Jefferson JA, Shankland SJ. The pathogenesis of focal segmental glomerulosclerosis. Adv Chron Kidney Dis. 2014;21(5):408–16. doi:10.1053/j.ackd.2014.05.009.
Article
Google Scholar
Swaminathan S, Leung N, Lager DJ, Melton LJ 3rd, Bergstralh EJ, Rohlinger A, et al. Changing incidence of glomerular disease in Olmsted County, Minnesota: a 30-year renal biopsy study. Clin J Am Soc Nephrol CJASN. 2006;1(3):483–7. doi:10.2215/CJN.00710805.
Article
PubMed
Google Scholar
Braden GL, Mulhern JG, O’Shea MH, Nash SV, Ucci AA Jr, Germain MJ. Changing incidence of glomerular diseases in adults. Am J Kidney Dis Off J Natl Kidney Found. 2000;35(5):878–83.
Article
CAS
Google Scholar
Hogg R, Middleton J, Vehaskari VM. Focal segmental glomerulosclerosis–epidemiology aspects in children and adults. Pediatr Nephrol. 2007;22(2):183–6. doi:10.1007/s00467-006-0370-5.
Article
PubMed
Google Scholar
Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet. 2003;362(9384):629–39. doi:10.1016/S0140-6736(03)14184-0.
Article
PubMed
Google Scholar
Haas M, Spargo BH, Coventry S. Increasing incidence of focal-segmental glomerulosclerosis among adult nephropathies: a 20-year renal biopsy study. Am J Kidney Dis Off J Natl Kidney Found. 1995;26(5):740–50.
Article
CAS
Google Scholar
Kitiyakara C, Eggers P, Kopp JB. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis Off J Natl Kidney Found. 2004;44(5):815–25.
Article
Google Scholar
Ichikawa I, Fogo A. Focal segmental glomerulosclerosis. Pediatr Nephrol. 1996;10(3):374–91.
Article
CAS
PubMed
Google Scholar
Bose B, Cattran D. Toronto Glomerulonephritis R. Glomerular diseases: FSGS. Clin J Am Soc Nephrol CJASN. 2014;9(3):626–32. doi:10.2215/CJN.05810513.
Article
PubMed
Google Scholar
Korbet SM. Clinical picture and outcome of primary focal segmental glomerulosclerosis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 1999;14(Suppl 3):68–73.
Google Scholar
Korbet SM. Treatment of primary FSGS in adults. J Am Soc Nephrol JASN. 2012;23(11):1769–76. doi:10.1681/ASN.2012040389.
Article
CAS
PubMed
Google Scholar
Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24(3):251–6. doi:10.1038/73456.
Article
CAS
PubMed
Google Scholar
Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet. 2010;42(1):72–6. doi:10.1038/ng.505.
Article
CAS
PubMed
Google Scholar
Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37(7):739–44. doi:10.1038/ng1592.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308(5729):1801–4. doi:10.1126/science.1106215.
Article
CAS
PubMed
Google Scholar
Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein—nephrin–is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.
Article
CAS
PubMed
Google Scholar
Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24(4):349–54. doi:10.1038/74166.
Article
CAS
PubMed
Google Scholar
Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskelet. 2004;58(2):104–11. doi:10.1002/cm.20007.
Article
CAS
Google Scholar
Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem. 1992;267(13):9281–8.
CAS
PubMed
Google Scholar
Burridge K, Feramisco JR. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 1981;294(5841):565–7.
Article
CAS
PubMed
Google Scholar
Nikolopoulos SN, Spengler BA, Kisselbach K, Evans AE, Biedler JL, Ross RA. The human non-muscle alpha-actinin protein encoded by the ACTN4 gene suppresses tumorigenicity of human neuroblastoma cells. Oncogene. 2000;19(3):380–6. doi:10.1038/sj.onc.1203310.
Article
CAS
PubMed
Google Scholar
Kunishima S, Okuno Y, Yoshida K, Shiraishi Y, Sanada M, Muramatsu H, et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet. 2013;92(3):431–8. doi:10.1016/j.ajhg.2013.01.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiu C, Bagnall RD, Ingles J, Yeates L, Kennerson M, Donald JA, et al. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J Am Coll Cardiol. 2010;55(11):1127–35. doi:10.1016/j.jacc.2009.11.016.
