Kohn AD, Moon RT: Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium. 2005, 38 (3–4): 439-446.
Article
CAS
PubMed
Google Scholar
De A: Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin. 2011, 43 (10): 745-756. 10.1093/abbs/gmr079
Article
CAS
PubMed
Google Scholar
Veeman MT, Axelrod JD, Moon RT: A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell. 2003, 5 (3): 367-377. 10.1016/S1534-5807(03)00266-1
Article
CAS
PubMed
Google Scholar
MacDonald BT, Tamai K, He X: Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009, 17 (1): 9-26. 10.1016/j.devcel.2009.06.016
Article
PubMed Central
CAS
PubMed
Google Scholar
Clevers H: Wnt/β-catenin signaling in development and disease. Cell. 2006, 127 (3): 469-480. 10.1016/j.cell.2006.10.018
Article
CAS
PubMed
Google Scholar
Clevers H, Nusse R: Wnt/β-catenin signaling and disease. Cell. 2012, 149 (6): 1192-1205. 10.1016/j.cell.2012.05.012
Article
CAS
PubMed
Google Scholar
Polakis P: Wnt signaling and cancer. Genes Dev. 2000, 14 (15): 1837-1851.
CAS
PubMed
Google Scholar
Cadigan KM, Peifer M: Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol. 2009, 1 (2): a002881.
Article
PubMed Central
PubMed
Google Scholar
Logan CY, Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004, 20 (1): 781-810. 10.1146/annurev.cellbio.20.010403.113126
Article
CAS
PubMed
Google Scholar
Luo J, Chen J, Deng ZL, Luo X, Song WX, Sharff KA, Tang N, Haydon RC, Luu HH, He TC: Wnt signaling and human diseases: what are the therapeutic implications?. Lab Invest. 2007, 87 (2): 97-103. 10.1038/labinvest.3700509
Article
CAS
PubMed
Google Scholar
Stamos JL, Weis WI: The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013, 5 (1): a007898.
Article
PubMed Central
PubMed
CAS
Google Scholar
Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X: Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002, 108 (6): 837-847. 10.1016/S0092-8674(02)00685-2
Article
CAS
PubMed
Google Scholar
Jiang J, Struhl G: Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature. 1998, 391 (6666): 493-496. 10.1038/35154
Article
CAS
PubMed
Google Scholar
Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X: β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci U S A. 1999, 96 (11): 6273-6278. 10.1073/pnas.96.11.6273
Article
PubMed Central
CAS
PubMed
Google Scholar
Cong F, Schweizer L, Varmus H: Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development. 2004, 131 (20): 5103-5115. 10.1242/dev.01318
Article
CAS
PubMed
Google Scholar
Hernández AR, Klein AM, Kirschner MW: Kinetic responses of β-catenin specify the sites of Wnt control. Science. 2012, 338 (6112): 1337-1340. 10.1126/science.1228734
Article
PubMed
CAS
Google Scholar
Kim SE, Huang H, Zhao M, Zhang X, Zhang A, Semonov MV, MacDonald BT, Zhang X, Abreu JG, Peng L, He X: Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science. 2013, 340 (6134): 867-870. 10.1126/science.1232389
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Vivian SW, Ng Ser S, Boersema Paul J, Low Teck Y, Karthaus Wouter R, Gerlach Jan P, Mohammed S, Heck Albert JR, Maurice Madelon M, Mahmoudi T, Clevers H: Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012, 149 (6): 1245-1256. 10.1016/j.cell.2012.05.002
Article
CAS
PubMed
Google Scholar
Wodarz A, Nusse R: Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998, 14 (1): 59-88. 10.1146/annurev.cellbio.14.1.59
Article
CAS
PubMed
Google Scholar
Peifer M, Polakis P: Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science. 2000, 287 (5458): 1606-1609. 10.1126/science.287.5458.1606
Article
CAS
PubMed
Google Scholar
Deribe YL, Pawson T, Dikic I: Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010, 17 (6): 666-672. 10.1038/nsmb.1842
Article
CAS
PubMed
Google Scholar
Jensen ON: Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol. 2006, 7 (6): 391-403. 10.1038/nrm1939
Article
CAS
PubMed
Google Scholar
Willert K, Nusse R: Wnt proteins. Cold Spring Harb Perspect Biol. 2012, 4 (9): a007864.
Article
PubMed Central
PubMed
CAS
Google Scholar
Ke J, Xu HE, Williams BO: Lipid modification in Wnt structure and function. Curr Opin Lipidol. 2013, 24 (2): 129-133. 10.1097/MOL.0b013e32835df2bf
Article
CAS
PubMed
Google Scholar
Yanfeng WA, Tan C, Fagan RJ, Klein PS: Phosphorylation of frizzled-3. J Biol Chem. 2006, 281 (17): 11603-11609. 10.1074/jbc.M600713200
Article
CAS
PubMed
Google Scholar
Djiane A, Yogev S, Mlodzik M: The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila Eye. Cell. 2005, 121 (4): 621-631. 10.1016/j.cell.2005.03.014
Article
CAS
PubMed
Google Scholar
Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, van Es JH, Mohammed S, Heck AJR, Maurice MM, Clevers H: Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012, 488 (7413): 665-669. 10.1038/nature11308
Article
CAS
PubMed
Google Scholar
Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, Mao X, Ma Q, Zamponi R, Bouwmeester T, Finan PM, Kirschner MW, Porter JA, Serluca FC, Cong F: ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature. 2012, 485 (7397): 195-200. 10.1038/nature11019
Article
CAS
PubMed
Google Scholar
Mukai A, Yamamoto-Hino M, Awano W, Watanabe W, Komada M, Goto S: Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. EMBO J. 2010, 29 (13): 2114-2125. 10.1038/emboj.2010.100
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto A, Nagano T, Takehara S, Hibi M, Aizawa S: Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell. 2005, 120 (2): 223-235. 10.1016/j.cell.2004.11.051
Article
CAS
PubMed
Google Scholar
Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C: Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 2005, 438 (7069): 867-872. 10.1038/nature04170
Article
CAS
PubMed
Google Scholar
Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X: A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005, 438 (7069): 873-877. 10.1038/nature04185
Article
PubMed Central
CAS
PubMed
Google Scholar
MacDonald BT, Yokota C, Tamai K, Zeng X, He X: Wnt signal amplification via activity, cooperativity, and regulation of multiple intracellular PPPSP motifs in the Wnt co-receptor LRP6. J Biol Chem. 2008, 283 (23): 16115-16123. 10.1074/jbc.M800327200
