected with hepatitis C virus. J Med Virol. 2004;72(4):566–74.
Article
CAS
PubMed
Google Scholar
Kondo Y, Sung VM, Machida K, Liu M, Lai MM. Hepatitis C virus infects T cells and affects interferon-gamma signaling in T cell lines. Virology. 2007;361(1):161–73.
Article
CAS
PubMed
Google Scholar
Meertens L, Bertaux C, Cukierman L, Cormier E, Lavillette D, Cosset FL, Dragic T. The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol. 2008;82(7):3555–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 2002;21(19):5017–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, et al. Binding of hepatitis C virus to CD81. Science. 1998;282(5390):938–41.
Article
CAS
PubMed
Google Scholar
Marukian S, Jones CT, Andrus L, Evans MJ, Ritola KD, Charles ED, Rice CM, Dustin LB. Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology. 2008;48(6):1843–50.
Article
PubMed
Google Scholar
Fornasieri A, Bernasconi P, Ribero ML, Sinico RA, Fasola M, Zhou J, Portera G, Tagger A, Gibelli A, D’Amico G. Hepatitis C virus (HCV) in lymphocyte subsets and in B lymphocytes expressing rheumatoid factor cross-reacting idiotype in type II mixed cryoglobulinaemia. Clin Exp Immunol. 2000;122(3):400–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sansonno D, Tucci FA, Lauletta G, De Re V, Montrone M, Troiani L, Sansonno L, Dammacco F. Hepatitis C virus productive infection in mononuclear cells from patients with cryoglobulinaemia. Clin Exp Immunol. 2007;147(2):241–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machida K, Cheng KT, Sung VM, Shimodaira S, Lindsay KL, Levine AM, Lai MY, Lai MM. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc Natl Acad Sci U S A. 2004;101(12):4262–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machida K, Cheng KT, Sung VM, Lee KJ, Levine AM, Lai MM. Hepatitis C virus infection activates the immunologic (type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes. J Virol. 2004;78(16):8835–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivanovski M, Silvestri F, Pozzato G, Anand S, Mazzaro C, Burrone OR, Efremov DG. Somatic hypermutation, clonal diversity, and preferential expression of the VH 51p1/VL kv325 immunoglobulin gene combination in hepatitis C virus-associated immunocytomas. Blood. 1998;91(7):2433–42.
Article
CAS
PubMed
Google Scholar
Marasca R, Vaccari P, Luppi M, Zucchini P, Castelli I, Barozzi P, Cuoghi A, Torelli G. Immunoglobulin gene mutations and frequent use of VH1-69 and VH4-34 segments in hepatitis C virus-positive and hepatitis C virus-negative nodal marginal zone B-cell lymphoma. Am J Pathol. 2001;159(1):253–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machida K, Cheng KT, Pavio N, Sung VM, Lai MM. Hepatitis C virus E2-CD81 interaction induces hypermutation of the immunoglobulin gene in B cells. J Virol. 2005;79(13):8079–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flint M, McKeating JA. The role of the hepatitis C virus glycoproteins in infection. Rev Med Virol. 2000;10(2):101–17.
Article
CAS
PubMed
Google Scholar
Heimann R, Ray MB, Desmet VJ. HBsAg, chronic lymphoproliferative disorders, and cirrhosis of liver. J Clin Pathol. 1977;30(9):817–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciesek S, Helfritz FA, Lehmann U, Becker T, Strassburg CP, Neipp M, Ciner A, Fytili P, Tillmann HL, Manns MP, et al. Persistence of occult hepatitis B after removal of the hepatitis B virus-infected liver. J Infect Dis. 2008;197(3):355–60.
Article
CAS
PubMed
Google Scholar
Yoffe B, Burns DK, Bhatt HS, Combes B. Extrahepatic hepatitis B virus DNA sequences in patients with acute hepatitis B infection. Hepatology. 1990;12(2):187–92.