Article
CAS
PubMed
Google Scholar
North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet. 1999;21(4):353–4. doi:10.1038/7675.
Article
CAS
PubMed
Google Scholar
Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627–31. doi:10.1086/377590.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavalko FM, Otey CA, Simon KO, Burridge K. Alpha-actinin: a direct link between actin and integrins. Biochem Soc Trans. 1991;19(4):1065–9.
Article
CAS
PubMed
Google Scholar
Otey CA, Vasquez GB, Burridge K, Erickson BW. Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain. J Biol Chem. 1993;268(28):21193–7.
CAS
PubMed
Google Scholar
Bois PR, Borgon RA, Vonrhein C, Izard T. Structural dynamics of alpha-actinin-vinculin interactions. Mol Cell Biol. 2005;25(14):6112–22. doi:10.1128/MCB.25.14.6112-6122.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kroemker M, Rudiger AH, Jockusch BM, Rudiger M. Intramolecular interactions in vinculin control alpha-actinin binding to the vinculin head. FEBS Lett. 1994;355(3):259–62.
Article
CAS
PubMed
Google Scholar
Li B, Trueb B. Analysis of the alpha-actinin/zyxin interaction. J Biol Chem. 2001;276(36):33328–35. doi:10.1074/jbc.M100789200.
Article
CAS
PubMed
Google Scholar
Has C, Herz C, Zimina E, Qu HY, He Y, Zhang ZG, et al. Kindlin-1 Is required for RhoGTPase-mediated lamellipodia formation in keratinocytes. Am J Pathol. 2009;175(4):1442–52. doi:10.2353/ajpath.2009.090203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reiser J, Kriz W, Kretzler M, Mundel P. The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol JASN. 2000;11(1):1–8.
CAS
PubMed
Google Scholar
Nieset JE, Redfield AR, Jin F, Knudsen KA, Johnson KR, Wheelock MJ. Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin. J Cell Sci. 1997;110(Pt 8):1013–22.
CAS
PubMed
Google Scholar
Lehtonen S, Ryan JJ, Kudlicka K, Iino N, Zhou H, Farquhar MG. Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and alpha-actinin are components of the nephrin multiprotein complex. Proc Natl Acad Sci USA. 2005;102(28):9814–9. doi:10.1073/pnas.0504166102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraley TS, Tran TC, Corgan AM, Nash CA, Hao J, Critchley DR, et al. Phosphoinositide binding inhibits alpha-actinin bundling activity. J Biol Chem. 2003;278(26):24039–45. doi:10.1074/jbc.M213288200.
Article
CAS
PubMed
Google Scholar
Fraley TS, Pereira CB, Tran TC, Singleton C, Greenwood JA. Phosphoinositide binding regulates alpha-actinin dynamics: mechanism for modulating cytoskeletal remodeling. J Biol Chem. 2005;280(15):15479–82. doi:10.1074/jbc.M500631200.
Article
CAS
PubMed
Google Scholar
Ding Z, Liang J, Lu Y, Yu Q, Songyang Z, Lin SY, et al. A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci USA. 2006;103(41):15014–9. doi:10.1073/pnas.0606917103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sprague CR, Fraley TS, Jang HS, Lal S, Greenwood JA. Phosphoinositide binding to the substrate regulates susceptibility to proteolysis by calpain. J Biol Chem. 2008;283(14):9217–23. doi:10.1074/jbc.M707436200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol. 1998;140(6):1383–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khurana S, Chakraborty S, Zhao X, Liu Y, Guan D, Lam M, et al. Identification of a novel LXXLL motif in alpha-actinin 4-spliced isoform that is critical for its interaction with estrogen receptor alpha and co-activators. J Biol Chem. 2012;287(42):35418–29. doi:10.1074/jbc.M112.401364.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khurana S, Chakraborty S, Cheng X, Su YT, Kao HY. The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells. J Biol Chem. 2011;286(3):1850–9. doi:10.1074/jbc.M110.162107.