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen M, Philipp M, Wang J, Premont RT, Garrison TR, Caron MG, Lefkowitz RJ, Chen W: G protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J Biol Chem. 2009, 284 (50): 35040-35048. 10.1074/jbc.M109.047456
Article
PubMed Central
CAS
PubMed
Google Scholar
Červenka I, Wolf J, Mašek J, Krejci P, Wilcox WR, Kozubík A, Schulte G, Gutkind JS, Bryja V: Mitogen-activated protein kinases promote WNT/β-catenin signaling via phosphorylation of LRP6. Mol Cell Biol. 2011, 31 (1): 179-189. 10.1128/MCB.00550-10
Article
PubMed Central
PubMed
CAS
Google Scholar
Swiatek W, Kang H, Garcia BA, Shabanowitz J, Coombs GS, Hunt DF, Virshup DM: Negative regulation of LRP6 function by casein kinase Iϵ phosphorylation. J Biol Chem. 2006, 281 (18): 12233-12241. 10.1074/jbc.M510580200
Article
CAS
PubMed
Google Scholar
Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, He X, Nie S, Chang C, Cao X: Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 2008, 22 (21): 2968-2979. 10.1101/gad.1702708
Article
PubMed Central
CAS
PubMed
Google Scholar
Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M, Niehrs C: Cell cycle control of Wnt receptor activation. Dev Cell. 2009, 17 (6): 788-799. 10.1016/j.devcel.2009.11.006
Article
CAS
PubMed
Google Scholar
Abrami L, Kunz B, Iacovache I, van der Goot FG: Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2008, 105 (14): 5384-5389. 10.1073/pnas.0710389105
Article
PubMed Central
CAS
PubMed
Google Scholar
MacDonald BT, Semenov MV, Huang H, He X: Dissecting molecular differences between Wnt coreceptors LRP5 and LRP6. PLoS One. 2011, 6 (8): e23537. 10.1371/journal.pone.0023537
Article
PubMed Central
CAS
PubMed
Google Scholar
Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A: Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 1998, 17 (5): 1371-1384. 10.1093/emboj/17.5.1371
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A: Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. J Biol Chem. 1999, 274 (16): 10681-10684. 10.1074/jbc.274.16.10681
Article
CAS
PubMed
Google Scholar
Jho E, Lomvardas S, Costantini F: A GSK3β phosphorylation site in axin modulates interaction with β-catenin and Tcf-mediated gene expression. Biochem Biophys Res Commun. 1999, 266 (1): 28-35. 10.1006/bbrc.1999.1760
Article
CAS
PubMed
Google Scholar
Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, Myer VE, Finan PM, Porter JA, Huang SM, Cong F: RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol. 2011, 13 (5): 623-629. 10.1038/ncb2222
Article
CAS
PubMed
Google Scholar
Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S, Tao J, Lill JR, Hongo JA, Davis D, Kirkpatrick DS, Polakis P, Costa M: Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS One. 2011, 6 (7): e22595. 10.1371/journal.pone.0022595
Article
PubMed Central
CAS
PubMed
Google Scholar
Fei C, Li Z, Li C, Chen Y, Chen Z, He X, Mao L, Wang X, Zeng R, Li L: Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of Axin negatively regulates Wnt/β-catenin signaling. Mol Cell Biol. 2013, 33 (20): 4095-4105. 10.1128/MCB.00418-13
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim S, Jho EH: The Protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J Biol Chem. 2010, 285 (47): 36420-36426. 10.1074/jbc.M110.137471
Article
PubMed Central
CAS
PubMed
Google Scholar
Rui H-L, Fan E, Zhou H-M, Xu Z, Zhang Y, Lin S-C: SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem. 2002, 277 (45): 42981-42986. 10.1074/jbc.M208099200
Article
CAS
PubMed
Google Scholar
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009, 461 (7264): 614-620. 10.1038/nature08356
Article
CAS
PubMed
Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995, 378 (6559): 785-789. 10.1038/378785a0
Article
CAS
PubMed
Google Scholar
Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB: Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A. 2000, 97 (22): 11960-11965. 10.1073/pnas.220413597
Article
PubMed Central
CAS
PubMed
Google Scholar
Ballou LM, Tian PY, Lin HY, Jiang YP, Lin RZ: Dual regulation of glycogen synthase kinase-3β by the α1A-adrenergic receptor. J Biol Chem. 2001, 276 (44): 40910-40916. 10.1074/jbc.M103480200
Article
CAS
PubMed
Google Scholar
Doble BW, Woodgett JR: GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003, 116 (7): 1175-1186. 10.1242/jcs.00384
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD: S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell. 2006, 24 (2): 185-197. 10.1016/j.molcel.2006.09.019
Article
PubMed Central
CAS
PubMed
Google Scholar
Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR: Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J. 1993, 12 (2): 803-808.
PubMed Central
CAS
PubMed
Google Scholar
Sayas CL, Ariaens A, Ponsioen B, Moolenaar WH: GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol Biol Cell. 2006, 17 (4): 1834-1844. 10.1091/mbc.E05-07-0688
Article
PubMed Central
CAS
PubMed
Google Scholar
Cole A, Frame S, Cohen P: Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J. 2004, 377 (Pt 1): 249-255.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J, Bartholomeusz G, Li Y, Pan Y, Li Z, Bargou RC, Qin J, Lai CC, Tsai FJ, Tsai CH, Hung MC: Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol Cell. 2005, 19 (2): 159-170. 10.1016/j.molcel.2005.06.009
Article
CAS
PubMed
Google Scholar
Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M: Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science. 2008, 320 (5876): 667-670. 10.1126/science.1156037
Article
PubMed Central
CAS
PubMed
Google Scholar
Failor KL, Desyatnikov Y, Finger LA, Firestone GL: Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls β-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol Endocrinol. 2007, 21 (10): 2403-2415. 10.1210/me.2007-0143
Article
CAS
PubMed
Google Scholar
Eun Jeoung L, Sung Hee H, Jaesun C, Sung Hwa S, Kwang Hum Y, Min Kyoung K, Tae Yoon P, Sang Sun K: Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitin-like modifier. Open Biochem J. 2008, 2: 67-76.