Article
CAS
PubMed
Google Scholar
Marcucci F, Spada E, Mele A, Caserta CA, Pulsoni A. The association of hepatitis B virus infection with B-cell non-Hodgkin lymphoma—a review. Am J Blood Res. 2012;2(1):18–28.
PubMed
PubMed Central
Google Scholar
Zhou X, Wuchter P, Egerer G, Kriegsmann M, Kommoss FKF, Witzens-Harig M, Kriegsmann K. Serological hepatitis B virus (HBV) activity in patients with HBV infection and B-cell non-Hodgkin’s lymphoma. Eur J Haematol. 2020;104(5):469–75.
Article
CAS
PubMed
Google Scholar
Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–35.
Article
CAS
PubMed
Google Scholar
Pan SY, Mao Y, Ugnat AM, Canadian Cancer Registries Epidemiology Research G. Physical activity, obesity, energy intake, and the risk of non-Hodgkin’s lymphoma: a population-based case-control study. Am J Epidemiol. 2005;162(12):1162–73.
Article
PubMed
Google Scholar
Larsson SC, Wolk A. Obesity and risk of non-Hodgkin’s lymphoma: a meta-analysis. Int J Cancer. 2007;121(7):1564–70.
Article
CAS
PubMed
Google Scholar
Maskarinec G, Erber E, Gill J, Cozen W, Kolonel LN. Overweight and obesity at different times in life as risk factors for non-Hodgkin’s lymphoma: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev. 2008;17(1):196–203.
Article
PubMed
Google Scholar
Larsson SC, Wolk A. Body mass index and risk of non-Hodgkin’s and Hodgkin’s lymphoma: a meta-analysis of prospective studies. Eur J Cancer. 2011;47(16):2422–30.
Article
PubMed
Google Scholar
Hidayat K, Li HJ, Shi BM. Anthropometric factors and non-Hodgkin’s lymphoma risk: systematic review and meta-analysis of prospective studies. Crit Rev Oncol Hematol. 2018;129:113–23.
Article
PubMed
Google Scholar
Abar L, Sobiecki JG, Cariolou M, Nanu N, Vieira AR, Stevens C, Aune D, Greenwood DC, Chan DSM, Norat T. Body size and obesity during adulthood, and risk of lympho-haematopoietic cancers: an update of the WCRF-AICR systematic review of published prospective studies. Ann Oncol. 2019;30(4):528–41.
Article
CAS
PubMed
Google Scholar
Dalamaga M, Christodoulatos GS. Adiponectin as a biomarker linking obesity and adiposopathy to hematologic malignancies. Horm Mol Biol Clin Investig. 2015;23(1):5–20.
CAS
PubMed
Google Scholar
Askmyr M, Quach J, Purton LE. Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone. 2011;48(1):115–20.
Article
PubMed
Google Scholar
Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev. 2011;32(4):550–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rathmann W, Giani G. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(10):2568–9.
Article
PubMed
Google Scholar
Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci. 2011;1243:54–68.
Article
CAS
PubMed
Google Scholar
Mitri J, Castillo J, Pittas AG. Diabetes and risk of Non-Hodgkin’s lymphoma: a meta-analysis of observational studies. Diabetes Care. 2008;31(12):2391–7.
Article
PubMed
PubMed Central
Google Scholar
Chao C, Page JH. Type 2 diabetes mellitus and risk of non-Hodgkin lymphoma: a systematic review and meta-analysis. Am J Epidemiol. 2008;168(5):471–80.
Article
PubMed
Google Scholar
Castillo JJ, Mull N, Reagan JL, Nemr S, Mitri J. Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies. Blood. 2012;119(21):4845–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Liu X, Yan P, Bi Y, Liu Y, Zhang ZJ. Association between type 1 and type 2 diabetes and risk of non-Hodgkin’s lymphoma: a meta-analysis of cohort studies. Diabetes Metab. 2019;46(1):8–19.
Article
PubMed
Google Scholar
Wynn A, Vacheron A, Zuber J, Solomon SS. Metformin associated with increased survival in type 2 diabetes patients with pancreatic cancer and lymphoma. Am J Med Sci. 2019;358:200–3.