Article
CAS
PubMed
Google Scholar
Khurana S, Chakraborty S, Lam M, Liu Y, Su YT, Zhao X, et al. Familial focal segmental glomerulosclerosis (FSGS)-linked alpha-actinin 4 (ACTN4) protein mutants lose ability to activate transcription by nuclear hormone receptors. J Biol Chem. 2012;287(15):12027–35. doi:10.1074/jbc.M112.345421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakraborty S, Reineke EL, Lam M, Li X, Liu Y, Gao C, et al. Alpha-actinin 4 potentiates myocyte enhancer factor-2 transcription activity by antagonizing histone deacetylase 7. J Biol Chem. 2006;281(46):35070–80. doi:10.1074/jbc.M602474200.
Article
CAS
PubMed
Google Scholar
An HT, Kim J, Yoo S, Ko J. Small leucine zipper protein (sLZIP) negatively regulates skeletal muscle differentiation via interaction with alpha-actinin-4. J Biol Chem. 2014;289(8):4969–79. doi:10.1074/jbc.M113.515395.
Article
CAS
PubMed
Google Scholar
Jasavala R, Martinez H, Thumar J, Andaya A, Gingras AC, Eng JK, et al. Identification of putative androgen receptor interaction protein modules: cytoskeleton and endosomes modulate androgen receptor signaling in prostate cancer cells. Mol Cell Proteom MCP. 2007;6(2):252–71. doi:10.1074/mcp.M600169-MCP200.
Article
CAS
Google Scholar
Zhao X, Hsu KS, Lim JH, Bruggeman LA, Kao HY. alpha-Actinin 4 potentiates nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-kappaB) activity in podocytes independent of its cytoplasmic actin binding function. J Biol Chem. 2015;290(1):338–49. doi:10.1074/jbc.M114.597260.
Article
CAS
PubMed
Google Scholar
Smoyer WE, Mundel P, Gupta A, Welsh MJ. Podocyte alpha-actinin induction precedes foot process effacement in experimental nephrotic syndrome. Am J Physiol. 1997;273(1 Pt 2):F150–7.
CAS
PubMed
Google Scholar
Kurihara H, Anderson JM, Farquhar MG. Increased Tyr phosphorylation of ZO-1 during modification of tight junctions between glomerular foot processes. Am J Physiol. 1995;268(3 Pt 2):F514–24.
CAS
PubMed
Google Scholar
Weins A, Kenlan P, Herbert S, Le TC, Villegas I, Kaplan BS, et al. Mutational and biological analysis of alpha-actinin-4 in focal segmental glomerulosclerosis. J Am Soc Nephrol JASN. 2005;16(12):3694–701. doi:10.1681/ASN.2005070706.
Article
CAS
PubMed
Google Scholar
Choi HJ, Lee BH, Cho HY, Moon KC, Ha IS, Nagata M, et al. Familial focal segmental glomerulosclerosis associated with an ACTN4 mutation and paternal germline mosaicism. Am J Kidney Dis Off J Natl Kidney Found. 2008;51(5):834–8. doi:10.1053/j.ajkd.2008.01.018.
Article
CAS
Google Scholar
Franzot G, Sjoblom B, Gautel M, Djinovic Carugo K. The crystal structure of the actin binding domain from alpha-actinin in its closed conformation: structural insight into phospholipid regulation of alpha-actinin. J Mol Biol. 2005;348(1):151–65. doi:10.1016/j.jmb.2005.01.002.
Article
CAS
PubMed
Google Scholar
Lee SH, Weins A, Hayes DB, Pollak MR, Dominguez R. Crystal structure of the actin-binding domain of alpha-actinin-4 Lys255Glu mutant implicated in focal segmental glomerulosclerosis. J Mol Biol. 2008;376(2):317–24. doi:10.1016/j.jmb.2007.11.084.
Article
CAS
PubMed
Google Scholar
Kos CH, Le TC, Sinha S, Henderson JM, Kim SH, Sugimoto H, et al. Mice deficient in alpha-actinin-4 have severe glomerular disease. J Clin Investig. 2003;111(11):1683–90. doi:10.1172/JCI17988.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dandapani SV, Sugimoto H, Matthews BD, Kolb RJ, Sinha S, Gerszten RE, et al. Alpha-actinin-4 is required for normal podocyte adhesion. J Biol Chem. 2007;282(1):467–77. doi:10.1074/jbc.M605024200.