Article
PubMed
CAS
Google Scholar
Feijs KL, Kleine H, Braczynski A, Forst A, Herzog N, Verheugd P, Linzen U, Kremmer E, Luscher B: ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal. 2013, 11 (1): 5. 10.1186/1478-811X-11-5
Article
PubMed Central
CAS
PubMed
Google Scholar
Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A: GSK-3β-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene. 2000, 19 (4): 537-545. 10.1038/sj.onc.1203359
Article
CAS
PubMed
Google Scholar
Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P: Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. Science. 1996, 272 (5264): 1023-1026. 10.1126/science.272.5264.1023
Article
CAS
PubMed
Google Scholar
Ha NC, Tonozuka T, Stamos JL, Choi HJ, Weis WI: Mechanism of phosphorylation-dependent binding of APC to β-catenin and its role in β-catenin degradation. Mol Cell. 2004, 15 (4): 511-521. 10.1016/j.molcel.2004.08.010
Article
CAS
PubMed
Google Scholar
Rubinfeld B, Tice DA, Polakis P: Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1ϵ. J Biol Chem. 2001, 276 (42): 39037-39045. 10.1074/jbc.M105148200
Article
CAS
PubMed
Google Scholar
Choi J, Park SY, Costantini F, Jho E-h, Joo C-K: Adenomatous polyposis coli is down-regulated by the ubiquitin-proteasome pathway in a process facilitated by Axin. J Biol Chem. 2004, 279 (47): 49188-49198. 10.1074/jbc.M404655200
Article
CAS
PubMed
Google Scholar
Huang X, Langelotz C, Hetfeld-Pěchoč BK, Schwenk W, Dubiel W: The COP9 signalosome mediates β-catenin degradation by deneddylation and blocks adenomatous polyposis coli destruction via USP15. J Mol Biol. 2009, 391 (4): 691-702. 10.1016/j.jmb.2009.06.066
Article
CAS
PubMed
Google Scholar
Tran H, Hamada F, Schwarz-Romond T, Bienz M: Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev. 2008, 22 (4): 528-542. 10.1101/gad.463208
Article
PubMed Central
CAS
PubMed
Google Scholar
Tran H, Bustos D, Yeh R, Rubinfeld B, Lam C, Shriver S, Zilberleyb I, Lee MW, Phu L, Sarkar AA, Zohn IE, Wertz IE, Kirkpatrick DS, Polakis P: HectD1 E3 ligase modifies adenomatous polyposis coli (APC) with polyubiquitin to promote the APC-Axin interaction. J Biol Chem. 2013, 288 (6): 3753-3767. 10.1074/jbc.M112.415240
Article
PubMed Central
CAS
PubMed
Google Scholar
Klimowski LK, Garcia BA, Shabanowitz J, Hunt DF, Virshup DM: Site-specific casein kinase 1ϵ-dependent phosphorylation of Dishevelled modulates β-catenin signaling. FEBS J. 2006, 273 (20): 4594-4602. 10.1111/j.1742-4658.2006.05462.x
Article
CAS
PubMed
Google Scholar
Hino S, Michiue T, Asashima M, Kikuchi A: Casein kinase Iϵ enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of β-catenin. J Biol Chem. 2003, 278 (16): 14066-14073. 10.1074/jbc.M213265200
Article
CAS
PubMed
Google Scholar
Huang X, McGann JC, Liu BY, Hannoush RN, Lill JR, Pham V, Newton K, Kakunda M, Liu J, Yu C, Hymowitz SG, Hongo JA, Wynshaw-Boris A, Polakis P, Harland RM, Dixit VM: Phosphorylation of dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science. 2013, 339 (6126): 1441-1445. 10.1126/science.1232253
Article
PubMed Central
CAS
PubMed
Google Scholar
Klein TJ, Jenny A, Djiane A, Mlodzik M: CKIε/discs overgrown promotes both Wnt-Fz/β-catenin and Fz/PCP signaling in Drosophila. Curr Biol. 2006, 16 (13): 1337-1343. 10.1016/j.cub.2006.06.030
Article
CAS
PubMed
Google Scholar
Sun TQ, Lu B, Feng J-J, Reinhard C, Jan YN, Fantl WJ, Williams LT: PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol. 2001, 3 (7): 628-636. 10.1038/35083016
Article
CAS
PubMed
Google Scholar
Willert K, Brink M, Wodarz A, Varmus H, Nusse R: Casein kinase 2 associates with and phosphorylates Dishevelled. EMBO J. 1997, 16 (11): 3089-3096. 10.1093/emboj/16.11.3089
Article
PubMed Central
CAS
PubMed
Google Scholar
Cruciat CM, Dolde C, de Groot RE, Ohkawara B, Reinhard C, Korswagen HC, Niehrs C: RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt–β-catenin signaling. Science. 2013, 339 (6126): 1436-1441. 10.1126/science.1231499
Article
CAS
PubMed
Google Scholar
Jung H, Kim BG, Han WH, Lee JH, Cho JY, Park WS, Maurice MM, Han JK, Lee MJ, Finley D, Jho EH: Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis. 2013, 2: e64. 10.1038/oncsis.2013.28
Article
PubMed Central
CAS
PubMed
Google Scholar
Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, Kessler BM, Clevers H, Maurice MM: Loss of the tumor suppressor CYLD enhances Wnt/β-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell. 2010, 37 (5): 607-619. 10.1016/j.molcel.2010.01.035
Article
CAS
PubMed
Google Scholar
Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N, MacCoss MJ, Moon RT: The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-[beta]-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol. 2006, 8 (4): 348-357. 10.1038/ncb1381
Article
CAS
PubMed
Google Scholar
Wei W, Li M, Wang J, Nie F, Li L: The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol. 2012, 32 (19): 3903-3912. 10.1128/MCB.00251-12
Article
PubMed Central
CAS
PubMed
Google Scholar
Ding Y, Zhang Y, Xu C, Tao QH, Chen YG: HECT domain-containing E3 ubiquitin ligase NEDD4L negatively regulates Wnt signaling by targeting dishevelled for proteasomal degradation. J Biol Chem. 2013, 288 (12): 8289-8298. 10.1074/jbc.M112.433185
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X, Chen YG: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol. 2010, 12 (8): 781-790. 10.1038/ncb2082
Article
CAS
PubMed
Google Scholar
Sharma J, Mulherkar S, Mukherjee D, Jana NR: Malin regulates Wnt signaling pathway through degradation of dishevelled2. J Biol Chem. 2012, 287 (9): 6830-6839. 10.1074/jbc.M111.315135
Article
PubMed Central
CAS
PubMed
Google Scholar
Miyazaki K, Fujita T, Ozaki T, Kato C, Kurose Y, Sakamoto M, Kato S, Goto T, Itoyama Y, Aoki M, Nakagawara A: NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J Biol Chem. 2004, 279 (12): 11327-11335. 10.1074/jbc.M312389200
Article
CAS
PubMed
Google Scholar
Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT: The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 1996, 10 (12): 1443-1454. 10.1101/gad.10.12.1443
