Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 2009;335:1–32.
CAS
PubMed
PubMed Central
Google Scholar
Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol. 2016;428(9 Pt A):1681–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5(4):539–45.
Article
CAS
PubMed
Google Scholar
Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem. 2011;80:125–56.
Article
CAS
PubMed
Google Scholar
Hansen TE, Johansen T. Following autophagy step by step. BMC Biol. 2011;9:39.
Article
PubMed
PubMed Central
Google Scholar
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 2018;14(2):207–15.
Article
CAS
PubMed
Google Scholar
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 Association with the ULK1-Atg13-FIP200 Complex Required for Autophagy. Mol Biol Cell. 2009;20(7):1981–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 Complexes Mediate mTOR Signaling to the Autophagy Machinery. Mol Biol Cell. 2009;20(7):1992–2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talloczy Z, Jiang WX, Virgin HW, Leib DA, Scheuner D, Kaufman RJ, et al. Regulation of starvation- and virus-induced autophagy by the eIF2 alpha kinase signaling pathway. Proc Natl Acad Sci USA. 2002;99(1):190–5.
Article
CAS
PubMed
Google Scholar
Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 2005;12:1509–18.
Article
CAS
PubMed
Google Scholar
Wei YJ, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of BcI-2 regulates starvation-induced autophagy. Mol Cell. 2008;30(6):678–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10(6):676–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol. 2010;22(2):181–5.
Article
CAS
PubMed
Google Scholar
Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007;17(10):839–49.
Article
CAS
PubMed
Google Scholar
Adi-Harel S, Erlich S, Schmukler E, Cohen-Kedar S, Segev O, Mizrachy L, et al. Beclin 1 self-association is independent of autophagy induction by amino acid deprivation and rapamycin treatment. J Cell Biochem. 2010;110(5):1262–71.
Article
CAS
PubMed
Google Scholar
Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu YT, Tan HL, Shui GH, Bauvy C, Huang Q, Wenk MR, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class i and iii phosphoinositide 3-kinase. J Biol Chem. 2010;285(14):10850–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakatogawa H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 2013;55:39–50.
Article
CAS
PubMed
Google Scholar
Romanov J, Walczak M, Ibiricu I, Schuchner S, Ogris E, Kraft C, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. Embo Journal. 2012;31(22):4304–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klionsky DJ, Schulman BA. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol. 2014;21(4):336–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy. Res Cell. 2010;140(3):313–26.
Article
CAS
Google Scholar
Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci. 2017;18:9.
Article
CAS
Google Scholar
Feng YC, He D, Yao ZY, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24–41.
Article
CAS
PubMed
Google Scholar
Nakamura S, Yoshimori T. New insights into autophagosome-lysosome fusion. J Cell Sci. 2017;130(7):1209–16.
Article
CAS
PubMed
Google Scholar
Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, et al. Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci. 2004;117(20):4837–48.
Article
PubMed
CAS
Google Scholar
Sanchez-Wandelmer J, Reggiori F. Amphisomes: out of the autophagosome shadow? Embo Journal. 2013;32(24):3116–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaminskyy V, Zhivotovsky B. Proteases in autophagy. Biochimica Et Biophysica Acta-Proteins Proteomics. 2012;1824(1):44–50.
Article
CAS
Google Scholar
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25.
Article
CAS
PubMed
Google Scholar
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 2014;6(11):a022616.
Article
PubMed
PubMed Central
Google Scholar
Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci. 2015;128(17):3171–6.
Article
CAS
PubMed
Google Scholar
Ali BR, Seabra MC. Targeting of Rab GTPases to cellular membranes. Biochem Soc Trans. 2005;33(Pt 4):652–6.
Article
CAS
PubMed
Google Scholar
Seabra MC, Wasmeier C. Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol. 2004;16(4):451–7.
Article
CAS
PubMed
Google Scholar
Egami Y, Kiryu-Seo S, Yoshimori T, Kiyama H. Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons. Biochem Biophys Res Commun. 2005;337(4):1206–13.
Article
CAS
PubMed
Google Scholar
Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93(1):269–309.
Article
CAS
PubMed
Google Scholar
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the small GTPase pathways in cancer treatment: promises and challenges. Cells. 2019;8:3.
Article
CAS
Google Scholar
Grant BJ, McCammon JA, Gorfe AA. Conformational selection in G-proteins: lessons from Ras and Rho. Biophys J. 2010;99(11):L87-9.