Article
PubMed
PubMed Central
Google Scholar
Tseng CH. Metformin is associated with a lower risk of non-Hodgkin lymphoma in patients with type 2 diabetes. Diabetes Metab. 2019;45(5):458–64.
Article
CAS
PubMed
Google Scholar
Wang Y, Maurer MJ, Larson MC, Allmer C, Feldman AL, Bennani NN, Thompson CA, Porrata LF, Habermann TM, Witzig TE, et al. Impact of metformin use on the outcomes of newly diagnosed diffuse large B-cell lymphoma and follicular lymphoma. Br J Haematol. 2019;180:820–8.
Article
Google Scholar
Salminen A, Kauppinen A, Kaarniranta K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J Mol Med (Berl). 2017;95(2):123–31.
Article
CAS
Google Scholar
Ikhlas S, Ahmad M. Metformin: insights into its anticancer potential with special reference to AMPK dependent and independent pathways. Life Sci. 2017;185:53–62.
Article
CAS
PubMed
Google Scholar
Morrison A, Li J. PPAR-gamma and AMPK–advantageous targets for myocardial ischemia/reperfusion therapy. Biochem Pharmacol. 2011;82(3):195–200.
Article
CAS
PubMed
Google Scholar
Schmeel LC, Schmeel FC, Schmidt-Wolf IG. Clofibrate demonstrates efficacy in in vitro treatment of lymphoma and multiple myeloma. Anticancer Res. 2016;36(7):3395–400.
CAS
PubMed
Google Scholar
Schmeel LC, Schmeel FC, Schmidt-Wolf IGH. In vitro apoptosis induction by fenofibrate in lymphoma and multiple myeloma. Anticancer Res. 2017;37(7):3513–20.
CAS
PubMed
Google Scholar
Yang C, Jo SH, Csernus B, Hyjek E, Liu Y, Chadburn A, Wang YL. Activation of peroxisome proliferator-activated receptor gamma contributes to the survival of T lymphoma cells by affecting cellular metabolism. Am J Pathol. 2007;170(2):722–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eucker J, Sterz J, Krebbel H, Zavrski I, Kaiser M, Zang C, Heider U, Jakob C, Elstner E, Sezer O. Peroxisome proliferator-activated receptor-gamma ligands inhibit proliferation and induce apoptosis in mantle cell lymphoma. Anticancer Drugs. 2006;17(7):763–9.
Article
CAS
PubMed
Google Scholar
Ray DM, Akbiyik F, Phipps RP. The peroxisome proliferator-activated receptor gamma (PPARgamma) ligands 15-deoxy-Delta 12,14-prostaglandin J2 and ciglitazone induce human B lymphocyte and B cell lymphoma apoptosis by PPARgamma-independent mechanisms. J Immunol. 2006;177(8):5068–76.
Article
CAS
PubMed
Google Scholar
Ray DM, Morse KM, Hilchey SP, Garcia TM, Felgar RE, Maggirwar SB, Phipps RP, Bernstein SH. The novel triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) induces apoptosis of human diffuse large B-cell lymphoma cells through a peroxisome proliferator-activated receptor gamma-independent pathway. Exp Hematol. 2006;34(9):1202–11.
Article
CAS
PubMed
Google Scholar
Liu JJ, Dai XJ, Xu Y, Liu PQ, Zhang Y, Liu XD, Fang ZG, Lin DJ, Xiao RZ, Huang RW, et al. Inhibition of lymphoma cell proliferation by peroxisomal proliferator-activated receptor-gamma ligands via Wnt signaling pathway. Cell Biochem Biophys. 2012;62(1):19–27.
Article
CAS
PubMed
Google Scholar
Ray DM, Akbiyik F, Bernstein SH, Phipps RP. CD40 engagement prevents peroxisome proliferator-activated receptor gamma agonist-induced apoptosis of B lymphocytes and B lymphoma cells by an NF-kappaB-dependent mechanism. J Immunol. 2005;174(7):4060–9.