Article
CAS
PubMed
Google Scholar
Peifer M, Pai LM, Casey M: Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev Biol. 1994, 166 (2): 543-556. 10.1006/dbio.1994.1336
Article
CAS
PubMed
Google Scholar
Hino S, Tanji C, Nakayama KI, Kikuchi A: Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination. Mol Cell Biol. 2005, 25 (20): 9063-9072. 10.1128/MCB.25.20.9063-9072.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z: Phosphorylation of β-catenin by AKT promotes β-catenin transcriptional activity. J Biol Chem. 2007, 282 (15): 11221-11229. 10.1074/jbc.M611871200
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F: Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell. 2008, 133 (2): 340-353. 10.1016/j.cell.2008.01.052
Article
PubMed Central
CAS
PubMed
Google Scholar
Du C, Zhang C, Li Z, Biswas MH, Balaji KC: β-catenin phosphorylated at threonine 120 antagonizes generation of active β-catenin by spatial localization in trans-Golgi network. PLoS One. 2012, 7 (4): e33830. 10.1371/journal.pone.0033830
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP: Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol Cell. 2003, 11 (6): 1445-1456. 10.1016/S1097-2765(03)00234-X
Article
CAS
PubMed
Google Scholar
Winer IS, Bommer GT, Gonik N, Fearon ER: Lysine residues Lys-19 and Lys-49 of β-catenin regulate its levels and function in T cell factor transcriptional activation and neoplastic transformation. J Biol Chem. 2006, 281 (36): 26181-26187. 10.1074/jbc.M604217200
Article
CAS
PubMed
Google Scholar
Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K: An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 1999, 18 (9): 2401-2410. 10.1093/emboj/18.9.2401
Article
PubMed Central
CAS
PubMed
Google Scholar
Latres E, Chiaur DS, Pagano M: The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene. 1999, 18 (4): 849-854. 10.1038/sj.onc.1202653
Article
CAS
PubMed
Google Scholar
Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW: The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 1999, 13 (3): 270-283. 10.1101/gad.13.3.270
Article
PubMed Central
CAS
PubMed
Google Scholar
Hay-Koren A, Caspi M, Zilberberg A, Rosin-Arbesfeld R: The EDD E3 ubiquitin ligase ubiquitinates and up-regulates β-catenin. Mol Biol Cell. 2011, 22 (3): 399-411. 10.1091/mbc.E10-05-0440
Article
PubMed Central
CAS
PubMed
Google Scholar
Shekhar MP, Gerard B, Pauley RJ, Williams BO, Tait L: Rad6B is a positive regulator of β-catenin stabilization. Cancer Res. 2008, 68 (6): 1741-1750. 10.1158/0008-5472.CAN-07-2111
Article
CAS
PubMed
Google Scholar
Gerard B, Sanders MA, Visscher DW, Tait L, Shekhar MP: Lysine 394 is a novel Rad6B-induced ubiquitination site on β-catenin. Biochim Biophys Acta. 2012, 1823 (10): 1686-1696. 10.1016/j.bbamcr.2012.05.032
Article
PubMed Central
CAS
PubMed
Google Scholar
Dao KH, Rotelli MD, Petersen CL, Kaech S, Nelson WD, Yates JE, Hanlon Newell AE, Olson SB, Druker BJ, Bagby GC: FANCL ubiquitinates β-catenin and enhances its nuclear function. Blood. 2012, 120 (2): 323-334. 10.1182/blood-2011-11-388355
Article
PubMed Central
CAS
PubMed
Google Scholar
Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, Bharti A, Seldin DC, Lecker SH, Dominguez I, Cohen HT: Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol. 2008, 10 (10): 1208-1216. 10.1038/ncb1781
Article
PubMed Central
CAS
PubMed
Google Scholar
Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T: Acetylation of β-catenin by CREB-binding protein (CBP). J Biol Chem. 2002, 277 (28): 25562-25567. 10.1074/jbc.M201196200
Article
CAS
PubMed
Google Scholar
Lévy L, Wei Y, Labalette C, Wu Y, Renard CA, Buendia MA, Neuveut C: Acetylation of β-catenin by p300 regulates β-catenin-Tcf4 interaction. Mol Cell Biol. 2004, 24 (8): 3404-3414. 10.1128/MCB.24.8.3404-3414.2004
Article
PubMed Central
PubMed
CAS
Google Scholar
Ge X, Jin Q, Zhang F, Yan T, Zhai Q: PCAF acetylates β-catenin and improves its stability. Mol Biol Cell. 2009, 20 (1): 419-427. 10.1091/mbc.E08-08-0792
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishitani T, Ninomiya-Tsuji J, Matsumoto K: Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/β-catenin signaling. Mol Cell Biol. 2003, 23 (4): 1379-1389. 10.1128/MCB.23.4.1379-1389.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N, Waterman M, Bowerman B, Clevers H, Shibuya H, Matsumoto K: The TAK1-NLK-MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature. 1999, 399 (6738): 798-802. 10.1038/21674
Article
CAS
PubMed
Google Scholar
Mahmoudi T, Li VSW, Ng SS, Taouatas N, Vries RGJ, Mohammed S, Heck AJ, Clevers H: The kinase TNIK is an essential activator of Wnt target genes. EMBO J. 2009, 28 (21): 3329-3340. 10.1038/emboj.2009.285
Article
PubMed Central
CAS
PubMed
Google Scholar
Shitashige M, Satow R, Jigami T, Aoki K, Honda K, Shibata T, Ono M, Hirohashi S, Yamada T: Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res. 2010, 70 (12): 5024-5033. 10.1158/0008-5472.CAN-10-0306
Article
CAS
PubMed
Google Scholar
Lee E, Salic A, Kirschner MW: Physiological regulation of β-catenin stability by Tcf3 and CK1∈. J Cell Biol. 2001, 154 (5): 983-994. 10.1083/jcb.200102074
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang S, Jones KA: CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr Biol. 2006, 16 (22): 2239-2244. 10.1016/j.cub.2006.09.034
Article
CAS
PubMed
Google Scholar
Hämmerlein A, Weiske J, Huber O: A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/β-catenin complex. Cell Mol Life Sci. 2005, 62 (5): 606-618. 10.1007/s00018-005-4507-7
Article
PubMed
CAS
Google Scholar
Hikasa H, Sokol SY: Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2. J Biol Chem. 2011, 286 (14): 12093-12100. 10.1074/jbc.M110.185280
Article
PubMed Central
CAS
PubMed
Google Scholar
Hikasa H, Ezan J, Itoh K, Li X, Klymkowsky MW, Sokol SY: Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell. 2010, 19 (4): 521-532. 10.1016/j.devcel.2010.09.005
Article
PubMed Central
CAS
PubMed
Google Scholar
