de Oliveira WK. Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy—Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016;65:242–7.
Article
PubMed
Google Scholar
Brasil P, Pereira JP Jr, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, Rabello RS, Valderramos SG, Halai U-A, Salles TS. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;2016(375):2321–34.
Article
Google Scholar
Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J, Zhang F, Lee EM. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18(5):587–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
McGrath EL, Rossi SL, Gao J, Widen SG, Grant AC, Dunn TJ, Azar SR, Roundy CM, Xiong Y, Prusak DJ. Differential responses of human fetal brain neural stem cells to Zika virus infection. Stem cell Rep. 2017;8(3):715–27.
Article
CAS
Google Scholar
Devhare P, Meyer K, Steele R, Ray RB, Ray R. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Cell Death Dis. 2017;8(10):e3106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu Z, Gorman MJ, McKenzie LD, Chai JN, Hubert CG, Prager BC, Fernandez E, Richner JM, Zhang R, Shan C. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med. 2017;214(10):2843–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lima EO, Guerreiro TM, Melo CFOR, de Oliveira DN, Machado D, Lancelloti M, Catharino RR. MALDI imaging detects endogenous digoxin in glioblastoma cells infected by Zika virus—Would it be the oncolytic key? J Mass Spectrom. 2018;53(3):257–63. https://doi.org/10.1002/jms.4058.
Article
CAS
Google Scholar
Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeyaullah M, Patro M, Ahmad I, Ibraheem K, Sultan P, Nehal M, Ali A. Oncolytic viruses in the treatment of cancer: a review of current strategies. Pathol Oncol Res. 2012;18(4):771–81.
Article
PubMed
Google Scholar
Wright SC, Kumar P, Tam AW, Shen N, Varma M, Larrick JW. Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells. J Cell Biochem. 1992;48(4):344–55.
Article
PubMed
CAS
Google Scholar
Elias L, Berry C. Induction of differentiation by tumour necrosis factor in HL-60 cells is associated with the formation of large DNA fragments. Leukemia. 1991;5(10):879–85.
PubMed
CAS
Google Scholar
Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361.
Article
PubMed
CAS
Google Scholar
Carswell E, Old LJ, Kassel R, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci. 1975;72(9):3666–70.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev. 2000;64(4):821–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, Rana TM. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell. 2016;19(2):258–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yaddanapudi K, De Miranda J, Hornig M, Lipkin WI. Toll-like receptor 3 regulates neural stem cell proliferation by modulating the Sonic Hedgehog pathway. PLoS ONE. 2011;6(10):e26766.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, et al. The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol. 2000;10(11):640–8.
Article
PubMed
CAS
Google Scholar
Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.
Article
PubMed
CAS
Google Scholar
Gu XX, Tsai CM. Purification of rough-type lipopolysaccharides of Neisseria meningitidis from cells and outer membrane vesicles in spent media. Anal Biochem. 1991;196(2):311–8.
Article
PubMed
CAS
Google Scholar
Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Cutting edge: direct interaction of TLR4 with NAD (P) H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-κB. J Immunol. 2004;173(6):3589–93.
Article
PubMed
CAS
Google Scholar
Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-κB. J Immunol. 2004;172(4):2522–9.
Article
PubMed
CAS
Google Scholar
Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992;587(2):250–6.
Article
PubMed
CAS
Google Scholar
Chao CC, Hu S, Peterson PK. Glia, cytokines, and neurotoxicity. Crit Rev Neurobiol. 1995;9(2–3):189–205.
PubMed
CAS
Google Scholar
Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148(7):2207–16.
PubMed
CAS
Google Scholar
Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RAB, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405:85.
Article
PubMed
CAS
Google Scholar
Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA. 2005;102(28):9936–41.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koprowski H, Zheng YM, Heber-Katz E, Fraser N, Rorke L, Fu ZF, Hanlon C, Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci. 1993;90(7):3024–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Danishpajooh IO, Gudi T, Chen Y, Kharitonov VG, Sharma VS, Boss GR. Nitric oxide inhibits methionine synthase activity in vivo and disrupts carbon flow through the folate pathway. J Biol Chem. 2001;276(29):27296–303.
Article
PubMed
CAS
Google Scholar
Banerjee RV, Matthews RG. Cobalamin-dependent methionine synthase. FASEB J. 1990;4(5):1450–9.
Article
PubMed
CAS
Google Scholar
James SJ, Cross DR, Miller BJ. Alterations in nucleotide pools in rats fed diets deficient in choline, methionine and/or folic acid. Carcinogenesis. 1992;13(12):2471–4.
Article
PubMed
CAS
Google Scholar
Dean W, Lucifero D, Santos F. DNA methylation in mammalian development and disease. Birth Defects Res C Embryo Today. 2005;75(2):98–111.
Article
PubMed
CAS
Google Scholar
Guo H, Lishko VK, Herrera H, Groce A, Kubota T, Hoffman RM. Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Can Res. 1993;53(23):5676–9.
CAS
Google Scholar
James SJ, Miller BJ, McGarrity LJ, Morris SM. The effect of folic acid and/or methionine deficiency on deoxyribonucleotide pools and cell cycle distribution in mitogen-stimulated rat lymphocytes. Cell Prolif. 1994;27(7):395–406.
Article
CAS
Google Scholar
Tuck-Muller C, Narayan A, Tsien F, Smeets D, Sawyer J, Fiala E, Sohn O, Ehrlich M. DNA hypomethylation and unusual chromosome instability in cell lines fromICF syndrome patients. Cytogenet Genome Res. 2000;89(1–2):121–8.