Article
CAS
PubMed
Google Scholar
Zheng ML, Zhou NK, Luo CH. Utilizing multiple pathway cross-talk networks reveals hub pathways in primary mediastinal B-cell lymphoma. J Cancer Res Ther. 2018;14(Supplement):S694–700.
Article
CAS
PubMed
Google Scholar
Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013;10(11):656–65.
Article
CAS
PubMed
Google Scholar
Bugianesi E. Non-alcoholic steatohepatitis and cancer. Clin Liver Dis. 2007;11(1):191–207.
Article
CAS
PubMed
Google Scholar
Baumhoer D, Tzankov A, Dirnhofer S, Tornillo L, Terracciano LM. Patterns of liver infiltration in lymphoproliferative disease. Histopathology. 2008;53(1):81–90.
Article
CAS
PubMed
Google Scholar
Masood A, Kairouz S, Hudhud KH, Hegazi AZ, Banu A, Gupta NC. Primary non-Hodgkin lymphoma of liver. Curr Oncol. 2009;16(4):74–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gherlan GS, Stoia R, Enyedi M, Dobrea C, Calistru PI. Primary hepatic marginal zone lymphoma in a patient with chronic hepatitis C. Maedica (Buchar). 2016;11(3):250–4.
Google Scholar
Bao C, Wei J, Zhao X, Lin L, Chen D, Liu K, Qian W, Anas JM, Zhao K. Prognostic value of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in primary hepatic mucosa-associated lymphoid tissue lymphoma: a case report and review of the literature. Medicine (Baltimore). 2018;97(10):e9877.
Article
Google Scholar
Dong S, Chen L, Chen Y, Chen X. Primary hepatic extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue type: a case report and literature review. Medicine (Baltimore). 2017;96(13):e6305.
Article
Google Scholar
Haefliger S, Milowich D, Sciarra A, Trimeche M, Bouilly J, Kaiser J, Volpi S, Brouland JP, Sempoux C, de Leval L. Primary hepatic marginal B cell lymphoma of mucosa-associated lymphoid tissue (MALT) and non-alcoholic steatohepatitis (NASH): more than a coincidence? Ann Hematol. 2019;98(6):1513–6.
Article
PubMed
Google Scholar
Shigematsu A, Okada K, Abe N, Ota S, Kato N, Kondo K, Hige S, Tanaka J, Asaka M, Imamura M. Non-alcoholic steatohepatitis occurring in a patient with T-lymphoblastic lymphoma during chemotherapy including prednisolone. Leuk Lymphoma. 2006;47(7):1397–9.
Article
PubMed
Google Scholar
Kose D, Erol C, Kaya F, Koplay M, Koksal Y. Development of fatty liver in children with non-Hodgkin lymphoma. Turk J Pediatr. 2014;56(4):399–403.
PubMed
Google Scholar
Yamamoto M, Hori T, Igarashi K, Iesato K, Saito M, Miyanishi K, Kikuchi N, Fujita H, Tsutsumi H. Non-alcoholic steatohepatitis induced by induction chemotherapy for pediatric acute lymphoblastic leukemia. Int J Hematol. 2018;107(4):390–1.
Article
PubMed
Google Scholar
Kosmidou IS, Aggarwal A, Ross JJ, Worthington MG. Hodgkin’ s disease with fulminant non-alcoholic steatohepatitis. Dig Liver Dis. 2004;36(10):691–3.
Article
CAS
PubMed
Google Scholar
Peters AM, Keramida G, Pencharz D. Assessment of alteration in liver (18)F-FDG uptake due to steatosis in lymphoma patients and its impact on the Deauville score. Eur J Nucl Med Mol Imaging. 2018;45(12):2231–2.
Article
CAS
PubMed
Google Scholar
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019;129(10):3990–4000.
Article
PubMed
PubMed Central
Google Scholar
Oka T, Mizuno H, Sakata M, Fujita H, Yoshino T, Yamano Y, Utsumi K, Masujima T, Utsunomiya A. Metabolic abnormalities in adult T-cell leukemia/lymphoma and induction of specific leukemic cell death using photodynamic therapy. Sci Rep. 2018;8(1):14979.