Waltzer L, Bienz M: Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature. 1998, 395 (6701): 521-525. 10.1038/26785
Article
CAS
PubMed
Google Scholar
Gay F, Calvo D, Lo MC, Ceron J, Maduro M, Lin R, Shi Y: Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1. Genes Dev. 2003, 17 (6): 717-722. 10.1101/gad.1042403
Article
PubMed Central
CAS
PubMed
Google Scholar
Elfert S, Weise A, Bruser K, Biniossek ML, Jägle S, Senghaas N, Hecht A: Acetylation of human TCF4 (TCF7L2) proteins attenuates inhibition by the HBP1 repressor and induces a conformational change in the TCF4::DNA complex. PLoS One. 2013, 8 (4): e61867. 10.1371/journal.pone.0061867
Article
PubMed Central
CAS
PubMed
Google Scholar
Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R: PIASy, a nuclear matrix–associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 2001, 15 (23): 3088-3103. 10.1101/gad.944801
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto H, Ihara M, Matsuura Y, Kikuchi A: Sumoylation is involved in β-catenin-dependent activation of Tcf-4. EMBO J. 2003, 22 (9): 2047-2059. 10.1093/emboj/cdg204
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishitani T, Matsumoto K, Chitnis AB, Itoh M: Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nat Cell Biol. 2005, 7 (11): 1106-1112. 10.1038/ncb1311
Article
CAS
PubMed
Google Scholar
Yamada M, Ohnishi J, Ohkawara B, Iemura S, Satoh K, Hyodo-Miura J, Kawachi K, Natsume T, Shibuya H: NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). J Biol Chem. 2006, 281 (30): 20749-20760. 10.1074/jbc.M602089200
Article
CAS
PubMed
Google Scholar
Cohen P: The role of protein phosphorylation in human health and disease. Eur J Biochem. 2001, 268 (19): 5001-5010. 10.1046/j.0014-2956.2001.02473.x
Article
CAS
PubMed
Google Scholar
Aberle H, Bauer A, Stappert J, Kispert A, Kemler R: β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997, 16 (13): 3797-3804. 10.1093/emboj/16.13.3797
Article
PubMed Central
CAS
PubMed
Google Scholar
Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P: The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr Biol. 1999, 9 (4): 207-211. 10.1016/S0960-9822(99)80091-8
Article
CAS
PubMed
Google Scholar
Liu X, Rubin JS, Kimmel AR: Rapid, Wnt-induced changes in GSK3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Curr Biol. 2005, 15 (22): 1989-1997. 10.1016/j.cub.2005.10.050
Article
CAS
PubMed
Google Scholar
Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E: LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3′s phosphorylation of β-catenin. Proc Natl Acad Sci U S A. 2008, 105 (23): 8032-8037. 10.1073/pnas.0803025105
Article
PubMed Central
CAS
PubMed
Google Scholar
Piao S, Lee SH, Kim H, Yum S, Stamos JL, Xu Y, Lee SJ, Lee J, Oh S, Han JK, Park BJ, Weis WI, Ha NC: Direct inhibition of GSK3β by the phosphorylated cytoplasmic domain of LRP6 in Wnt/β-catenin signaling. PLoS One. 2008, 3 (12): e4046. 10.1371/journal.pone.0004046
Article
PubMed Central
PubMed
CAS
Google Scholar
Wu G, Huang H, Abreu JG, He X: Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One. 2009, 4 (3): e4926. 10.1371/journal.pone.0004926
Article
PubMed Central
PubMed
CAS
Google Scholar
Mi K, Dolan PJ, Johnson GVW: The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem. 2006, 281 (8): 4787-4794. 10.1074/jbc.M508657200
Article
CAS
PubMed
Google Scholar
Kishida M, Koyama S, Kishida S, Matsubara K, Nakashima S, Higano K, Takada R, Takada S, Kikuchi A: Axin prevents Wnt-3a-induced accumulation of β-catenin. Oncogene. 1999, 18 (4): 979-985. 10.1038/sj.onc.1202388
Article
CAS
PubMed
Google Scholar
Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH: Structural basis for recruitment of glycogen synthase kinase 3β to the axin–APC scaffold complex. EMBO J. 2003, 22 (3): 494-501. 10.1093/emboj/cdg068
Article
PubMed Central
CAS
PubMed
Google Scholar
Willert K, Shibamoto S, Nusse R: Wnt-induced dephosphorylation of Axin releases β-catenin from the Axin complex. Genes Dev. 1999, 13 (14): 1768-1773. 10.1101/gad.13.14.1768
Article
PubMed Central
CAS
PubMed
Google Scholar
Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J, Hunt DF, Yost HJ, Virshup DM: Protein phosphatase 1 regulates assembly and function of the β-catenin degradation complex. EMBO J. 2007, 26 (6): 1511-1521. 10.1038/sj.emboj.7601607
Article
PubMed Central
CAS
PubMed
Google Scholar
Strovel ET, Wu D, Sussman DJ: Protein phosphatase 2Cα dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem. 2000, 275 (4): 2399-2403. 10.1074/jbc.275.4.2399
Article
CAS
PubMed
Google Scholar
Hinoi T, Yamamoto H, Kishida M, Takada S, Kishida S, Kikuchi A: Complex formation of adenomatous polyposis coli gene product and Axin facilitates glycogen synthase kinase-3β-dependent phosphorylation of β-catenin and down-regulates β-catenin. J Biol Chem. 2000, 275 (44): 34399-34406.
Article
CAS
PubMed
Google Scholar
Huang H, He X: Wnt/β-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol. 2008, 20 (2): 119-125. 10.1016/j.ceb.2008.01.009
Article
PubMed Central
CAS
PubMed
Google Scholar
Angers S, Moon RT: Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009, 10 (7): 468-477.
Article
CAS
PubMed
Google Scholar
Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X: A mechanism for Wnt coreceptor activation. Mol Cell. 2004, 13 (1): 149-156. 10.1016/S1097-2765(03)00484-2
Article
CAS
PubMed
Google Scholar
Niehrs C, Shen J: Regulation of Lrp6 phosphorylation. Cell Mol Life Sci. 2010, 67 (15): 2551-2562. 10.1007/s00018-010-0329-3
Article
CAS
PubMed
Google Scholar
Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, Lucast L, Khoo C, Zhang X, Li L, Abrams CS, Sokol SY, Wu D: Wnt3a-mediated formation of phosphatidylinositol 4, 5-bisphosphate regulates LRP6 phosphorylation. Science. 2008, 321 (5894): 1350-1353. 10.1126/science.1160741
Article
PubMed Central
CAS
PubMed
Google Scholar
Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K, Wang J, Doble B, Woodgett J, Wynshaw-Boris A, Hsieh JC, He X: Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008, 135 (2): 367-375.