Article
PubMed
CAS
Google Scholar
Liu S, Storrie B. How Rab proteins determine Golgi structure. Int Rev Cell Mol Biol. 2015;315:1–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Storrie B. Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci. 2012;69(24):4093–106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Constantino-Jonapa LA, Hernandez-Ramirez VI, Osorio-Trujillo C, Talamas-Rohana P. EhRab21 associates with the Golgi apparatus in Entamoeba histolytica. Parasitol Res. 2020. https://doi.org/10.1007/s00436-020-06667-7.
Article
PubMed
Google Scholar
Progida C. Multiple Roles of Rab GTPases at the Golgi. Results Probl Cell Differ. 2019;67:95–123.
Article
CAS
PubMed
Google Scholar
Starr T, Sun Y, Wilkins N, Storrie B. Rab33b and Rab6 are functionally overlapping regulators of Golgi homeostasis and trafficking. Traffic. 2010;11(5):626–36.
Article
CAS
PubMed
Google Scholar
Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119–49.
Article
CAS
PubMed
Google Scholar
Sannerud R, Marie M, Nizak C, Dale HA, Pernet-Gallay K, Perez F, et al. Rab1 defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol Biol Cell. 2006;17(4):1514–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Touchot N, Zahraoui A, Vielh E, Tavitian A. Biochemical properties of the YPT-related rab1B protein. Comparison with rab1A. FEBS Lett. 1989;256(1–2):79–84.
Article
CAS
PubMed
Google Scholar
Plutner H, Cox AD, Pind S, Khosravi-Far R, Bourne JR, Schwaninger R, et al. Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J Cell Biol. 1991;115(1):31–43.
Article
CAS
PubMed
Google Scholar
Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY, et al. Rab1A Is an mTORC1 activator and a colorectal oncogene. Cancer Cell. 2014;26(5):754–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE. GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol. 1992;119(4):749–61.
Article
CAS
PubMed
Google Scholar
Nuoffer C, Davidson HW, Matteson J, Meinkoth J, Balch WE. A GDP-bound of rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. J Cell Biol. 1994;125(2):225–37.
Article
CAS
PubMed
Google Scholar
Alvarez C, Garcia-Mata R, Brandon E, Sztul E. COPI recruitment is modulated by a Rab1b-dependent mechanism. Mol Biol Cell. 2003;14(5):2116–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satoh A, Wang Y, Malsam J, Beard MB, Warren G. Golgin-84 is a rab1 binding partner involved in Golgi structure. Traffic. 2003;4(3):153–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zoppino FC, Militello RD, Slavin I, Alvarez C, Colombo MI. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic. 2010;11(9):1246–61.
Article
CAS
PubMed
Google Scholar
Meiling-Wesse K, Epple UD, Krick R, Barth H, Appelles A, Voss C, et al. Trs85 (Gsg1), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway. J Biol Chem. 2005;280(39):33669–78.
Article
CAS
PubMed
Google Scholar
Wang J, Menon S, Yamasaki A, Chou HT, Walz T, Jiang Y, et al. Ypt1 recruits the Atg1 kinase to the preautophagosomal structure. Proc Natl Acad Sci U S A. 2013;110(24):9800–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Davis S, Menon S, Zhang J, Ding J, Cervantes S, et al. Ypt1/Rab1 regulates Hrr25/CK1delta kinase activity in ER-Golgi traffic and macroautophagy. J Cell Biol. 2015;210(2):273–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez O, Schmidt A, Salamero J, Hoflack B, Roa M, Goud B. The small GTP-binding protein Rab6 functions in intra-golgi transport. J Cell Biol. 1994;127(6):1575–88.
Article
CAS
PubMed
Google Scholar
Martinez O, Antony C, PehauArnaudet G, Berger EG, Salamero J, Goud B. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc Natl Acad Sci USA. 1997;94(5):1828–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol. 1999;147(4):743–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heffernan LF, Simpson JC. The trials and tubule-ations of Rab6 involvement in Golgi-to-ER retrograde transport. Biochem Soc Trans. 2014;42(5):1453–9.
Article
CAS
PubMed
Google Scholar
Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol. 2002;12(20):1792–5.
Article
CAS
PubMed
Google Scholar
Iwanami N, Nakamura Y, Satoh T, Liu ZG, Satoh AK. Rab6 is required for multiple apical transport pathways but not the basolateral transport pathway in drosophila photoreceptors. Plos Genetics. 2016;12(2):26.