Article
CAS
Google Scholar
Melo CFO, Delafiori J, de Oliveira DN, Guerreiro TM, Esteves CZ, Lima EDO, Pando-Robles V, Catharino RR, Milanez GP, do Nascimento GM. Serum metabolic alterations upon Zika infection. Front Microbiol. 1954;2017:8.
Google Scholar
Polumuri SK, Toshchakov VY, Vogel SN. Role of phosphatidylinositol-3 kinase in transcriptional regulation of TLR-induced IL-12 and IL-10 by Fcγ receptor ligation in murine macrophages. J Immunol. 2007;179(1):236–46.
Article
PubMed
CAS
Google Scholar
Weichhart T, Säemann MD. The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann Rheum Dis. 2008;67(Suppl 3):70–4.
Article
CAS
Google Scholar
Dello Russo C, Lisi L, Tringali G, Navarra P. Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation. Biochem Pharmacol. 2009;78(9):1242–51.
Article
CAS
Google Scholar
Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, Ge J, Wang S, Goldman SA, Zlokovic BV, et al. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell. 2016;19(5):663–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002;40(2):133–9.
Article
PubMed
Google Scholar
Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev. 1999;30(1):77–105.
Article
PubMed
CAS
Google Scholar
Das AK, Hajra AK. Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids. 1989;24(4):329–33.
Article
PubMed
CAS
Google Scholar
Tigyi G, Hong L, Yakubu M, Parfenova H, Shibata M, Leffler CW. Lysophosphatidic acid alters cerebrovascular reactivity in piglets. Am J Physiol Heart Circ Physiol. 1995;268(5):H2048–55.
Article
CAS
Google Scholar
Natarajan V, Taher MM, Roehm B, Parinandi NL, Schmid H, Kiss Z, Garcia J. Activation of endothelial cell phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. J Biol Chem. 1993;268(2):930–7.
PubMed
CAS
Google Scholar
Boyer CS, Bannenberg GL, Neve EP, Ryrfeldt Å, Moldéus P. Evidence for the activation of the signal-responsive phospholipase A2 by exogenous hydrogen peroxide. Biochem Pharmacol. 1995;50(6):753–61.
Article
PubMed
CAS
Google Scholar
Brault S, Gobeil F, Fortier A, Honoré JC, Joyal JS, Sapieha PS, Kooli A, Martin É, Hardy P, Ribeiro-da-Silva A. Lysophosphatidic acid induces endothelial cell death by modulating the redox environment. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1174–83.
Article
PubMed
CAS
Google Scholar
Dong Y, Wu Y, Cui MZ, Xu X. Lysophosphatidic acid triggers apoptosis in HeLa cells through the upregulation of tumor necrosis factor receptor superfamily member 21. Mediators Inflamm. 2017. https://doi.org/10.1155/2017/2754756.
Article
PubMed
PubMed Central
Google Scholar
Olmo IG, Carvalho TG, Costa VV, Alves-Silva J, Ferrari CZ, Izidoro-Toledo TC, da Silva JF, Teixeira AL, Souza DG, Marques JT. Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front immunol. 1016;2017:8.
Google Scholar
Matheron S, d’Ortenzio E, Leparc-Goffart I, Hubert B, de Lamballerie X, Yazdanpanah Y. Long-lasting persistence of Zika virus in semen. Clin infect Dis. 2016;63(9):1264.
PubMed
Google Scholar
Nicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro Surveill. 2016. https://doi.org/10.2807/1560-7917.ES.2016.21.32.30314.
Article
PubMed
PubMed Central
Google Scholar
Davidson A. Suspected female-to-male sexual transmission of Zika virus—New York City, 2016. MMWR Morb Mortal Wkly Rep. 2016;65:716–7.
Article
PubMed
Google Scholar
Melo CFOR, de Oliveira DN, de Oliveira Lima E, Guerreiro TM, Esteves CZ, Beck RM, Padilla MA, Milanez GP, Arns CW, Proença-Modena JL. A Lipidomics approach in the characterization of Zika-infected mosquito cells: potential targets for breaking the transmission cycle. PLoS ONE. 2016;11(10):e0164377.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alves D, Mattos I, Hollanda L, Lancellotti M. Use of mesoporous silica Sba-15 and Sba-16 in association of outer membrane vesicles-Omv from Neisseria meningitidis. J Vaccines Vaccin. 2013. https://doi.org/10.4172/2157-7560.1000196.
Article
Google Scholar
Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6(6):743–60.
Article
PubMed
CAS
Google Scholar
Xia J, Wishart DS. Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinform. 2016;55:14.10.11–91.
Article
Google Scholar
Roman Junior WA, Gomes DB, Zanchet B, Schönell AP, Diel KA, Banzato TP, Ruiz AL, Carvalho JE, Neppel A, Barison A. Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. Revista Brasileira de Farmacognosia. 2017;27(5):592–8.
Article
CAS
Google Scholar
Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. JNCI. 1991;83(11):757–66.
Article
PubMed
CAS
Google Scholar
Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI. 1990;82(13):1107–12.
Article
PubMed
CAS
Google Scholar
Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813–23.
Article
PubMed
CAS
Google Scholar
Muller PY, Milton MN. The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov. 2012;11(10):751–61.
Article
PubMed
CAS
Google Scholar