Article
CAS
PubMed
Google Scholar
Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, Fryer LG, Hutchinson L, Fry MJ, Dale TC: Interaction of Axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 1999, 18 (10): 2823-2835. 10.1093/emboj/18.10.2823
Article
PubMed Central
CAS
PubMed
Google Scholar
Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A: DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol Cell Biol. 1999, 19 (6): 4414-4422.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M: Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proc Natl Acad Sci U S A. 2011, 108 (5): 1937-1942. 10.1073/pnas.1017063108
Article
PubMed Central
CAS
PubMed
Google Scholar
Mao J, Wang J, Liu B, Pan W, Farr Iii GH, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D: Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell. 2001, 7 (4): 801-809. 10.1016/S1097-2765(01)00224-6
Article
CAS
PubMed
Google Scholar
Bilić J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C: Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007, 316 (5831): 1619-1622. 10.1126/science.1137065
Article
PubMed
CAS
Google Scholar
Schwarz-Romond T, Fiedler M, Shibata N, Butler PJG, Kikuchi A, Higuchi Y, Bienz M: The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol. 2007, 14 (6): 484-492. 10.1038/nsmb1247
Article
CAS
PubMed
Google Scholar
Schwarz-Romond T, Metcalfe C, Bienz M: Dynamic recruitment of axin by Dishevelled protein assemblies. J Cell Sci. 2007, 120 (14): 2402-2412. 10.1242/jcs.002956
Article
CAS
PubMed
Google Scholar
Lee JS, Ishimoto A, Yanagawa S: Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J Biol Chem. 1999, 274 (30): 21464-21470. 10.1074/jbc.274.30.21464
Article
CAS
PubMed
Google Scholar
González-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AM: Wnt proteins induce dishevelled phosphorylation via an LRP5/6- independent mechanism, irrespective of their ability to stabilize β-catenin. Mol Cell Biol. 2004, 24 (11): 4757-4768. 10.1128/MCB.24.11.4757-4768.2004
Article
PubMed Central
PubMed
CAS
Google Scholar
Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR: Functional redundancy of GSK-3α and GSK-3β in Wnt/β-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell. 2007, 12 (6): 957-971. 10.1016/j.devcel.2007.04.001
Article
PubMed Central
CAS
PubMed
Google Scholar
Cohen P, Frame S: The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001, 2 (10): 769-776. 10.1038/35096075
Article
CAS
PubMed
Google Scholar
Frame S, Cohen P, Biondi RM: A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell. 2001, 7 (6): 1321-1327. 10.1016/S1097-2765(01)00253-2
Article
CAS
PubMed
Google Scholar
Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH: Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001, 105 (6): 721-732. 10.1016/S0092-8674(01)00374-9
Article
CAS
PubMed
Google Scholar
Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, Matsui T, Rosenzweig A, Taylor WG, Rubin JS, Perrella MA, Lee ME: Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem. 2001, 276 (20): 17479-17483. 10.1074/jbc.C000880200
Article
CAS
PubMed
Google Scholar
Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoël MJ, Bertrand F, Cherqui G, Perret C, Capeau J: Insulin and IGF-1 stimulate the β-catenin pathway through two signalling cascades involving GSK-3β inhibition and Ras activation. Oncogene. 2001, 20 (2): 252-259. 10.1038/sj.onc.1204064
Article
CAS
PubMed
Google Scholar
Ding VW, Chen RH, McCormick F: Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J Biol Chem. 2000, 275 (42): 32475-32481.
Article
CAS
PubMed
Google Scholar
McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR: Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J. 2005, 24 (8): 1571-1583. 10.1038/sj.emboj.7600633
Article
PubMed Central
CAS
PubMed
Google Scholar
Bikkavilli RK, Feigin ME, Malbon CC: p38 mitogen-activated protein kinase regulates canonical Wnt–β-catenin signaling by inactivation of GSK3β. J Cell Sci. 2008, 121 (21): 3598-3607. 10.1242/jcs.032854
Article
CAS
PubMed
Google Scholar
Wu ZQ, Brabletz T, Fearon E, Willis AL, Hu CY, Li XY, Weiss SJ: Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proc Natl Acad Sci U S A. 2012, 109 (28): 11312-11317. 10.1073/pnas.1203015109
Article
PubMed Central
CAS
PubMed
Google Scholar
Itoh K, Tang TL, Neel BG, Sokol SY: Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Development. 1995, 121 (12): 3979-3988.
CAS
PubMed
Google Scholar
Buescher JL, Phiel CJ: A noncatalytic domain of glycogen synthase kinase-3 (GSK-3) is essential for activity. J Biol Chem. 2010, 285 (11): 7957-7963. 10.1074/jbc.M109.091603
Article
PubMed Central
CAS
PubMed
Google Scholar
Fraser E, Young N, Dajani R, Franca-Koh J, Ryves J, Williams RSB, Yeo M, Webster MT, Richardson C, Smalley MJ, Pearl LH, Harwood A, Dale TC: Identification of the Axin and Frat binding region of glycogen synthase kinase-3. J Biol Chem. 2002, 277 (3): 2176-2185. 10.1074/jbc.M109462200
Article
CAS
PubMed
Google Scholar
Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC: Differential molecular assemblies underlie the dual function of Axin in modulating the WNT and JNK pathways. J Biol Chem. 2001, 276 (34): 32152-32159. 10.1074/jbc.M104451200
Article
CAS
PubMed
Google Scholar
Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, van de Wetering M, Destree O, Clevers H: The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature. 1998, 395 (6702): 608-612. 10.1038/26989
Article
CAS
PubMed
Google Scholar
Arce L, Pate K, Waterman M: Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer. 2009, 9 (1): 159. 10.1186/1471-2407-9-159
Article
PubMed Central
PubMed
CAS
Google Scholar
Daniels DL, Weis WI: β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005, 12 (4): 364-371. 10.1038/nsmb912
Article
CAS
PubMed
Google Scholar
Hsu SC, Galceran J, Grosschedl R: Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol Cell Biol. 1998, 18 (8): 4807-4818.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem. 1998, 67 (1): 425-479. 10.1146/annurev.biochem.67.1.425
Article
CAS
PubMed
Google Scholar
Pickart CM, Eddins MJ: Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 2004, 1695 (1–3): 55-72.
Article
CAS
PubMed
Google Scholar
Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002, 82 (2): 373-428.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay D, Riezman H: Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007, 315 (5809): 201-205. 10.1126/science.1127085
Article
CAS
PubMed
Google Scholar
Schnell JD, Hicke L: Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem. 2003, 278 (38): 35857-35860. 10.1074/jbc.R300018200
Article
CAS
PubMed
Google Scholar
Chen ZJ, Sun LJ: Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell. 2009, 33 (3): 275-286. 10.1016/j.molcel.2009.01.014
Article
CAS
PubMed
Google Scholar
Komander D: The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009, 37 (Pt 5): 937-953.
