Verkhratsky A, Parpura V. Calcium signalling and calcium channels: evolution and general principles. Eur J Pharmacol. 2014;739:1–3.
Article
PubMed
CAS
Google Scholar
Bravo-Sagua R, Parra V, Lopez-Crisosto C, Dia P, Quest AF, Lavandero S. Calcium transport and
signaling in Mitochondria. Compr Physiol. 2017;7:623–34.
Article
PubMed
Google Scholar
Bruni GN, Weekley RA, Dodd BJ, Kralj JM. Voltage-gated calcium flux mediates Escherichia coli mechanosensation. Proc Natl Acad Sci. 2017;114:9445–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol. 2016;594:5369–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burke RC, Bardet SM, Carr L, Romanenko S, Arnaud-Cormos D, Leveque P, O’Connor RP. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells. BBA Biomembr. 2017;1859:2040–50.
Article
CAS
Google Scholar
Cheli VT, González DS, Spreuer V, Paez PM. Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp Neurol. 2015;265:69–83.
Article
PubMed
CAS
Google Scholar
Lang P, Yeow K, Nichols A, Scheer A. Cellular imaging in drug discovery. Nat Rev Drug Discov. 2006;5:343–57.
Article
PubMed
CAS
Google Scholar
Golovina VA. Visualization of localized store—perated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol. 2005;564:737–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Looger LL, Griesbeck O. Genetically encoded neural activity indicators. Curr Opin Neurobiol. 2012;22:18–23.
Article
PubMed
CAS
Google Scholar
Tian L, Hires SA, Looger LL. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc. 2012;2012(6):pdb-top069609.
Article
PubMed
Google Scholar
Ntziachristos V, Tung C-H, Bremer C, Weissleder R. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med. 2002;8:757–61.
Article
PubMed
CAS
Google Scholar
Ntziachristos V. Fluorescence molecular imaging. Ann Rev Biomed Eng. 2006;8:1–33.
Article
CAS
Google Scholar
Leblonda F, Davisa SC, Valdésa PA, Pogue BW. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B. 2010;98:77–94.
Article
CAS
Google Scholar
Pawley JB, Masters BR. Handbook of biological confocal microscopy. J Biomed Opt. 2008;13:029902.
Article
Google Scholar
Svoboda K, Yasuda Y. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 2006;50:823–39.
Article
PubMed
CAS
Google Scholar
Hielscher AH. Optical tomographic imaging of small animals. Curr Opin Biotechnol. 2005;16:79–88.
Article
PubMed
CAS
Google Scholar
Joshi A, Bangerth W, Sevick-Muraca E. Adaptive finite element based tomography for fluorescence optical imaging in tissue. Opt Express. 2004;12:5402–17.
Article
PubMed
Google Scholar
Sameiro M, Gonçalves T. Fluorescent labeling of biomolecules with organic probes. Chem Rev. 2009;109:190–212.
Article
CAS
Google Scholar
Tsien RY, Ernst L, Waggoner A. Fluorophores for confocal microscopy: photophysics and photochemistry. In: Pawley JB, editor. Handbook of biological confocal microscopy. 3rd ed. New York: Springer Science and Business Media; 2006.
Google Scholar
Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32:7127–38.
Article
PubMed
CAS
Google Scholar
Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the 1990s: a review. Chem Rev. 1990;20000(100):1973–2012.
Google Scholar
Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Kluwer Academic/Plenum Published; 2006.
Book
Google Scholar
Lakowicz JR. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem. 2005;337:171–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maier SA, Atwater HA. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys. 2005;98:011101.
Article
CAS
Google Scholar
Halas NJ, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev. 2011;111:3913–61.
Article
PubMed
CAS
Google Scholar
Watanabe K, Menzel D, Nilius N, Freund H-J. Photochemistry on metal nanoparticles. Chem Rev. 2006;106:4301–20.
Article
PubMed
CAS
Google Scholar
Schwartzberg AM, Zhang JZ. Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C. 2008;112:10323–37.
Article
CAS
Google Scholar
Lakowicz JR. Radiative decay engineering: biophysical and biomedical applications. Anal Biochem. 2001;298:1–24.
Article
PubMed
CAS
Google Scholar
Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev. 2007;107:4797–862.