Article
PubMed
PubMed Central
Google Scholar
Cabanillas F. Metabolic abnormalities in lymphoma. Clin Lymphoma. 2002;3(Suppl 1):S32-36.
Article
PubMed
Google Scholar
Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, Beguinot F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2019;10:1607.
Article
PubMed
Google Scholar
Wang X, Rao H, Liu F, Wei L, Li H, Wu C. Recent advances in adipose tissue dysfunction and its role in the pathogenesis of non-alcoholic fatty liver disease. Cells. 2021;10(12):3300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han S, Jeong AL, Lee S, Park JS, Kim KD, Choi I, Yoon SR, Lee MS, Lim JS, Han SH, et al. Adiponectin deficiency suppresses lymphoma growth in mice by modulating NK cells, CD8 T cells, and myeloid-derived suppressor cells. J Immunol. 2013;190(9):4877–86.
Article
CAS
PubMed
Google Scholar
Lozzi GP, Massone C, Citarella L, Kerl H, Cerroni L. Rimming of adipocytes by neoplastic lymphocytes: a histopathologic feature not restricted to subcutaneous T-cell lymphoma. Am J Dermatopathol. 2006;28(1):9–12.
Article
PubMed
Google Scholar
Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, Yi Y, Zhang Q, Wu Y. Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res. 2020;39(1):156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rau M, Schilling AK, Meertens J, Hering I, Weiss J, Jurowich C, Kudlich T, Hermanns HM, Bantel H, Beyersdorf N, et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol. 2016;196(1):97–105.
Article
CAS
PubMed
Google Scholar
Gomes AL, Teijeiro A, Buren S, Tummala KS, Yilmaz M, Waisman A, Theurillat JP, Perna C, Djouder N. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell. 2016;30(1):161–75.
Article
CAS
PubMed
Google Scholar
Giles DA, Moreno-Fernandez ME, Stankiewicz TE, Graspeuntner S, Cappelletti M, Wu D, Mukherjee R, Chan CC, Lawson MJ, Klarquist J, et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat Med. 2017;23(7):829–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cholankeril G, Patel R, Khurana S, Satapathy SK. Hepatocellular carcinoma in non-alcoholic steatohepatitis: Current knowledge and implications for management. World J Hepatol. 2017;9(11):533–43.
Article
PubMed
PubMed Central
Google Scholar
Deva AK, Turner SD, Kadin ME, Magnusson MR, Prince HM, Miranda RN, Inghirami GG, Adams WP Jr. Etiology of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL): current directions in research. Cancers (Basel). 2020;12(12):3861.
Article
CAS
Google Scholar
Ravi D, Beheshti A, Abermil N, Lansigan F, Kinlaw W, Matthan NR, Mokhtar M, Passero FC Jr, Puliti P, David KA, et al. Oncogenic integration of nucleotide metabolism via fatty acid synthase in non-hodgkin lymphoma. Front Oncol. 2021;11:725137.
Article
PubMed
PubMed Central
Google Scholar
Zhong X, Liu Z, Luo Q, Li J, Zhang W, Shuang Y. Upregulation of fatty acid synthase in MYC and BCL-2 double-expressor lymphoma. Oncol Lett. 2021;21(4):245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kant S, Kumar A, Singh SM. Tumor growth retardation and chemosensitizing action of fatty acid synthase inhibitor orlistat on T cell lymphoma: implication of reconstituted tumor microenvironment and multidrug resistance phenotype. Biochim Biophys Acta. 2014;1840(1):294–302.
Article
CAS
PubMed
Google Scholar
Kant S, Kumar A, Singh SM. Fatty acid synthase inhibitor orlistat induces apoptosis in T cell lymphoma: role of cell survival regulatory molecules. Biochim Biophys Acta. 2012;1820(11):1764–73.
Article
CAS
PubMed
Google Scholar