Article
CAS
PubMed
Google Scholar
Kulathu Y, Komander D: Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012, 13 (8): 508-523. 10.1038/nrm3394
Article
CAS
PubMed
Google Scholar
Ikeda F, Dikic I: Atypical ubiquitin chains: new molecular signals. EMBO Rep. 2008, 9 (6): 536-542. 10.1038/embor.2008.93
Article
PubMed Central
CAS
PubMed
Google Scholar
Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K: A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006, 25 (20): 4877-4887. 10.1038/sj.emboj.7601360
Article
PubMed Central
CAS
PubMed
Google Scholar
Tokunaga F, Sakata S-i, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K: Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol. 2009, 11 (2): 123-132. 10.1038/ncb1821
Article
CAS
PubMed
Google Scholar
Sorkin A: Regulation of endocytic trafficking of receptors and transporters by ubiquitination: possible role in neurodegenerative disease. Intracellular traffic and neurodegenerative disorders. Edited by: George-Hyslop PS, Mobley WC, Christen Y. 2009, 141-155. Berlin, Heidelberg: Springer.
Chapter
Google Scholar
Kravtsova-Ivantsiv Y, Ciechanover A: Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci. 2012, 125 (3): 539-548. 10.1242/jcs.093567
Article
CAS
PubMed
Google Scholar
Fuchs SY, Spiegelman VS, Suresh Kumar KG: The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene. 2004, 23 (11): 2028-2036. 10.1038/sj.onc.1207389
Article
CAS
PubMed
Google Scholar
Panchenko MV, Zhou MI, Cohen HT: von Hippel-Lindau partner Jade-1 Is a transcriptional co-activator associated with histone acetyltransferase activity. J Biol Chem. 2004, 279 (53): 56032-56041. 10.1074/jbc.M410487200
Article
CAS
PubMed
Google Scholar
Zhou MI, Wang H, Ross JJ, Kuzmin I, Xu C, Cohen HT: The von Hippel-Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1. J Biol Chem. 2002, 277 (42): 39887-39898. 10.1074/jbc.M205040200
Article
CAS
PubMed
Google Scholar
Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, Kühl M, Wedlich D, Birchmeier W: Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science. 1998, 280 (5363): 596-599. 10.1126/science.280.5363.596
Article
CAS
PubMed
Google Scholar
Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P: Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr Biol. 1998, 8 (10): 573-581. 10.1016/S0960-9822(98)70226-X
Article
CAS
PubMed
Google Scholar
Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 2003, 1 (1): e10. 10.1371/journal.pbio.0000010
Article
PubMed Central
PubMed
Google Scholar
Salic A, Lee E, Mayer L, Kirschner MW: Control of β-catenin stability: reconstitution of the cytoplasmic steps of the Wnt pathway in Xenopus egg extracts. Mol Cell. 2000, 5 (3): 523-532. 10.1016/S1097-2765(00)80446-3
Article
CAS
PubMed
Google Scholar
Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM, Angers S: The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling. Mol Cell Biol. 2011, 31 (10): 2053-2065. 10.1128/MCB.01094-10
Article
PubMed Central
CAS
PubMed
Google Scholar
Petroski MD, Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005, 6 (1): 9-20. 10.1038/nrm1547
Article
CAS
PubMed
Google Scholar
Papkoff J, Rubinfeld B, Schryver B, Polakis P: Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol Cell Biol. 1996, 16 (5): 2128-2134.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao C, Chen YG: Dishevelled: the hub of Wnt signaling. Cell Signal. 2010, 22 (5): 717-727. 10.1016/j.cellsig.2009.11.021
Article
CAS
PubMed
Google Scholar
Habas R: Canonical Wnt signaling: an unexpected new player. Dev Cell. 2006, 11 (2): 138-139. 10.1016/j.devcel.2006.07.009
Article
CAS
PubMed
Google Scholar
Tauriello DV, Maurice MM: The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle. 2010, 9 (18): 3724-3733.
Article
CAS
Google Scholar
González-Sancho JM, Greer YE, Abrahams CL, Takigawa Y, Baljinnyam B, Lee KH, Lee KS, Rubin JS, Brown AM: Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. J Biol Chem. 2013, 288 (13): 9428-9437. 10.1074/jbc.M112.448480
Article
PubMed Central
PubMed
CAS
Google Scholar
Cadigan KM, Fish MP, Rulifson EJ, Nusse R: Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell. 1998, 93 (5): 767-777. 10.1016/S0092-8674(00)81438-5
Article
CAS
PubMed
Google Scholar
Zhang J, Li Y, Liu Q, Lu W, Bu G: Wnt signaling activation and mammary gland hyperplasia in MMTV-LRP6 transgenic mice: implication for breast cancer tumorigenesis. Oncogene. 2009, 29 (4): 539-549.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haglund K, Dikic I: The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci. 2012, 125 (2): 265-275. 10.1242/jcs.091280
Article
CAS
PubMed
Google Scholar
Tran H, Polakis P: Reversible modification of adenomatous polyposis coli (APC) with K63-linked polyubiquitin regulates the assembly and activity of the β-catenin destruction complex. J Biol Chem. 2012, 287 (34): 28552-28563. 10.1074/jbc.M112.387878
Article
PubMed Central
CAS
PubMed
Google Scholar
Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S: Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet. 2000, 25 (2): 160-165. 10.1038/76006
Article
CAS
PubMed
Google Scholar
Jürgen Dohmen R: SUMO protein modification. Biochim Biophys Acta. 2004, 1695 (1–3): 113-131.