Article
CAS
PubMed
Google Scholar
Liu Z, Blattner SM, Tu Y, Tisherman R, Wang JH, Rastaldi MP, et al. Alpha-actinin-4 and CLP36 protein deficiencies contribute to podocyte defects in multiple human glomerulopathies. J Biol Chem. 2011;286(35):30795–805. doi:10.1074/jbc.M111.255984.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao J, Le TC, Kos CH, Henderson JM, Allen PG, Denker BM, et al. Alpha-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol. 2004;2(6):e167. doi:10.1371/journal.pbio.0020167.
Article
PubMed
PubMed Central
Google Scholar
Henderson JM, Al-Waheeb S, Weins A, Dandapani SV, Pollak MR. Mice with altered alpha-actinin-4 expression have distinct morphologic patterns of glomerular disease. Kidney Int. 2008;73(6):741–50. doi:10.1038/sj.ki.5002751.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michaud JL, Lemieux LI, Dube M, Vanderhyden BC, Robertson SJ, Kennedy CR. Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant alpha-actinin-4. J Am Soc Nephrol JASN. 2003;14(5):1200–11.
Article
CAS
PubMed
Google Scholar
Michaud JL, Stitt-Cavanaugh E, Endlich N, Endlich K, De Repentigny Y, Kothary R, et al. Mice with podocyte-specific overexpression of wild type alpha-actinin-4 are healthy controls for K256E-alpha-actinin-4 mutant transgenic mice. Transgenic Res. 2010;19(2):285–9. doi:10.1007/s11248-009-9305-9.
Article
CAS
PubMed
Google Scholar
Weins A, Schlondorff JS, Nakamura F, Denker BM, Hartwig JH, Stossel TP, et al. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci USA. 2007;104(41):16080–5. doi:10.1073/pnas.0702451104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galkin VE, Orlova A, Salmazo A, Djinovic-Carugo K, Egelman EH. Opening of tandem calponin homology domains regulates their affinity for F-actin. Nat Struct Mol Biol. 2010;17(5):614–6. doi:10.1038/nsmb.1789.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward SM, Weins A, Pollak MR, Weitz DA. Dynamic viscoelasticity of actin cross-linked with wild-type and disease-causing mutant alpha-actinin-4. Biophys J. 2008;95(10):4915–23. doi:10.1529/biophysj.108.131722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao NY, Becker DJ, Broedersz CP, Depken M, Mackintosh FC, Pollak MR, et al. Nonlinear viscoelasticity of actin transiently cross-linked with mutant alpha-actinin-4. J Mol Biol. 2011;411(5):1062–71. doi:10.1016/j.jmb.2011.06.049.
Article
CAS
PubMed
Google Scholar
Henderson JM, Alexander MP, Pollak MR. Patients with ACTN4 mutations demonstrate distinctive features of glomerular injury. J Am Soc Nephrol JASN. 2009;20(5):961–8. doi:10.1681/ASN.2008060613.
Article
CAS
PubMed
Google Scholar
Michaud JL, Chaisson KM, Parks RJ, Kennedy CR. FSGS-associated alpha-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes. Kidney Int. 2006;70(6):1054–61. doi:10.1038/sj.ki.5001665.
Article
CAS
PubMed
Google Scholar
Meyer-Schwesinger C, Meyer TN, Munster S, Klug P, Saleem M, Helmchen U, et al. A new role for the neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) in podocyte process formation and podocyte injury in human glomerulopathies. J Pathol. 2009;217(3):452–64. doi:10.1002/path.2446.
Article
CAS
PubMed
Google Scholar
Read NC, Gutsol A, Holterman CE, Carter A, Coulombe J, Gray DA, et al. Ubiquitin C-terminal hydrolase L1 deletion ameliorates glomerular injury in mice with ACTN4-associated focal segmental glomerulosclerosis. Biochim Biophys Acta. 2014;1842(7):1028–40. doi:10.1016/j.bbadis.2014.03.009.
Article
CAS
PubMed
Google Scholar
Grgic I, Hofmeister AF, Genovese G, Bernhardy AJ, Sun H, Maarouf OH, et al. Discovery of new glomerular disease-relevant genes by translational profiling of podocytes in vivo. Kidney Int. 2014;86(6):1116–29. doi:10.1038/ki.2014.204.
Article
CAS
PubMed
PubMed Central
Google Scholar