Article
CAS
Google Scholar
Yang S, Rosenwald AG. Autophagy in Saccharomyces cerevisiae requires the monomeric GTP-binding proteins, Arl1 and Ypt6. Autophagy. 2016;12(10):1721–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suda Y, Kurokawa K, Hirata R, Nakano A. Rab GAP cascade regulates dynamics of Ypt6 in the Golgi traffic. Proc Natl Acad Sci U S A. 2013;110(47):18976–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye M, Chen Y, Zou SS, Yu S, Liang YH. Ypt1 suppresses defects of vesicle trafficking and autophagy in Ypt6 related mutants. Cell Biol Int. 2014;38(5):663–74.
Article
CAS
PubMed
Google Scholar
Ayala CI, Kim J, Neufeld TP. Rab6 promotes insulin receptor and cathepsin trafficking to regulate autophagy induction and activity in Drosophila. J Cell Sci. 2018;131:17.
Article
CAS
Google Scholar
Ganley IG, Carroll K, Bittova L, Pfeffer S. Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Mol Biol Cell. 2004;15(12):5420–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji W, Rivero F. Atypical Rho GTPases of the RhoBTB subfamily: roles in vesicle trafficking and tumorigenesis. Cells. 2016;5:2.
Article
CAS
Google Scholar
Kucera A, Bakke O, Progida C. The multiple roles of Rab9 in the endolysosomal system. Commun Integr Biol. 2016;9(4):e1204498.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 2009;461(7264):654–8.
Article
CAS
PubMed
Google Scholar
Arakawa S, Honda S, Yamaguchi H, Shimizu S. Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(6):378–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ullrich O, Reinsch S, Urbe S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol. 1996;135(4):913–24.
Article
CAS
PubMed
Google Scholar
Wilcke M, Johannes L, Galli T, Mayau V, Goud B, Salamero J. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol. 2000;151(6):1207–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi S, Kubo K, Waguri S, Yabashi A, Shin HW, Katoh Y, et al. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci. 2012;125(17):4049–57.
Article
CAS
PubMed
Google Scholar
Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic. 2005;6(2):131–43.
Article
CAS
PubMed
Google Scholar
Gabernet-Castello C, O’Reilly AJ, Dacks JB, Field MC. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol Biol Cell. 2013;24(10):1574–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kern A, Dikic I, Behl C. The integration of autophagy and cellular trafficking pathways via RAB GAPs. Autophagy. 2015;11(12):2393–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol. 2012;197(5):659–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munafo DB, Colombo MI. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic. 2002;3(7):472–82.
Article
CAS
PubMed
Google Scholar
Gutierrez MG, Vazquez CL, Munafo DB, Zoppino FC, Beron W, Rabinovitch M, et al. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol. 2005;7(7):981–93.
Article
CAS
PubMed
Google Scholar
Newton HJ, Kohler LJ, McDonough JA, Temoche-Diaz M, Crabill E, Hartland EL, et al. A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis. PLoS Pathog. 2014;10(7):e1004286.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ylä-Anttila P, Mikkonen E, Happonen KE, Holland P, Ueno T, Simonsen A, et al. RAB24 facilitates clearance of autophagic compartments during basal conditions. Autophagy. 2015;11(10):1833–48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S. Toward a comprehensive map of the effectors of rab GTPases. Dev Cell. 2014;31(3):358–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makhoul C, Gosavi P, Duffield R, Delbridge B, Williamson NA, Gleeson PA. Intersectin-1 interacts with the golgin GCC88 to couple the actin network and Golgi architecture. Mol Biol Cell. 2019;30(3):370–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu RM, Zhong CY, Wang CL, Liao WC, Yang C, Lin SY, et al. Golgi tethering factor golgin-97 suppresses breast cancer cell invasiveness by modulating NF-kappaB activity. Cell Commun Signal. 2018;16(1):19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sohda M, Misumi Y, Ogata S, Sakisaka S, Hirose S, Ikehara Y, et al. Trans-Golgi protein p230/golgin-245 is involved in phagophore formation. Biochem Biophys Res Commun. 2015;456(1):275–81.
Article
CAS
PubMed
Google Scholar
Linders PT, Horst CV, Beest MT, van den Bogaart G. Stx5-mediated ER-golgi transport in mammals and yeast. Cells. 2019;8:8.
Article
CAS
Google Scholar
Claussen M, Suter B. BicD-dependent localization processes: from Drosophilia development to human cell biology. Ann Anat. 2005;187(5–6):539–53.