Article
PubMed
CAS
Google Scholar
Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev. 2011;111:3669–712.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev. 2006;35:1084–94.
Article
PubMed
CAS
Google Scholar
Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res. 2011;44:936–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.
Article
PubMed
CAS
Google Scholar
Fu Y, Zhang J, Lakowicz JR. Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J Am Chem Soc. 2010;132:5540–1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Link S, Mohamed MB, El-Sayed MA. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B. 1999;103:3073–7.
Article
CAS
Google Scholar
Jain PK, Eustis S, El-Sayed MA. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and excitation-coupling model. J Phys Chem B. 2006;110:18243–53.
Article
PubMed
CAS
Google Scholar
Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B. 2001;105:4065–7.
Article
CAS
Google Scholar
Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.
Article
CAS
Google Scholar
Landsman ML, Kwant G, Mook GA, Zijlstra WG. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol. 1976;40:575–83.
Article
PubMed
CAS
Google Scholar
Marshall MV, Rasmussen JC, Tan IC, Aldrich MB, Adams KE, Wang X, Fife CE, Maus EA, Smith LA, Sevick-Muraca EM. Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J. 2010;2:12–25.
Article
PubMed
PubMed Central
Google Scholar
Treger JS, Priest MF, Iezzi R, Bezanilla F. Indocyanine green is a voltage-sensitive fluorescent dye. Biophys J. 2014;106:793a.
Article
Google Scholar
Zhang J, Fu Y, Liang D, Zhao RY, Lakowicz JR. Fluorescent avidin-bound silver particle: a strategy for single target molecule detection on a cell membrane. Anal Chem. 2009;81:883–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lim YT, Noh YW, Han JH, Cai QY, Yoon KH, Chung BH. Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells. Small. 2008;4:1640–5.
Article
PubMed
CAS
Google Scholar
Altinoğlu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano. 2008;2:2075–84.
Article
PubMed
CAS
Google Scholar
Geddes CD, Cao H, Gryczynski I, Gryczynski Z, Fang J, Lakowicz JR. Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: potential applications of indocyanine green to in vivo imaging. J Phys Chem A. 2003;107:3443–9.
Article
CAS
Google Scholar
Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110:2641–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Graves EE, Ripoll J, Weissleder R, Ntziachristos VA. Submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med Phys. 2003;30:901–11.
Article
PubMed
CAS
Google Scholar
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2000;307:538–44.
Article
CAS
Google Scholar
Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002;2:11–8.
Article
PubMed
CAS
Google Scholar
Allémann E, Brasseur N, Benrezzak O, Rousseau J, Kudrevich SV, Boyle RW, Leroux JC, Gurny R, Van Lier JE. PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharm Pharmacol. 1995;47:382–7.
Article
PubMed
Google Scholar
Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 2008;41:1721–30.
Article
PubMed
CAS
Google Scholar
Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–62.
Article
PubMed
CAS
Google Scholar
Zhang J, Fu Y, Li G, Nowaczyk K, Zhao RY, Lakowicz JR. Direct observation to chemokine receptor 5 on T-lymphocyte cell surface using fluorescent metal nanoprobes. Biochem Biophys Res Commun. 2010;400:111–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Fu Y, Li G, Zhao RY, Lakowicz JR. Direct observation of chemokine receptors on T-lymphocyte cell surfaces using fluorescent metal nanoprobes 2: approximation of CCR5 populations. Biochem Biophys Res Commun. 2011;407:63–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li J, Krasavin AV, Webster L, Segovia P, Zayats AV, Richards D. Spectral variation of fluorescence lifetime near single metal nanoparticles. Sci Rep. 2016;6:21349.
Article
PubMed
CAS
Google Scholar
Vesseur EJR, Polman A. Controlled spontaneous emission in plasmonic whispering gallery antennas. Appl Phys Lett. 2011;99:231112.
Article
CAS
Google Scholar
Vecchi G, Giannini V, Gómez Rivas J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys Rev Lett. 2009;102:146807.
Article
PubMed
CAS
Google Scholar
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.
Article
PubMed
CAS
Google Scholar
Monteiro-Riviere NA, Inman AO, Zhang LW. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol. 2009;234:222–35.
Article
PubMed
CAS
Google Scholar