Article
PubMed
CAS
Google Scholar
Gareau JR, Lima CD: The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010, 11 (12): 861-871. 10.1038/nrm3011
Article
PubMed Central
CAS
PubMed
Google Scholar
Yeh ETH: SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem. 2009, 284 (13): 8223-8227. 10.1074/jbc.R800050200
Article
PubMed Central
CAS
PubMed
Google Scholar
Matunis MJ, Coutavas E, Blobel G: A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 1996, 135 (6): 1457-1470. 10.1083/jcb.135.6.1457
Article
CAS
PubMed
Google Scholar
Kerscher O: SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 2007, 8 (6): 550-555. 10.1038/sj.embor.7400980
Article
PubMed Central
CAS
PubMed
Google Scholar
Johnson ES: Protein modification by SUMO. Annu Rev Biochem. 2004, 73 (1): 355-382. 10.1146/annurev.biochem.73.011303.074118
Article
CAS
PubMed
Google Scholar
Kadoya T, Kishida S, Fukui A, Hinoi T, Michiue T, Asashima M, Kikuchi A: Inhibition of Wnt signaling pathway by a novel axin-binding protein. J Biol Chem. 2000, 275 (47): 37030-37037. 10.1074/jbc.M005984200
Article
CAS
PubMed
Google Scholar
Kadoya T, Yamamoto H, Suzuki T, Yukita A, Fukui A, Michiue T, Asahara T, Tanaka K, Asashima M, Kikuchi A: Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of β-catenin. Mol Cell Biol. 2002, 22 (11): 3803-3819. 10.1128/MCB.22.11.3803-3819.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim MJ, Chia IV, Costantini F: SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. FASEB J. 2008, 22 (11): 3785-3794. 10.1096/fj.08-113910
Article
PubMed Central
CAS
PubMed
Google Scholar
Li J, Wang CY: TBL1-TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol. 2008, 10 (2): 160-169. 10.1038/ncb1684
Article
CAS
PubMed
Google Scholar
Choi HK, Choi KC, Yoo JY, Song M, Ko Suk J, Kim Chul H, Ahn JH, Chun KH, Yook Jong I, Yoon HG: Reversible SUMOylation of TBL1-TBLR1 regulates β-catenin-mediated Wnt signaling. Mol Cell. 2011, 43 (2): 203-216. 10.1016/j.molcel.2011.05.027
Article
CAS
PubMed
Google Scholar
Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W: Mono- Versus polyubiquitination: differential control of p53 fate by Mdm2. Science. 2003, 302 (5652): 1972-1975. 10.1126/science.1091362
Article
CAS
PubMed
Google Scholar
Yurchenko V, Xue Z, Sadofsky MJ: SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol. 2006, 26 (5): 1786-1794. 10.1128/MCB.26.5.1786-1794.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang J, Yan J, Zhang J, Zhu S, Wang Y, Shi T, Zhu C, Chen C, Liu X, Cheng J, Mustelin T, Feng GS, Chen G, Yu J: SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat Commun. 2012, 3: 911.
Article
PubMed
CAS
Google Scholar
Kubota Y, O’Grady P, Saito H, Takekawa M: Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol. 2011, 13 (3): 282-291. 10.1038/ncb2169
Article
CAS
PubMed
Google Scholar
Carter S, Vousden KH: p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53. Cell Cycle. 2008, 7 (16): 2519-2528. 10.4161/cc.7.16.6422
Article
CAS
PubMed
Google Scholar
Lundby A, Lage K, Weinert Brian T, Bekker-Jensen Dorte B, Secher A, Skovgaard T, Kelstrup Christian D, Dmytriyev A, Choudhary C, Lundby C, Olsen JV: Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2012, 2 (2): 419-431. 10.1016/j.celrep.2012.07.006
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang XJ: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004, 32 (3): 959-976. 10.1093/nar/gkh252
Article
PubMed Central
CAS
PubMed
Google Scholar
Guan KL, Xiong Y: Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci. 2011, 36 (2): 108-116. 10.1016/j.tibs.2010.09.003
Article
PubMed Central
CAS
PubMed
Google Scholar
Sterner DE, Berger SL: Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000, 64 (2): 435-459. 10.1128/MMBR.64.2.435-459.2000
Article
PubMed Central
CAS
PubMed
Google Scholar
Struhl K: Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998, 12 (5): 599-606. 10.1101/gad.12.5.599
Article
CAS
PubMed
Google Scholar
Strahl BD, Allis CD: The language of covalent histone modifications. Nature. 2000, 403 (6765): 41-45. 10.1038/47412
Article
CAS
PubMed
Google Scholar
Spange S, Wagner T, Heinzel T, Krämer OH: Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009, 41 (1): 185-198. 10.1016/j.biocel.2008.08.027
Article
CAS
PubMed
Google Scholar
Glozak MA, Sengupta N, Zhang X, Seto E: Acetylation and deacetylation of non-histone proteins. Gene. 2005, 363: 15-23.
Article
CAS
PubMed
Google Scholar
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine Acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009, 325 (5942): 834-840. 10.1126/science.1175371
Article
CAS
PubMed
Google Scholar
Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One. 2008, 3 (4): e2020. 10.1371/journal.pone.0002020
Article
PubMed Central
PubMed
CAS
Google Scholar
Kim MY, Zhang T, Kraus WL: Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+into a nuclear signal. Genes Dev. 2005, 19 (17): 1951-1967. 10.1101/gad.1331805
Article
CAS
PubMed
Google Scholar
Hassa PO, Haenni SS, Elser M, Hottiger MO: Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?. Microbiol Mol Biol Rev. 2006, 70 (3): 789-829. 10.1128/MMBR.00040-05
Article
PubMed Central
CAS
PubMed
Google Scholar
Schreiber V, Dantzer F, Ame JC, de Murcia G: Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006, 7 (7): 517-528. 10.1038/nrm1963
Article
CAS
PubMed
Google Scholar
James RG, Davidson KC, Bosch KA, Biechele TL, Robin NC, Taylor RJ, Major MB, Camp ND, Fowler K, Martins TJ, Moon RT: WIKI4, a novel inhibitor of tankyrase and Wnt/β-catenin signaling. PLoS One. 2012, 7 (12): e50457. 10.1371/journal.pone.0050457
Article
PubMed Central
CAS
PubMed
Google Scholar
Hunter T: The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007, 28 (5): 730-738. 10.1016/j.molcel.2007.11.019
Article
CAS
PubMed
Google Scholar
Yang XJ, Seto E: Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell. 2008, 31 (4): 449-461. 10.1016/j.molcel.2008.07.002
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, Wang Y, Loh T, Kowolik C, Jamsen J, Zhou M, Truong K, Chen Y, Zheng L, Shen B: Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell. 2012, 47 (3): 444-456. 10.1016/j.molcel.2012.05.042
Article
PubMed Central
CAS
PubMed
Google Scholar
Murr R: Interplay between different epigenetic modifications and mechanisms. Advances in Genetics, Volume 70. Edited by: Zdenko H, Toshikazu U. 2010, 101-141. Waltham, Massachusetts: Academic Press.
Google Scholar
Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W: Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev. 2012, 26 (3): 235-240. 10.1101/gad.182618.111
Article
PubMed Central
PubMed
CAS
Google Scholar
Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagné JP, Lee Y, Ko HS, Lee BD, Poirier GG, Dawson VL, Dawson TM: Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A. 2011, 108 (34): 14103-14108. 10.1073/pnas.1108799108
Article
PubMed Central
CAS
PubMed
Google Scholar
Nusse R, Varmus H: Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 2012, 31 (12): 2670-2684. 10.1038/emboj.2012.146
Article
PubMed Central
CAS
PubMed
Google Scholar
Anastas JN, Moon RT: WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013, 13 (1): 11-26.
Article
CAS
PubMed
Google Scholar
Polakis P: Drugging Wnt signalling in cancer. EMBO J. 2012, 31 (12): 2737-2746. 10.1038/emboj.2012.126
Article
PubMed Central
CAS
PubMed
Google Scholar