Article
CAS
PubMed
Google Scholar
Thomas C, Rousset R, Noselli S. JNK signalling influences intracellular trafficking during Drosophila morphogenesis through regulation of the novel target gene Rab30. Dev Biol. 2009;331(2):250–60.
Article
CAS
PubMed
Google Scholar
Kelly EE, Giordano F, Horgan CP, Jollivet F, Raposo G, McCaffrey MW. Rab30 is required for the morphological integrity of the Golgi apparatus. Biol Cell. 2012;104(2):84–101.
Article
CAS
PubMed
Google Scholar
Oda S, Nozawa T, Nozawa-Minowa A, Tanaka M, Aikawa C, Harada H, et al. Golgi-resident GTPase Rab30 promotes the biogenesis of pathogen-containing autophagosomes. PLoS One. 2016;11(1):e0147061.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakajima K, Nozawa T, Minowa-Nozawa A, Toh H, Yamada S, Aikawa C, et al. RAB30 regulates PI4KB (phosphatidylinositol 4-kinase beta)-dependent autophagy against group A Streptococcus. Autophagy. 2019;15(3):466–77.
Article
CAS
PubMed
Google Scholar
Zheng JY, Koda T, Fujiwara T, Kishi M, Ikehara Y, Kakinuma M. A novel rab GTPase, Rab33B, is ubiquitously expressed and localized to the medial Golgi cisternae. J Cell Sci. 1998;111:1061–9.
CAS
PubMed
Google Scholar
Cheng E, Trombetta SE, Kovacs D, Beech RD, Ariyan S, Reyes-Mugica M, et al. Rab33A: Characterization, expression, and suppression by epigenetic modification. J Investig Dermatol. 2006;126(10):2257–71.
Article
CAS
PubMed
Google Scholar
Huang LG, Urasaki A, Inagaki N. Rab33a and Rab33ba mediate the outgrowth of forebrain commissural axons in the zebrafish brain. Sci Rep. 2019;9:9.
Article
CAS
Google Scholar
Ortiz Sandoval C, Simmen T. Rab proteins of the endoplasmic reticulum: functions and interactors. Biochem Soc Trans. 2012;40(6):1426–32.
Article
PubMed
CAS
Google Scholar
Valsdottir R, Hashimoto H, Ashman K, Koda T, Storrie B, Nilsson T. Identification of rabaptin-5, rabex-5, and GM130 as putative effectors of rab33b, a regulator of retrograde traffic between the Golgi apparatus and ER. FEBS Lett. 2001;508(2):201–9.
Article
CAS
PubMed
Google Scholar
Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell. 2008;19(7):2916–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol. 2011;192(5):839–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukuda M, Itoh T. Direct link between Atg protein and small GTPase Rab: Atg16L functions as a potential Rab33 effector in mammals. Autophagy. 2008;4(6):824–6.
Article
CAS
PubMed
Google Scholar
Ishibashi K, Uemura T, Waguri S, Fukuda M. Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol Biol Cell. 2012;23(16):3193–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sundberg TB, Darricarrere N, Cirone P, Li X, McDonald L, Mei X, et al. Disruption of Wnt planar cell polarity signaling by aberrant accumulation of the MetAP-2 substrate Rab37. Chem Biol. 2011;18(10):1300–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masuda ES, Luo Y, Young C, Shen M, Rossi AB, Huang BC, et al. Rab37 is a novel mast cell specific GTPase localized to secretory granules. FEBS Lett. 2000;470(1):61–4.
Article
CAS
PubMed
Google Scholar
Tsuboi T, Fukuda M. Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J Cell Sci. 2006;119(Pt 11):2196–203.
Article
CAS
PubMed
Google Scholar
Zografou S, Basagiannis D, Papafotika A, Shirakawa R, Horiuchi H, Auerbach D, et al. A complete Rab screening reveals novel insights in Weibel-Palade body exocytosis. J Cell Sci. 2012;125(Pt 20):4780–90.
Article
CAS
PubMed
Google Scholar
Tsai CH, Cheng HC, Wang YS, Lin P, Jen J, Kuo IY, et al. Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nat Commun. 2014;5:4804.
Article
CAS
PubMed
Google Scholar
Wu CY, Tseng RC, Hsu HS, Wang YC, Hsu MT. Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer. 2009;63(3):360–7.
Article
PubMed
Google Scholar
Sheng Y, Song Y, Li Z, Wang Y, Lin H, Cheng H, et al. RAB37 interacts directly with ATG5 and promotes autophagosome formation via regulating ATG5-12-16 complex assembly. Cell Death Differ. 2018;25(5):918–34.
CAS
PubMed
Google Scholar
Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A. 2006;103(32):11821–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 2016;35(15):1656–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang M, Liang C, Swaminathan K, Herrlinger S, Lai F, Shiekhattar R, et al. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci Adv. 2016;2(9):e1601167.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch AK, Muller S, et al. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. Elife. 2017;6:e23063.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ. 2020;27(3):858–71.
Article
PubMed
PubMed Central
Google Scholar
Marsh T, Debnath J. Autophagy suppresses breast cancer metastasis by degrading NBR1. Autophagy. 2020;9:1–2.
Google Scholar
Heras-Sandoval D, Perez-Rojas JM, Pedraza-Chaverri J. Novel compounds for the modulation of mTOR and autophagy to treat neurodegenerative diseases. Cell Signal. 2020;65:109442.
Article
CAS
PubMed
Google Scholar
Zhou J, Kang X, Luo Y, Yuan Y, Wu Y, Wang M, et al. Glibenclamide-induced autophagy inhibits its insulin secretion-improving function in beta cells. Int J Endocrinol. 2019;2019:1265175.
PubMed
PubMed Central
Google Scholar
Narita K, Choudhury A, Dobrenis K, Sharma DK, Holicky EL, Marks DL, et al. Protein transduction of Rab9 in Niemann-Pick C cells reduces cholesterol storage. FASEB J. 2005;19(11):1558–60.
Article
CAS
PubMed
Google Scholar
Du W, Zhao S, Gao F, Wei M, An J, Jia K, et al. IFN-gamma/mTORC1 decreased Rab11 in Schwann cells of diabetic peripheral neuropathy, inhibiting cell proliferation via GLUT1 downregulation. J Cell Physiol. 2020;235(7–8):5764–76.
Article
CAS
PubMed
Google Scholar
Dong Z, Qi R, Guo X, Zhao X, Li Y, Zeng Z, et al. MiR-223 modulates hepatocellular carcinoma cell proliferation through promoting apoptosis via the Rab1-mediated mTOR activation. Biochem Biophys Res Commun. 2017;483(1):630–7.
Article
CAS
PubMed
Google Scholar
Vestre K, Kjos I, Guadagno NA, Borg Distefano M, Kohler F, Fenaroli F, et al. Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity. Cell Mol Life Sci. 2019;76(13):2593–614.
Article
CAS
PubMed
Google Scholar
Zhu Y, Shi F, Wang M, Ding J. Knockdown of Rab9 suppresses the progression of gastric cancer through regulation of akt signaling pathway. Technol Cancer Res Treat. 2020;19:1533033820915958.
PubMed
PubMed Central
Google Scholar
Chung YC, Wei WC, Hung CN, Kuo JF, Hsu CP, Chang KJ, et al. Rab11 collaborates E-cadherin to promote collective cell migration and indicates a poor prognosis in colorectal carcinoma. Eur J Clin Invest. 2016;46(12):1002–11.
Article
CAS
PubMed
Google Scholar
Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006;313(5785):324–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Su G, Wu Q, Liu J, Tian Y, Liu X, et al. Rab11-mediated recycling endosome role in nervous system development and neurodegenerative diseases. Int J Neurosci. 2020;8:1–12.
Google Scholar
Wang Z, McCloskey A, Cheng S, Wu M, Xue C, Yu Z, et al. Regulation of the small GTPase Rab1 function by a bacterial glucosyltransferase. Cell Discov. 2018;4:53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Y, Jiang C, Jin M, Gong Y, Zhang X. The role of Rab6 GTPase in the maturation of phagosome against Staphylococcus aureus. Int J Biochem Cell Biol. 2015;61:35–44.
Article
CAS
PubMed
Google Scholar
Vale-Costa S, Amorim MJ. Clustering of Rab11 vesicles in influenza A virus infected cells creates hotspots containing the 8 viral ribonucleoproteins. Small GTPases. 2017;8(2):71–7.
Article
CAS
PubMed
Google Scholar
Bartusch C, Doring T, Prange R. Rab33B controls hepatitis b virus assembly by regulating core membrane association and nucleocapsid processing. Viruses. 2017;9(6):e23.
Google Scholar